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Abstract: Streptococcus suis is a swine pathogen that is capable of causing severe outbreaks of disease
in the nursery. Demographic parameters such as host recruitment rates can have profound effects
on the transmission dynamics of infectious diseases and, thus, are critically important in high-
turnover populations such as farmed swine. However, knowledge concerning the implications that
such parameters have on S. suis disease control remains unknown. A stochastic mathematical model
incorporating sub-clinically infected pigs was developed to capture the effects of changes in host
recruitment rate on disease incidence. Compared to our base model scenario, our results show that
monthly introduction of pigs into the nursery (instead of weekly introduction) reduced cumulative
cases of S. suis by up to 59%, while increasing disease-removal rates alone averted up to 64% of
cases. Sensitivity analysis demonstrated that the course of infection in sub-clinically infected pigs
was highly influential and generated significant variability in the model outcomes. Our model
findings suggest that modifications to host recruitment rates could be leveraged as a tool for S. suis
disease control, however improving our understanding of additional factors that influence the risk
of transmission would improve the precision of the model estimates.

Keywords: Streptococcus suis; swine; batch management systems; mathematical modeling;
epidemiology; recruitment rate; transmission

1. Introduction

Streptococcus suis is a production disease of swine and one of the most common causes of piglet
morbidity and mortality after weaning [1]. Disease resulting from infection with S. suis usually occurs
in piglets up to 10 weeks in age, although pigs of any age can be affected [1]. Cases may present as
severe systemic infections such as meningitis, septicemia, arthritis, pneumonia, and sudden death
[2]. The bacterium commonly resides in the upper respiratory tract of pigs and is highly diverse, with
35 serotypes known to date [3]. Among the 35 serotypes, serotype 2 is often associated with disease
in pigs and is most frequently isolated from diseased cases [3]; however, not all strains are pathogenic,
while varied virulence can exist among pathogenic strains [4]. Pigs harboring S. suis may present as
various manifestations including sub-clinical infection, clinical-infection, or a carrier state upon
recovery of infection [1]. Piglets can become exposed to S. suis from vaginal secretions during or after
parturition, while carriers (both sub-clinical and clinical) represent a possible source of infection for
their pen mates after they are mixed with other piglets in the nursery [1,5].
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Horizontal transmission of S. suis primarily occurs through the oro-nasal route and colonizes
the tonsils of both clinically ill and healthy pigs [6,7]. Moreover, increasing evidence of aerosol
exposure suggests that airborne transmission is an important route for S. suis spread across short
distances [8-12]. Outbreaks of S. suis in the nursery are frequently credited to the introduction of a
sub-clinically infected pig into the herd [13,14]. However, the association between carrier rates and
disease occurrence in the nursery remains unknown despite their importance in S. suis epidemiology
[5,14,15]. Strategies for effective disease control for S. suis remains challenging due to the low reported
success rates of conventional disease control programmes. For instance, antibiotic prophylaxis has
been shown to be effective in eradicating other endemic swine pathogens such as Actinobacillus
pleuropneumoniae, Mycoplasma hyopneumoniae, and Lawsonia intracellularis in swine herds [16-18].
However, eradication efforts have been unsuccessful in eliminating the carrier state of S. suis, since
pigs are colonized very early after birth [19,20]. S. suis vaccine use on farms remains uncommon. A
2006 report from the National Animal Health Monitoring System reports that <7% of herds in the U.S.
use a S. suis vaccine [21]. Vaccination efficacy is often hampered by the inability to eliminate local
tissue invasion and carrier states in pigs as well as the inability to offer cross-serovar protection [22—
25]. Thus, alternative approaches for effective disease control in the nursery would be beneficial.

Strategies for optimal disease control require a comprehensive understanding of the
mechanisms by which pathogens can invade and propagate. The extent to which a pathogen can be
maintained within a population depends on two key components: i) the transmissibility of the
pathogen and ii) the availability of susceptible hosts [26]. The transmission potential of a pathogen
(also known as the basic reproductive number, Ro) consists of three key factors that influence the
spread of disease: the rate of contact between susceptible and infectious individuals (c), the
probability of transmission given a suitable contact (p), and the duration of infectiousness (D) [27].
Attempts to influence these factors to disrupt pathogen transmission have been previously
investigated for S. suis. For example, the application of early segregated weaning techniques failed to
eliminate the carrier state of S. suis since the bacterium is an early colonizer of pigs [19]. Similarly,
Dekker et al. [9] demonstrated that spatial separation of pigs (at the pen-level) would not be sufficient
in preventing the spread of the S. suis in either directly or indirectly exposed pigs due to the rapid
colonization of the bacterium. However, the authors suggested that spatial separation at the herd-
level may reduce the risk of transmission [9].

In the absence of effective methods to control this disease, the infectious disease theory suggests
that efforts could be focused on limiting the availability of susceptible hosts by modifying population
demographics. The influence of host recruitment rates (number and time of entry of susceptible hosts
into the population) in disease spread has been well-established in human infectious disease
epidemiology. For example, a comparative analysis of the persistence of measles in cities and on
islands found that large and growing populations in dense cities supported the continued
propagation of the virus, whereas “breaks” in the continuity of measles transmission were found in
smaller island communities, which helped limit the transmission of the disease [28]. This study and
others [29,30] have suggested that increased breaks in a system without continuous supply of
susceptible individuals may reduce infectious numbers or increase the chance of stochastic fade-out
and subsequent elimination of the infection.

In the context of swine production systems, management practices often dictate both the supply
of susceptible hosts into the system and the contact patterns between them. For example, the timing
of new births in the population are often tightly controlled events that determine the influx of
susceptible pigs downstream in production; while herd management will affect the relative contact
of animals between different groups (i.e., continuous flow, all-in/all-out systems). For swine diseases
such as S. suis, understanding the underlying mechanisms for disease transmission can be critically
important for implementing and optimizing disease control strategies. Changes in host recruitment
rates can be modified with the use of batch management systems (BMS), which is a practice that
allows for modifications in the farrowing interval (fixed breeding and farrowing) and the delivery of
batches of pigs segregated by time [31]. These systems allow for “breaks” in the timing of the
introduction of new susceptible pigs into the nursery and the ability to clean and disinfect rooms
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between batches of pigs. BMS have been previously shown to be effective in reducing the incidence
of other swine diseases [32], however the implications that BMS may have on S. suis disease control
have not been previously examined.

