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Abstract: Brucella abortus is a zoonotic pathogen that causes brucellosis. Because of Brucella’s unique
LPS layer and intracellular localization predominately within macrophages, it can often evade immune
detection. However, pattern recognition receptors are capable of sensing Brucella pathogen-associated
molecular patterns (PAMPS). For example, NOD-like receptors (NLRs) can form a multi-protein
inflammasome complex to attenuate Brucella pathogenesis. The inflammasome activates IL-1β and IL-18
to drive immune cell recruitment. Alternatively, inflammasome activation also initiates inflammatory
cell death, termed pyroptosis, which augments bacteria clearance. In this report, we assess canonical
and non-canonical inflammasome activation following B. abortus infection. We conducted in vivo studies
using Asc−/−mice and observed decreased mouse survival, immune cell recruitment, and increased
bacteria load. We also conducted studies with Caspase-11−/−mice and did not observe any significant
impact on B. abortus pathogenesis. Through mechanistic studies using Asc−/−macrophages, our
data suggests that the protective role of ASC may result from the induction of pyroptosis through
a gasdermin D-dependent mechanism in macrophages. Additionally, we show that the recognition
of Brucella is facilitated by sensing the PAMP gDNA rather than the less immunogenic LPS. Together,
these results refine our understanding of the role that inflammasome activation and pyroptosis plays
during brucellosis.

Keywords: brucellosis; canonical inflammasome; non-canonical inflammasome; NLR; pyroptosis;
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1. Introduction

Brucellosis is a zoonotic bacterial disease that exhibits pathogenesis consistent with inflammation.
Transmitted through Brucella spp. primarily from agricultural animals to humans in unpasteurized dairy
products, brucellosis symptoms in humans often include inflammatory or influenza-like characteristics
such as arthritis, undulant fevers, and neurological manifestations [1,2]. Because there is currently
no human vaccine for brucellosis and effective antibiotic regiments for the disease require long
treatment durations, these symptoms often persist throughout the infected individual’s lifetime
due to the well-adapted ability of Brucella to evade immune recognition [3]. Unlike the classical
lipopolysaccharide (LPS) layer of Gram-negative bacteria such as Escherichia coli that contain
a glucosamine backbone with short acyl groups, Brucella spp. contain a modified lipid A layer
that consists of a diaminoglucose backbone with long branching acyl groups [2]. This deviation from
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a consistent molecular structure has the potential to subvert immune recognition by the innate immune
system through complement interference and decreased cytokine production, leading to enhanced
Brucella replication and pathogenesis. Despite its mechanisms of immune avoidance, there are some
aspects of Brucella spp. that are recognized by the innate immune system, making the understanding
of these mechanisms essential for targeting future treatments for brucellosis.

As hypothesized by Janeway (1989), the innate immune system has evolved over time to recognize
consistent molecular structures in pathogens known as Pathogen or Damage-Associated Molecular
Patterns (PAMPs or DAMPs). These PAMPs and DAMPs are recognized by protein structures
known as pattern recognition receptors (PRRs) [4]. From previous studies, Brucella genomic DNA
(gDNA) is known to be recognized by the PRR absent in melanoma 2 (AIM2) and subsequently
promotes inflammation, making it an excellent PAMP for immune recognition [5–7]. PRRs include
membrane-bound receptors, which consist of Toll-like receptors (TLRs) and C-type Lectin receptors
(CLRs), as well as cytosolic receptors made up of a Nucleotide-Binding Domain and Leucine-Rich
Repeat Containing receptors (NLRs), Aim-2-Like receptors (ALRs), Rig-I-Like Helicase receptors
(RLRs), and the X-LR class of uncategorized receptors [8,9]. After the recognition of a PAMP or DAMP,
PRRs generally serve as scaffolding proteins to promote the initiation or inhibition of immune signaling
pathways [9]. Of the PRRs that have been described in brucellosis, the best characterized have been
the TLRs. From previous literature, many TLRs have been implicated with Brucella detection, which
plays a role in bacterial signaling, host resistance, and dendritic cell activation [10–16]. TLRs also
play important roles in the transcriptional generation of inactive inflammatory cytokines in response
to Brucella infections that can be activated by NLR or ALR immune signaling complexes [17,18].
This indicates that multiple PRRs work in tandem to attenuate brucellosis pathogenesis.