Mathematical models are useful tools for understanding disease dynamics because they allow
us to test explicit assumptions about the hypothesized mechanisms leading to the spread of
pathogens and to explore scenarios in silico (via computer simulation) [26]. The goal of the study was
to use mathematical modeling to simulate disease control strategies that swine producers may
practically employ to reduce the spread of S. suis in the nursery. Based on a nursery barn that
experienced a 6-month outbreak of S. suis as a case study, we developed a stochastic mathematical
model to describe S. suis transmission within the nursery for a farrow-to-finish swine farm in Ontario,
Canada. The objective of this study was to examine whether modifications to the number and timing
of susceptible hosts (i.e., newly weaned piglets) entering into the nursery could be used as a
management tool for controlling S. suis disease outbreaks in the nursery.

2. Results

2.1. Model Fit

The goal of maximum likelihood estimation is to find model parameter values that describe the
distribution that maximizes the probability of observing the empirical data. After fitting our model
to the observed outbreak data, our best-fit estimates for D, ¢, and p were 1.43 weeks™, 4.8 weeks,
and 0.22, respectively. The model graphically appears to have good agreement with the observed
monthly incidence and cumulative case data (Figure 1).
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Figure 1. Average model fit (dashed line) with a 95% confidence interval (gold bands) to monthly
incident case data (A) and average model fit to monthly cumulative case data with a 95% confidence
interval (gold bands) (B) after 1000 model iterations.

2.2. Intervention Scenarios

Model simulations of the impact of different management strategies (interventions) are
presented. The results are presented graphically with each intervention compared against the base
model scenario based on 1000 model simulations per scenarios. Figure 2 depicts the transition to a
BMS with the disease removal parameter held constant (i.e., 42 = 2.00 days) and cumulative cases
reduced from the base model scenario. Similarly, Figure 3 presents the combined effect of a BMS and
more rapid removal of clinically ill pigs (i.e., 42 = 0.50-day). The potential impact of increased clinical



Pathogens 2020, 9, 174 4 of 16

monitoring and removal of clinically ill pigs is shown in Figure 4, with scenarios 2 to 4 under a
Weekly farrowing (WF) system. Model outputs of predicted incident and cumulative cases of S. suis
for each scenario are compared in Table 1.

Table 1. Model simulations of evaluated intervention scenarios with mean monthly incidence, mean
cumulative cases counts, and percent change in cumulative cases (%) compared to the base model

scenario.
Scenario  System! Disease-removal Mean Monthly Mean Cumulative A Cumulative
Rate, d2(days)? Incidence, Range Incidence + SD? Cases (%)
Base WE 2.00 49 (7-78) 345 + 67 -
model
1 BMS 2.00 24 (21-26) 141 + 47 -59
2 WEF 0.25 18 (1-37) 125+ 57 -64
3 WF 0.50 30 (2-57) 212+73 -39
4 WEF 1.00 42 (4-71) 295 +70 -14
5 BMS 0.50 8 (7-11) 54 + 31 -84

! WF: Weekly farrowing system, BMS: Batch management system; 2 dz: disease-removal rate of
clinically infected pigs; 3 SD: standard deviation. The base model scenario is shaded in grey and serves
as the reference scenario for comparison to the intervention scenarios (1-5).
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Figure 2. Scenario 1: Predicted incident cases (A) and cumulative cases (B) of S. suis in the nursery
using a batch management system (BMS) with a 2.00 day disease-removal rate (d2) of clinically
infected pigs (blue) compared to the base model scenario (yellow).
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Figure 3. Scenario 5: Predicted incident cases (A) and cumulative cases (B) of S. suis in the nursery
using a monthly batch management system (BMS) with a 0.50 day disease-removal rate (d2) of
clinically infected pigs (blue) compared to the base model scenario (blue).
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Figure 4. Scenario 2 to 4: Predicted cumulative cases of S. suis in the nursery using a weekly-farrowing
(WF) system with disease-removal rate (dz) of 2.00 days as the base model scenario compared to
scenarios 2 to 4 with varying disease-removal rates (dz).

2.3. Projected Maximum Cumulative Case Numbers

Under the base model scenario, the results of 1000 simulation replicates showed that 24% of the
model simulations resulted in subsequent transmission of the disease (clinically-infected cases > 1).
We found that the largest observed outbreak out of 1000 simulations was an outbreak with 476
clinically-infected cases, which is equivalent to 23.8% of the herd infected under the base model
scenario (Figure 5). The transition to a BMS (scenario 1) showed an increased probability of
subsequent transmission (relative to the base model) in the population with 58% of model simulations
that resulted in clinically-infected cases. Moreover, the largest reported outbreak size based on 1000
simulation replicates was 158 clinically-infected cases, or 7.9% of the herd infected (Figure 5).
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Figure 5. Histogram of proportion of simulation runs (N = 1000) resulting in a range of S. suis
cumulative cases for the weekly farrowing system and monthly batch management system.

2.4. Sensitivity Analysis

Model outputs were the most sensitive to the probability of a sub-clinically infected pig
developing clinical signs (p), while the transmission coefficient (f) and latent period (o) were
moderately sensitive, as shown in Figure 6. Changes in the initial conditions for E0 in the WF model
did not appear to dramatically change the maximum outbreak size, with cases increasing accordingly
with higher E0 values (Figure 7A). Under a BMS, model projections estimated that low initial values
of EO (under 80 pigs) appeared to be effective in reducing cumulative case counts compared to the
WEF base model scenario (i.e. S0 =100, E0 =1, 10 = 0). However, initial EO values > 80 in a BMS resulted
in similar behavior to that observed in the WF system, with higher values of E0 associated with a
larger final outbreak size (Figure 7B).

g o- I -106 cases +81 cases | Change in cases
g p- -344 cases +245 cases | D Decrease
&“_’ f- -175 cases I +25 cases D Increase

2;;0 0 2‘;0

Change in cumulative cases from the base model scenario

Figure 6. Tornado plot of the results from the sensitivity analysis of the latent period (o), probability
of sub-clinical pigs becoming clinically infected (p), and the transmission coefficient (£) on cumulative
cases as the model output. Changes in the cumulative cases of S. suis are compared against the base
model scenario (vertical black line), with increases in cumulative cases depicted in yellow and
decreases depicted in blue, with the case range reported.
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Figure 7. Sensitivity analysis of initial conditions for sub-clinically infected pigs (E0) in a weekly
farrowing system (A) and batch management system (B) with changes observed in cumulative cases
and 95% confidence interval based on 1000 model replicates.

3. Discussion

Our results have important implications for the control of S. suis and highlight important areas
of uncertainty where more research is required. Given that there is no consistently effective vaccine
against S. suis and treatment options are increasingly limited [33], identifying biosecurity practices
that may limit the spread of this economically important disease is of great value.

Our model findings showed that changes in the host recruitment rate, particularly in
populations with high turnover of animals, can have substantial effects on S. suis disease dynamics
and the resulting transmission between pigs. Designed to mimic the management practices on this
specific case-study farm, the base model scenario showed overall good agreement with the observed
case data. This suggests that the rapid replenishment of susceptible pigs into the nursery may be an
important factor in driving outbreaks of disease. Under a BMS scenario, the increased timing between
entry of pigs into the nursery appeared to consistently decrease the number of cumulative cases of S.
suis. This may be explained by the exhaustion of susceptible hosts in a population to a level where
disease transmission is reduced or can no longer be maintained. These findings are consistent with a
number of other mathematical modelling studies in various host-pathogen systems that have
previously examined the relationship between host recruitment rates (i.e., influx of new susceptible
hosts into the population) and peaks in disease outbreaks [34,35].

The monthly BMS scenario showed that segregation between batches of pigs was an effective
practice for reducing the cumulative number of S. suis cases in this nursery. However, it is important
to note that transition to a BMS did not appear to reduce the number of S. suis incident cases in the
nursery, which might suggest that low levels of disease may persist under a BMS relative to a WF
system (Figure 2A and 3B). While we did not have previous incidence estimates of observed S. suis
cases prior to this documented outbreak for this farm, we interpret these as baseline levels of expected
S. suis cases that did not result in an outbreak. Given the endemic nature of this bacterium on swine
farms worldwide [36], it would be unrealistic to assume that eradication of S. suis is currently
possible. Moreover, since transmission can still occur between pigs within the same batch, it is
unsurprising that cases would still arise in a BMS. Further analysis of model simulations showed that
while the BMS scenario (scenario 1) yielded a higher probability of an outbreak occurring, cumulative
counts of S. suis were often smaller relative to the WF base model scenario (Figure 5B). Thus, our
results demonstrate that while transition to a BMS cannot prevent within-herd transmission of S. suis,
a significant reduction in clinical cases observed may be possible with batch-level separation.

Our model also highlighted the importance of an additional management-influenced parameter
(i.e., dz disease-removal rate of clinically infected pigs). Under coupled interventions (scenario 5), the
model projected an 84% reduction in cumulative cases compared to the base model scenario (Figure
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3B). When different disease-removal rates were assessed in a WF system, the model showed that this
practice alone could contribute to a substantial decrease in cumulative cases of S. suis (Figure 4).
Recognizing that transition to a BMS can be complex, time-consuming, or simply incompatible with
the design of the production facility/farm, our model suggests that early removal rates of clinically
infected pigs may be a viable option for reducing further cases of disease in the event that a BMS
cannot be implemented. Here, we defined early removal to include the development of protocols that
help with identification of sick pigs in acute or chronic stages of S. suis infection, followed by
appropriate removal or segregation of diseased pigs placed in a hospital pen, where no contact with
the rest of the herd can be achieved.

While the BMS appeared to be effective in reducing the overall prevalence of S. suis cases, it is
important to highlight that the results reported here are dependent on several model assumptions
that are important to consider for future investigation. We simplified the model to consider the
clinical course of S. suis infection; yet we understand that sub-clinical pigs likely contribute a sizable
fraction of infection [1]. Previous studies conducted have been unable to correlate the rates of sub-
clinical carriage in a herd and the observed diseased cases [13,14]. As a result, there is limited
knowledge of their relative contribution to S. suis transmission. Moreover, identification of sub-
clinically infected pigs is challenging since these pigs do not display obvious signs of infection, which
therefore requires making some simplifying assumptions given the knowledge gap. As a result, our
model may under- or over-estimate the model outcomes depending on the role that sub-clinical pigs
play in transmission.

Variability in the model was assessed using a sensitivity analysis to examine changes in our
model outputs under different ranges of key parameter values and also using different assumptions
regarding the initial model conditions. The highest variability in model outputs was observed in the
probabilistic parameter p (the probability of developing clinical signs) (Figure 6). While we can expect
that higher probabilities are associated with more cases of clinical disease, the true value of p is likely
influenced by several factors related to the host, pathogen, and environment. For instance, external
factors that induce stress in piglets (e.g., weaning, mixing with other litters, overcrowding, and poor
housing conditions) have been shown to correlate with increased clinical infections in the nursery
[1,37,38]. Additionally, host-specific factors related to genetics, age, and immune status can also play
a role in disease onset [39]. At the pathogen-level, variation in p may also be attributed to the varied
virulence in pathogenic strains of S. suis. Serotype 2 is the most commonly associated with disease in
pigs, however not all strains of serotype 2 are pathogenic, and virulence can vary among strains
within the serotype [4]. However, the extent of these relationships is complex and warrants increased
attention to the continued collection of empirical data to improve the model assumptions in this area.

Results from the sensitivity analysis of the initial model conditions showed that under a WF
system, the ranges assessed for values of E0 did not dramatically change the model outputs with the
final outbreak size increasing when E0 was increased (Figure 7A). However, under a BMS, low values
of EO resulted in lower cumulative cases compared to the WF system. Interestingly, when values of
E0 were increased in the BMS scenario, the system behaved similar to the WF observations (Figure
7B). If the true value of EO is high in most settings, a BMS intervention would likely not be any more
effective in reducing cases compared to the WF system; however, if EQ is low, then a BMS may be a
practice worth considering to reduce disease burden in the nursery. While the true value of E0 is not
known for this system, this additional analysis emphasizes the need for additional data in this area
to provide more precise estimates and recommendations.