Inflammasome-forming NLRs and AIM2 have also been reported to play a role in Brucella
sensing [5–7]. After recognition, the NLR or ALR is able to bind the apoptosis-associated speck-like
protein containing a caspase activation recruitment domain (CARD) (ASC) and procaspase-1 to form
the canonical inflammasome [8]. The inflammasome then cleaves caspase-1, which subsequently
cleaves the cytokines pro-IL-1β and pro-IL-18, produced through TLR signaling, to their active forms to
promote inflammation [8,9,19–23]. Inflammasome signaling can also lead to a form of inflammatory cell
death known as pyroptosis. Pyroptosis occurs when activated capase-1 cleaves the protein gasdermin
D, releasing the gasdermin N subunit [24]. This subunit binds with phosphoinositides on the cell
membrane and oligomerizes, creating membrane pores that lead to an osmotic imbalance in the cell
that eventually leads to cell lysis [24]. Recently, the formation of a non-canonical inflammasome has
been described that utilizes caspase-11 to mediate the cleavage of gasdermin D to initiate pyroptosis.

Previous studies evaluating inflammasome activation in response to Brucella have predominately
focused on characterizing the activation of inflammatory cytokine signaling associated with canonical
inflammasome activation. The best described inflammasomes involved in Brucella infections are
NLR Family Pyrin Domain Containing 3 (NLRP3) and AIM2. In mouse models, the NLRP3
inflammasome promotes survival and decreased bacterial load through enhanced cytokine secretion,
in addition to sensing mitochondrial reactive oxygen species (ROS) generated from Brucella [6,7].
Looking at the Brucella PAMPs, AIM2, as a known sensor of bacterial DNA, becomes activated
from Brucella gDNA recognition and initiates inflammatory cytokine signaling and pyroptosis [5,6,25].
These inflammasomes are ASC-dependent, as shown in the formation of punctate ASC structures during
infection [6], indicating that ASC-dependent inflammasomes are important in Brucella recognition
and targeting through inflammatory cytokine signaling. Despite these advancements in studying
inflammasome-mediated inflammatory cytokine signaling, pyroptosis and the role of gasdermin D
have not been extensively evaluated in response to Brucella.

In this study, we used Asc−/− and Caspase-11−/− mice to further elucidate the role of the canonical
and non-canonical inflammasomes following B. abortus infection. We sought to assess survival,
histopathology, bacterial load, and cell death to provide a more holistic view of cytokine responses
and pyroptosis, both in vivo and in vitro. Additionally, we reassessed Brucella PAMPs using B. abortus
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gDNA and LPS to better define the mechanisms associated with pathogen recognition. Ultimately, we
found that ASC functions to attenuate B. abortus pathogenesis through the modulation of inflammation
and pyroptosis, requiring gasdermin D through a mechanism independent of caspase-11. Additionally,
we determined that Brucella gDNA, rather than LPS, provoked an elevated inflammasome response that
augmented pyroptosis. This report contributes to the current literature and provides some additional
novel insights into potential mechanisms of inflammasome activation during brucellosis.

2. Results

2.1. ASC Attenuates B. abortus Pathogenesis and Is Critical for Host Survival

To explore canonical and non-canonical inflammasome activation to Brucella abortus, we used
mice that lack either the ASC adaptor protein (Asc−/−) or the non-canonical inflammasome-associated
caspase, caspase-11 (Caspase-11−/−). After intraperitoneally injecting mice with 1 × 105 colony forming
units (CFUs) of B. abortus, we monitored mortality in all mouse groups for a 24-day period (Figure 1A).
At Day 7, there was a 26.3% decrease in the survival of the Asc−/− mice. In these animals, the weight
loss in 5 of the 19 mice exceeded 20%, and several of the Asc−/− mice developed clinical parameters
associated with disease progression, such as decreased body condition, that required euthanasia
(Figure 1B). However, there was no decrease in survival for the wildtype (WT) and Caspase-11−/− mice.
These mortality data suggest that the canonical inflammasome plays a more critical role in host survival
compared to the non-canonical inflammasome and caspase-11.
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Figure 1. Asc−/− and Caspase-11−/− mortality and morbidity. Asc−/− (n = 19), Caspase-11−/− (n = 19),
and C57BL/6 WT (n = 26) mice were injected intraperitoneally with 1 × 105 B. abortus CFUs and assessed
daily for excessive weight loss (>20%) warranting euthanasia according to the Institutional Animal
Care and Use Committee (IACUC). (A) Mortality graph based on (B) a morbidity assessment of Asc−/−,
Capsase-11−/−, and WT mice. All the mice were weighed for a 24-day period, with morbidity warranting
euthanasia in Asc−/− mice only at Day 7. * p < 0.05, **** p < 0.0001.