Inherent to these types of models, our study has limitations that are important to consider for
future work. First, while S. suis may be introduced into the herd through multiple routes, our model
only considered the introduction of S. suis into the herd via sub-clinical infected pigs. Previous studies
have detected S. suis serotype 2 in both specific pathogen free (SPF) and hysterectomy-derived herds
[40,41]. The authors suggest that these infections were likely introduced through contamination of
the environment, personnel, or equipment. Mechanical vectors including mice and houseflies have
also been implicated as vehicles of S. suis transmission; while feces, contaminated feed, water, work
boots, and needles have also been shown to transmit the bacterium [1,42]. Breeding rooms may also
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serve as a potential source of transmission, similar to Salmonella infections in pigs [43]. While such
introductions can occur, S. suis is endemic on most swine farms worldwide and the detection of S.
suis on farms is likely not a good predictor for strains of clinical relevance. As such, our model focused
on the introduction of a sub-clinical infected pig, which has been reported to play an important role
in outbreaks of S. suis [13,14,40].

As described above, sub-clinically infected pigs are an important component in S. suis
epidemiology and may serve as a potential reservoir of infection for susceptible pigs [13]. However,
the relative contribution of these pigs to the incidence of S. suis cases remains unknown since the
carrier state is not a good indicator of clinical disease in a herd. A study conducted by Clifton-Hadley
et al. [44] reported herds with nearly 100% carrier rates of S. suis, but reported that less than 5% of
the herds were observed to have apparent disease. In the absence of sufficient data, we simplified the
model to only consider the clinical course of S. suis infection (i.e., only clinically infected pigs are
infectious). However, given their importance, we attempted to represent the relationship as a
probability in the model, such that each new sub-clinical infected pig has the probability of
developing clinical signs and is infectious (p) or remains sub-clinically infected (1 — p); this parameter
(p) was determined by model fitting, which was deemed appropriate since S. suis carriage is reported
to vary across herds [1,5].

We did not include batch-to-batch carryover of S. suis in the BMS model. While the working
environment on farms may serve as a potential infection source for pigs [1,42], we were limited by
available data to incorporate this potential route of transmission. In reality, cleaning and disinfection
are performed between batches of pigs, with S. suis generally being susceptible to most disinfectants
and readily inactivated using hot water and exogeneous heat sources >55 °C [42]. To simplify our
model, we assumed that disinfection and cleaning performed between batches of pigs is effective in
reducing the microbial load in the environment to sufficiently low levels, such that transmission via
this route was considered negligible. While bacterial carry-over from a previous batch may be
possible in sustaining S. suis transmission, further research is required to determine the number of
viable bacteria in the environment, which could be used to inform initial conditions and parameter
values using an environmental compartment.

We have ignored the potential impact of herd structure on transmission in both WF and BMS
models. This is principally a consequence of the limited availability of data on how pigs were
managed within this study during the time of the outbreak. Under a WF system, we assumed
homogeneous mixing of pigs (i.e., pigs in the same room or in different rooms have the same
probability of contact with a clinically infected pig), which does not account for heterogeneity in host
contacts. Transmission experiments have shown that spread of S. suis serotype 9 within- and
between-pens does occur, with transmission rates lower for between-pen transmission [9]. In
addition to transmission through direct and indirect contact between pens, there would be other
means of transmission between groups of pigs some distance apart, for example through fomites [42]
or airborne spread [8,12]. However, estimating the transmission rate for each route using mortality
data is not possible. Similarly, the decision to treat the BMS model as a fully closed system (no mixing
between batches) was necessary in order to maintain model parsimony and avoid making additional
assumptions in the absence of sufficient data. Consequently, it is difficult to assess what impact
neglecting a more complex herd structure would have on our model outputs. Previous studies have
examined disease dynamics in smaller structured populations using a metapopulation approach [45].
Alternatively, models could also be stratified by age or level of risk to capture heterogeneity in host
contacts. These types of model structures may be necessary for future modelling studies to fully
understand the impact of these mixing assumptions.

4. Materials and Methods

4.1. Case Study Data

Retrospective mortality data from a 250-sow farrow-to-finish swine farm (Ontario, Canada) that
experienced a S. suis outbreak in the nursery over a 6-month time period were used for this study.
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Descriptive details of this dataset have been previously described [46]. Briefly, the outbreak occurred
from October 6, 2011 to March 30, 2012 and involved 20 cohorts of weaned pigs. Mortality data during
this period included all-cause mortality; however, we assumed that the majority of cases were due to
S. suis based on clinical signs of acute meningitis. Laboratory confirmation and post-mortem
examination confirmed 12 clinical cases of meningitis due to S. suis serotype 2. At the time of the
original outbreak, the herd was managed according to a weekly farrowing (WF) system, with a total
of 20 sow groups, each group farrowing on a weekly basis. On average, 100 new susceptible pigs
entered the nursery each week (up to 20 weeks) and were housed all-in/all-out (AIAO) by room. From
the dataset, we extracted case-based records over a 28-week period (duration of the outbreak) and
generated a weekly-time series of case counts (incident cases) and cumulative cases for our study
analyses (Figure 8).
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Figure 8. (A) Epidemic curve of Streptococcus suis incident cases and (B) cumulative cases (1 = 309)
within a nursery of a farrow-to-finish swine farm from 6 October 2011 and 30 March 2012 in Ontario,
Canada.

4.2. Model Structure

All model development and analyses were performed in the statistical programming language
R version 3.5.2 [47]. A stochastic compartmental model was constructed to represent the management
of the study farm population using a susceptible, exposed, infectious (SEI) framework. We opted to
use a stochastic model, rather than a deterministic model to account for biological variability in small
population sizes and in the clinical course of S. suis infections. The model simulates the infection
process as a series of random events with respect to time. Model events were implemented
stochastically, with each event independent of the previous event. Pigs in the model could be
classified as being in one of three possible infection states (which were mutually exclusive):

e S:represents animals that are able to acquire infection from an infectious pig (via direct

contact and/or airborne transmission).
e E:represents animals that are sub-clinically infected (non-infectious carriers).
e [: represents animals that are clinically-infected with disease signs (infectious to others).