2.2. ASC Contributes to Inflammatory Pathogenesis during B. abortus Infection

To further elucidate the role of ASC and caspase-11 activation in vivo, we conducted
a histopathological analysis on the liver and spleen from wildtype, Asc−/−, and Caspase-11−/− mice three
days post-infection. Histopathology indicated that all the infected mouse groups exhibited elevated
extramedullary hematopoiesis (EMH) and inflammation in the liver and spleen (Figure 2A,B).
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Figure 2. Inflammation in the liver and spleen. A total of 20 Asc−/− (n = 6 uninfected [U], 14 infected [I]),
27 Caspase-11−/− (n = 8 U, 19 I), and 34 C57BL/6 WT (n = 11 U, 23 I) livers and spleens were evaluated
by histopathology 3 d.p.i. (A) H&E stained histological slides of the liver and spleen from WT, Asc−/−,
and Caspase-11−/−mice. All spleen images were taken at 4× power and all liver images were taken at 40×
power. Inflammation and extramedullary hematopoiesis (EMH) were the dominant features observed
in the histopathology evaluation. (B) Bar graphs of WT, Asc−/−, and Caspase-11−/− histopathology
composite scores were generated based on inflammation and EMH in the liver and spleen. * p < 0.05, **
p < 0.01, *** p < 0.001, **** p < 0.0001.

Wildtype mice exhibited higher EMH and inflammation scores compared to the Asc−/− animals
in the spleen. This trend was not observed in the Caspase-11−/− mice in either the liver or the spleen.
Together, these data suggest that ASC augments splenic inflammation and plays a key role in B.
abortus-mediated pathology in the spleen, which is a target organ in this mouse model. The failure
to mount a vigorous immune response to B. abortus in the Asc−/− mice is likely associated with
the increased morbidity and mortality.

2.3. Bacterial Load Is Significantly Increased in the Absence of ASC and Decreased in the Absence of Caspase-11

Bacterial loads were determined in the spleen and liver of B. abortus-infected animals 3 d.p.i
(Figure 3). Between wildtype, Asc−/−, and Caspase-11−/− mice, there was no significant difference
in the weight of the spleens used for analysis.
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Figure 3. Brucella CFUs in the liver and spleen of Asc−/− and Caspase-11−/− mice. Three d.p.i. liver
and spleens from infected C57BL/6 WT (n = 23), (A) Asc−/− (n = 14), and (B) Caspase-11−/− (n = 19) mice
were homogenized and counted for CFUs/gram. * p < 0.05, ** p < 0.01.

In Asc−/− mice, we observed significantly elevated B. abortus CFUs in the liver and a trending
increase in the spleen. In the Caspase-11−/− mice, we observed a similar trending increase in CFUs
in the liver. However, in the spleen Caspase-11−/− mice had significantly decreased bacterial CFUs
compared to the wildtype. The increased bacteria load in Asc−/− mice is consistent with the increased
morbidity and reduced inflammation in Figures 1 and 2, and further illustrates the critical role of ASC
in the host response to B. abortus. Likewise, these Caspase-11−/− data suggest a significant, but variable,
role in controlling the B. abortus bacteria burden that does not appear to impact the overall host
morbidity or inflammation.