4.3. Model Transitions and Initial Conditions

The movement of susceptible pigs (S) to the Exposed (E) class is governed by the transmission
coefficient (). After a latent period (o7!), exposed pigs can transition to a state of infectiousness (I),
with probability (p), or remain sub-clinically infected with a probability of (1 — p). Population
demographics are included in the model, where susceptible pigs initially enter the population at a
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constant recruitment rate (b). The recruitment rate was modelled as a constant, based on the
operational logistics of a WF system on this farm during the time of the outbreak. Susceptible and
sub-clinical infected pigs were removed from the population at a constant rate based on the average
time spent in the nursery on this farm, (d:); while clinically infected pigs were removed from the
population by the disease-removal rate (dz). The dynamics of the system described are presented in
Figure 9 and are captured by a series of differential equations:

das/dt=b - BSI - diS, (1)
dE/dt = BSI + (1 —p)oE — p(cE) — diE, (2)
dl/dt = p(cE) — d2L. (3)

Transitions between different infection states occurred in a probabilistic manner according to a
Poisson process. The corresponding events and transitions are shown in Table 2, while parameter
inputs are displayed in Table 3.

To start the initial infection process, we populated the nursery with susceptible pigs (S0 = 100)
and assumed that S. suis is introduced into the population by a sub-clinically infected pig (E0 = 1).
This was deemed reasonable, since these pigs do not display clinical signs and are not likely to be
identified as “infected” and thus, remain in the nursery [5]. In contrast, clinically infected pigs who
display disease signs are less likely to go unnoticed prior to entry into the nursery, therefore (10 = 0).
To model the WF system, we allowed for 100 new susceptible piglets to enter the nursery each week
(up to 20 weeks), which was seeded with a single sub-clinically infected pig each week. In the WF
system, we assumed that there is homogeneous mixing of pigs within and between rooms (i.e., each
pig has the same probability of being infected by a clinically infected pig regardless of room
separation). Transmission via infectious aerosols across short distances has been documented in both
field and experimental studies of S. suis in pigs [8-12] and subsequently justified our mixing
assumptions. To capture this, we allowed for contact between infectious pigs of one group and
susceptible pigs in the next group that entered the nursery (open system).

d,S d.E d,l
b BSI (p)oE
A
(1-p)oE

Figure 9. Susceptible-exposed-infectious (SEI) compartment diagram describing Streptococcus suis
transmission within a nursery pig population driven by the influx of susceptible pigs (b) and the
presence of sub-clinically infected pigs (E) with the probability of becoming clinically-infected (p) and
transitioning to an infectious state (I) or remaining sub-clinically infected with probability (1-p).

Table 2. SEI model transitions, events, and rates.

Transition Event Transition Rate
(S EI)— (S+LE]I) Recruitment of susceptible pigs b
(S, E, I) > (51, E+L ]) Infection of a susceptible pig 55"
(S, E, I) > (5 E-1, I+1) Sub-clinically infected pig develops clinical signs (p)o*E
(S E I)—> (S E+L]I) Sub-clinically infected pig remains sub-clinical (1-p)o*E
(S EI)—(S1,E] Production removal of susceptible pig di*S
(S EI)—> (S E-1]) Production removal of sub-clinically infected pig di*E

(S,E,I)> (S E I-1) Disease-removal of clinically infected pigs d2*]
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Table 3. Parameter definitions and values used to describe the SEI model events.

Parameter Definition Value References
yij Transmission coefficient for I 1.08 Calculated
Ro Basic reproductive number 14 [48]
D Duration of infectiousness 1.8 weeks Fitted
o Duration of latent period 4.8 weeks Fitted
p Probability of becoming clinically infected 0.22 Fitted
1-p Probability of remaining sub-clinically infected 0.78 Fitted
b Recruitment rate of susceptible pigs 100 pigs/week [46]
d1 Production removal rates for S and E 6 weeks! [46]
dz Disease-removal rates for [ 2.00 days! Assumed

4.4. Model Assumptions

The model assumes that all pigs entering the nursery are susceptible to infection with a
pathogenic strain of S. suis. The model also assumed that S. suis is introduced into the herd by a single
sub-clinically infected pig. While other transmission routes are possible (e.g., contaminated
equipment, flow of works, pest/rodent etc.), they were not considered in our model due to limited
data availability. We assumed that only clinically infected pigs can infect susceptible pigs. Given the
limited understanding of the effects of sub-clinically infected pigs on S. suis disease occurrence, we
only considered the clinical course of infection in the absence of sufficient data. Further, S. suis
infections are known to be multi-factorial, where factors related to the host, pathogen, and system
can impact the occurrence and severity of disease or morbidity in pigs [37]. As a result, there are
limited empirical data on parameters that determine the natural course of this disease, therefore these
parameters were estimated using model fitting.

4.5. Model Fitting

The model was fit to the monthly cumulative cases using an iterative procedure to estimate the
unknown parameters (D, o, and p). This was done using maximum likelihood estimation using the
log-likelihood function in R [47], where we examined a range of plausible parameter values to
determine best fit values that maximized the likelihood of the model and the data. Using our
previously estimated Ro value (1.4) for this outbreak [48], we determined the transmission coefficient
(P based on the mathematically known relationship for micro-parasitic infections [27] and our best-
fit value for the infectious period (D):

B=R/D. (4)

We assessed the fit of the model output to the observed monthly incident and cumulative case
counts using maximum likelihood and confirmed this by visual inspection.

4.6. Base Model and Intervention Scenarios

The model using our best-fit parameters served as the base model scenario (described in Section
4.2 to 4.3) for comparison to our model interventions. To examine the influence of modifications in
management practices in the nursery, we explored five intervention scenarios using the maximum
cumulative case number as the outcome measure against the base model scenario. A description of
all scenarios can be found in Table 4. In scenario 1, we simulated the effect of a monthly BMS, such
that 400 new susceptible piglets entered the nursery every 4 weeks (up to 20 weeks) and were seeded
with a single sub-clinically infected pig. Assuming that the facility is required to produce an
equivalent number of pigs and has the facility space to accommodate a larger group of animals, we
increased the batch size proportional to the average number of pigs that entered on a weekly basis.
In the BMS scenarios, we assumed homogeneous mixing of pigs within the same batch but did not
allow for mixing of pigs in different batches. In practice, a BMS would typically allow for cleaning
and disinfection between batches of pigs [49], therefore we ignored the potential for transmission
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between batches of pigs, where each batch is treated as a closed system. In scenarios 2 to 4, we
evaluated the influence of changes in the early disease removal rate (dz) by examining a range of
reasonable removal times for clinically infected pigs (0.25 day, 0.50 day, 1.00 day), assuming that the
facility can increase monitoring for clinical signs in the nursery. Lastly, scenario 5 examined the
influence of coupled interventions (i.e., BMS and early disease removal rates, d2 = 0.50 day).

For both our base model and intervention scenarios, the events were implemented stochastically
using the “ssa.exact.function” as part of the adaptivetau package in R [47,50]. This function implements
Gillespie’s direct method [51] and assumes that events are independent. For each simulation, a total
of 1000 model iterations were performed using a random seed and the model simulation ran for 28
weeks (the duration of the original outbreak). Model simulations that did not result in an outbreak
(no subsequent disease transmission) were filtered out to provide comparable model projections
against our empirical outbreak data. For simulation runs that resulted in outbreaks (e.g., at least 1
case), the model simulation outcomes (weekly and cumulative incidence) were averaged and we
derived the 95% confidence interval around the average number of incident and cumulative cases
and standard deviation to account for stochastic variation in our model outcomes. The model outputs
were aggregated by month to allow for comparison of our base model and intervention scenarios.

Table 4. Evaluated intervention scenarios with corresponding batch size, disease removal rate (d2),
and frequency of entry into the nursery.

. Farrowing Batch Size Disease-removal Rate, Entry into
Scenario .

System! (No. of pigs) d2 (days)? Nursery

Base model WEF 100 2.00 Weekly
1 BMS 400 2.00 Monthly

2 WEF 100 0.25 Weekly

3 WEF 100 0.50 Weekly

4 WEF 100 1.00 Weekly

5 BMS 400 0.50 Monthly

I: WF: Weekly farrowing and BMS: Batch management system; % dz: disease removal rate of clinically
infected pigs. The base model scenario is shaded in grey and serves as the reference scenario for comparison
to the intervention scenarios (1-5).

4.7. Simulations of Maximum Cumulative Case Numbers

For the base model scenario and BMS scenario (scenario 2), 1000 model iterations were
examined. For each scenario, we derived the proportion of all model simulations that resulted in i)
no subsequent transmission (i.e., no outbreak), and ii) subsequent transmission resulting in an
outbreak (i.e., secondary transmission after introduction). Histograms were plotted to examine the
overall probability of an outbreak occurring and the distribution of cumulative case sizes expected.

4.8. Sensitivity Analysis

4.8.1. Parameter Estimates

Due to the limited data for important parameters related to the natural history of S. suis (8 o,
and p), we conducted a univariable sensitivity analysis to examine how variation in these parameters
influenced our model outcomes. The peer-reviewed literature did not provide meaningful ranges for
these parameters. Therefore, we tested equal increases and decreases for the parameter estimates. For
our transmission coefficient (), we examined a range of 0.25-1.91, 3.6-6.00 weeks for the latent period
(o) and 0.01-0.43 for the probability of developing clinical signs (p). From our analyses, we obtained
the range of the maximum cumulative cases and recorded the change in cases compared to our base
model scenario.
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4.8.2. Initial Conditions

The model assumes that the start of the infection process is initiated with the introduction of a
single sub-clinically infected pig (EO = 1). While most pigs can become colonized with S. suis during
or shortly after birth via the sow, the impact of vertical transmission on herd health remains unclear,
since it is not known whether the same pathotypes involved in clinical S. suis cases had also been the
early colonizers of the vaginal tract [52]. For this reason, the model does not assume that all pigs are
sub-clinically infected with a pathogenic strain of S. suis at the start of the infection process. However,
several studies have reported that the number of S. suis sub-clinical pigs are known to vary across
farms [1], therefore we conducted an additional sensitivity analysis by varying the initial conditions
for E0 while balancing the number of pigs entering into the system in both WF and BMS.

5. Conclusions

Models that evaluate management practices while incorporating the biological and
epidemiological aspects of this disease are critically lacking in the S. suis literature. While our model
showed that batch-level separation may have the potential to be effective in reducing S. suis
prevalence in the nursery, our study depends on assumptions that could be strengthened by
additional research in this area, specifically using both experimental and field studies. Given that
modifications in swine management practices can be complex, the objective of our study was to
develop a model that could be used to demonstrate that further investigation into the adoption of
such systems and practices may be warranted during a time where effective long-term strategies for
disease control are limited.

Author Contributions: Conceptualization, E.G., and A.L.G.; Data Curation, Z.P.; Formal analysis, E.G., and
B.M.H., Methodology, E.G., BM.H.,, JM.S., Z.P., and A.L.G.; Project administration, ].M.S., Z.P., and A.L.G,;
Resources, ] M.S., Z.P., and A.L.G.; Supervision ] M.S,, Z.P,, and A.L.G.; Visualization, E.G., and BM.H.;
Writing—original draft, E.G.; Writing-review & editing, E.G., BM.H., JM.S., Z.P., and A.L.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Canada First Research Excellence Fund (Food from Thought) and the
Canada Research Chairs Program (CRC). E.G. was supported by an Ontario Veterinary College scholarship.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Staats, J.; Feder, I.; Okwumabua, O.; Chengappa, M. Streptococcus Suis: Past and Present. Vet. Res. Commun.
1997, 21, 381-407.

2. Higgins, R.; Gottschalk, M. An Update on Streptococcus suis Identification. J. Vet. Diagn. Investig. 1990, 2,
249-252,

3. Okura, M.; Arai, S.; Osawa, R.; Osaki, M.; Nomoto, R.; Takamatsu, D.; Sekizaki, T. Current Taxonomical
Situation of Streptococcus suis. Pathogens 2016, 5, 45, d0i:10.3390/pathogens5030045.

4. Vecht, U.; Arends, J.; van der Molen, E.; van Leengoed, L. Differences in Virulence between Two Strains of
Streptococcus suis Type II after Experimentally Induced Infection of Newborn Germ-Free Pig. Am. J. Vet.
Res. 1989, 50, 1037-1043.

5. (lifton-Hadley, F.; Alexander, T.; Upton, I.; Duffus, W. Further Studies on Subclinical Carrier State of
Streptococcus suis Type 2 in Pigs. Vet. Rec. 1984, 114, 513-518.

6. Arends, J.; Harwig, N.; Rudolphy, M.; Zanen, H. Carrier Rate of Streptococcus suis Capsular Type 2 in
Palatine Tonsils of Slaughtered Pigs. J. Clin. Microbiol. 1984, 20, 945-947.

7. Mwaniki, C,; Robertson, I.; Trott, D.; Atyeo, R.; Lee, B.; Hampson, D. Clonal Analysis and Virulence of
Australian Isolates of Streptococcus suis Type 2. Epidemiol. Infect. 1994, 113, 321-334.

8.  Bonifait, L.; Veillette, M.; Létourneau, V.; Grenier, D.; Duchainea, C. Detection of Streptococcus suis in
Bioaerosols of Swine Confinement Buildings. Appl. Environ. Microbiol. 2014, 80, 3296-3304.

9. Dekker, N.; Bouma, A.; Daemen, I; Klinkenberg, D.; van Leengoed, L.; Wagenaar, ].; Stegeman, A. Effect
of Spatial Separation of Pigs on Spread of Streptococcus suis Serotype 9. PLoS ONE 2013, 8, e61339.



Pathogens 2020, 9, 174 15 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

Madsen, L.; Nielson, B.; Aalbaek, B.; Jensen, H.; Nielsen, ]J.; Riising, H. Experiemental Infection of
Conventional Pigs with Streptococcus suis Serotype 2 by Aerosolic Exposure. Acta Vet. Scand. 2001, 42, 303—
306, doi:10.1186/1751-0147-42-303.

Madsen, L.; Bak, H.; Nielsen, B.; Jensen, H.; Aalbaek, B.; Riising, H. Bacterial Colonization and Invasion in
Pigs Experimentally Exposed to Streptococcus suis Serotype 2 in Aerosol. ]. Vet. Med. B Infect. Dis. Vet. Public
Health 2002, 49, 211-215, doi:10.1046/j.1439-0450.2002/00491 .x.

Berthelot-Herault, F.; Gottschalk, M.; Labbe, A.; Cariolet, R.; Kobisch, M. Experimental Airborne
Transmission of Streptococcus suis Capsular Type 2 in Pigs. Vet. Microbiol. 2001, 82, 69-80.

Clifton-Hadley, F.; Alexander, T. The Carrier Site and Carrier Rate of Streptococcus suis Type Il in Pigs. Vet.
Rec. 1980, 107, 40-41.

van Leengoed, L.; Vecht, U.; Verheyen, E. Streptococcus Type 2 Infections in Pigs in the Netherlands (Part
Two). Vet. Q. 1987, 9, 111-117.

Davies, P.; Ossowicz, C. Evaluation of Methods Used for Detecting Streptococcus suis Type 2 in Tonsils, and
Investigation of the Carrier State in Pigs. Res. Vet. Sci. 1991, 50, 190-194.

Schafzahl, W.; Lillie-Jaschniski, K. Eradication of Actinobacillus pleuropneumoniae from a Swine Breeding
Herd. Prakt. Tierarzt 2010, 91, 334-339.

Angen, O.; Andreasen, M.; Nielsen, E.; Stockmarr, A.; Baekbo, P. Effect of Tulathromycin on the Carrier
Status of Actinobacillus pleuropneumoniae Serotype 2 in the Tonsils of Pigs. Vet. Rec. 2008, 163, 445-447.
Larsen, I.; Nielsen, S.; Olsen, J.; Nielsen, J. The Efficacy of Oxytetracycline Treatment at Batch, Pen and
Individual Level on Lawsonia intracellularis Infection in Nursery Pigs in a Randomised Clinical Trial. Prev.
Vet. Med. 2016, 124, 25-33, d0i:10.1016/j.prevetmed.2015.12.018.

Amass, S.; Clark, L.; Knox, K.; Wu, C.; Hill, M. Streptococcus suis Colonization of Piglets during Parturition.
Swine Health Prod. 1996, 4, 4-7.

Maclnnes, J.I; Desrosiers, R. Agents of the “Suis-ide Diseases” of Swine: Actinobacillus suis, Haemophilus
parasuis, and Streptococcus suis. Can. J. Vet. Res. 1999, 63, 83-89.

National Animal Health Monitoring System. Swine 2006 Part II: Reference of Swine Health and Health
Management Practices in the United States. Available online:
http://www .aphis.usda.gov/animal_health/nahms/swine/downloads/swine2006/Swine2006_dr_PartIl.PD
F (accessed 10 May 2019).

Holt, M.; Enright, M.; Alexander, T. Immunisation of Pigs with Live Cultures of Streptococcus suis Type 2.
Res. Vet. Sci. 1988, 45, 349-352.

Busque, P.; Higgins, R.; Caya, F.; Quessy, S. Immunization of Pigs Against Streptococcus suis Serotype 2
Infection Using a Live Avirulent Strain. Can. J. Vet. Res. 1997, 61, 275-279.

Wisselink, H.; Stockhofe-Zurwieden, N.; Hilgers, L.; HE, S. Assessment of Protective Efficacy of Live and
Killed Vaccines Based on a Non-Encapsulated Mutant of Streptococcus suis Serotype 2. Vet. Microbiol. 2002,
3, 155-168.

Segura, M. Streptococcus suis Vaccines: Candidate Antigens and Progress. Expert Rev. Vaccines 2015, 14,
1587-1608.

Keeling, M.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press:
Princeton, NJ, USA, 2007.

Halloran, M. Concepts of Transmission and Dynamics. In Epidemiologic Methods for the Study of Infectious
Diseases; Thomas, J., Weber, D., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 63-64.

Black, F.L. Measles Endemicity in Insular Populations: Critical Community Size and Its Evolutionary
Implication. J. Theor. Biol. 1966, 11, 207-211.

Barlett, M. Measles Periodicity and Community Size. J. R. Stat. Soc. 1957, 120, 48-70.

Grenfell, B.T.; Bjurnstad, O.N.; Kappey, J. Travelling Waves and Spatial Hierarchies in Measles Epidemics.
Nature 2001, 414, 716-723.

Thanawongnuwech, R.; Brown, G.; Halibur, P.; Roth, ]J.; Royer, R.; Thacker, B. Pathogenesis of Porcine
Reproductive and Respiratory Syndrome Virus-Induced Increase in Susceptibility to Streptococcus suis
Infection. Vet. Pathol. 2000, 37, 143-152.

Vangroenweghe, F.; Suls, L.; Van Driessche, E.; Maes, D.; De Graef, E. Health Advantages of Transition to
Batch Management System in Farrow-to-Finish Pig Herds. Vet. Med. 2012, 52, 83-91.



Pathogens 2020, 9, 174 16 of 16

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

Hernandez-Garcia, J.; Wang, J.; Restif, O.; Holmes, M.A.; Mather, A.E.; Weinert, L.A.,; Wileman, T.M,;
Thomson, J.R.; Langford, P.R.; Wren, B.W.; et al. Patterns of Antimicrobial Resistance in Streptococcus suis
Isolates from Pigs with or without Streptococcal Disease in England between 2009 and 2014. Vet. Microbiol.
2017, 207 (Suppl. C), 117-124, doi:10.1016/j.vetmic.2017.06.002.

Pitzer, V.E.; Aguas, R.; Riley, S.; Loeffen, W.L.A.; Wood, ].L.N.; Grenfell, B.T.; Pitzer, V.E. High Turnover
Drives Prolonged Persistence of Influenza in Managed Pig Herds. J. R. Soc. Interface 2016, 13, 20160138,
doi:10.1098/rsif.2016.0138.

Clayton, T.; Duke-Sylvester, S.; Gross, L.J.; Lenhart, S.; Real, L. Optimal Control of a Rabies Epidemic Model
with a Birth Pulse. J. Biol. Dyn. 2010, 4, 43-58.

Goyette-Desjardins, G.; Auger, ].-P; Xu, J.; Segura, M.; Gottschalk, M. Streptococcus suis, an Important Pig
Pathogen and Emerging Zoonotic Agent—an Update on the Worldwide Distribution Based on Serotyping
and Sequence Typing. Emerg. Microbes Infect. 2014, 3, e45.

Votsch, D.; Willenborg, M.; Weldearegay, Y.B.; Valentin-weigand, P. Streptococcus suis—The “Two Faces ”
of a Pathobiont in the Porcine Respiratory Tract. Front. Microbiol. 2018, 9, 1-10.

Lamont, M.; Edwards, P.; Windsor, R. Streptococcal Meningitis in Pigs: Results of a Five-Year Survey. Vet.
Rec. 1980, 107, 467-469.

Robertson, I.; Blackmore, D. Prevalence of Streptococcus suis Types 1 and 2 in Domestic Pigs in Australia
and New Zealand. Vet. Rec. 1989, 124, 391-394.
Clifton-Hadley, F.A; Alexander, T.J.L.; Enright, M.R. The Epidemiology, Diagnosis, Treatment and Control
of Streptococcus suis Type 2 Infection. In Proceedings of the AASV Annual Meeting; McKean, J., Ed,;
Minneapolis, MN, USA, 1986; pp. 471-491.

Brisebois, L.M.; Charlebois, R.; Higgins, R.; Nadeau, M. Prevalence of Streptococcus suis in Four to Eight
Week Old Clinically Healthy Piglets. Can. J. Vet. Res. 1990, 54, 174-177.

Dee, C.; Corey, M. The Survival of Streptococcus suis on Farm and Veterinary Equipment. J. Swine Health
Prod. 1993, 1, 17-20.

Casanova-Higes, A.; Marin-Alcala, C.; Andrés-Barranco, S.; Cebollada-Solanas, A.; Alvarez, J.; Mainar-
Jaime, R.C. Weaned Piglets: Another Factor to Be Considered for the Control of Salmonella Infection in
Breeding Pig Farms. Vet. Res. 2019, 50, doi:10.1186/s13567-019-0666-7.

Clifton-Hadley, F.; Alexander, T.].; Enright, M. Monitoring Herds for Streptococcus suis by Sampling Tonsils
of Slaughter Pigs. Vet. Rec. 1985, 115, 562-564.

Cador, C; Rose, N.; Willem, L.; Andraud, M. Influenza A Virus Persistence within Farrow- to-Finish Pig
Farms: Insights from a Stochastic Event-Driven Metapopulation Model. PLoS ONE 2016, 11, 1-16,
doi:10.1371/journal.pone.0163672.

Hopkins, D.; Poljak, Z.; Farzan, A.; Friendship, R. Factors Contributing to Mortality during a Streptococcus
suis Outbreak in Nursery Pigs. Can. Vet. ]. 2018, 59, 623-630.

R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical
Computing: Vienna, Austria, 2019.

Giang, E. Using Infectious Disease Models to Identify Management Approaches for Streptococcus Suis
Disease in Swine Populations. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2019.

Brown, P. Advantages and Disadvantages of Batch Farrowing. Practice 2006, 28, 94-96.
Johnson, P. Adaptivetau: Efficient Stochastic Simulations. 2019. R Package Version 2.2-3. Available online:
https://cran.r-project.org/web/packages/adaptivetau/index.html (accessed on 8 February 2020).

Gillespie, D.T. Exact Stochastic Simulation of Coupled Chemical Reactions. |. Phys. Chem. 1977, 81, 2340-
2361, doi:10.1021/j100540a008.

Unterweger, C.; Ruczizka, U.; Spergser, J.; Baums, C.; Hennig-Pauka, I. Effect of Early-Life Treatment of
Piglets with Long-Acting Ceftiofur on Colonization of Streptococcus suis Serotype 7 and Elicitation of
Specific Humoral Immunity in a Farm Dealing with Streptococcal Diseases. Pathogens 2018, 29, 34,
doi:10.3390/pathogens7020034.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ @ | article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