2.4. B. abortus Initiates a Weak Inflammasome-Mediated Inflammatory Cytokine Response

Inflammasome activation results in the cleavage and processing of IL-1β and IL-18. To evaluate
the generation of pro-IL-1β, so-called “Signal 1”, at the transcript level, we conducted quantitative
real-time PCR in liver and spleen homogenates (Figure 4). We observed significantly increased fold
changes in Il1β in the livers of Asc−/− and wildtype mice infected with B. abortus versus the uninfected
mice (Figure 4A). Within infected mouse groups in the liver, we also found that infected Asc−/− mice had
a significantly decreased fold change of Il1β compared to wildtype mice (Figure 4A). However, when
assessing the total IL-1β (uncleaved and cleaved) protein, we did not see a significant difference
between the infected wildtype and Asc−/− mice.
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Figure 4. Inflammatory signaling in the liver and spleen of Asc−/− and Caspase-11−/− mice. Three d.p.i.
livers and spleens of 34 C57BL/6 WT (n = 11 U, 23 I), (A) 20 Asc−/− (n = 6 U, 14 I), and (B) 27 Caspase-11−/−

(n = 8 U, 19 I) mice were homogenized and analyzed for their Il1β RNA fold change using RT-PCR
and IL-1β protein concentration through ELISA. * p < 0.05.



Pathogens 2020, 9, 1008 6 of 15

In experiments with Caspase-11−/− mice, we also found an elevated RNA fold change between
the infected and uninfected groups (Figure 4B), but there was no significant difference between
the infected wildtype and Caspase-11−/− mice for Il1β transcription (Figure 4B). However, there was
a minimal, but statistically significant, decrease in IL-1β protein in the livers from Caspase-11−/− mice
compared to the wildtype animals.

2.5. B. abortus Infection Attenuated IL-1β and Induced a Strong ASC-Dependent Pyroptosis Response
in Macrophages

Due to the significant phenotype observed in the Asc−/− mice, we next sought to better define
the underlying mechanism using ex vivo bone marrow-derived macrophages (BMDMs). Intracellular
bacterial replication and survival was evaluated over a 48 h period in B. abortus-infected Asc−/−

and wildtype BMDMs. Under these conditions, we observed a significant decrease in B. abortus
growth in the Asc−/− macrophages compared with the wildtype BMDMs after 24 h (Figure 5A). By 48 h,
the B. abortus replication and survival was no longer detectable, while increasing in the wildtype
BMDMs. These results were unexpected based on our in vivo findings and suggest a possible disconnect
between pathogen clearance, inflammasome function, and pyroptosis in BMDMs.

We next measured the RNA fold change and protein concentration of IL-1β (Figure 5B,C). Within
2 h of B. abortus exposure, we observed elevated Il1β transcription in the infected wildtype and Asc−/−

macrophages. Transcription was statistically significant, but only slightly higher, in the Asc−/− cells
compared to the wildtype BMDMs (Figure 5B). At 24 h and 48 h, we observed a significant decrease
in Il1β transcription in both groups of infected mice, with significantly more Il1β in the Asc−/−

BMDMs at 24 h compared to the wildtype (Figure 5B). Complementing the transcription data, we
also evaluated the IL-1β protein levels in the cell supernatant using ELISA (Figure 5C). These levels
were significantly attenuated in the B. abortus-infected cells (Figure 5C). We also observed a significant
decrease in IL-1β in the Asc−/− BMDMs under all conditions (Figure 5C), emphasizing that IL-1β
processing is ASC-dependent.

To further expand upon our cell death findings, we conducted a LDH assay in our Asc−/−

and wildtype macrophages to quantify the lactate dehydrogenase enzyme released from dead cells
(Figure 5D). We found that, starting at 24 h, there was significantly higher cell death occurring
in our wildtype cells compared to the Asc−/− macrophages. To further define the mechanism of cell
death, we evaluated pyroptosis by determining gasdermin D cleavage using Western blot. We found
a significant increase in cleaved gasdermin D 24 h post-infection in the wildtype BMDMs compared to
the significantly reduced levels observed in the Asc−/− macrophages (Figure 5E). This was confirmed
using densitometry (Figure 5E).

2.6. B. abortus gDNA is a Potent PAMP Associated with ASC-Dependent Canonical Inflammasome Signaling

To further define inflammasome activation following B. abortus infection, we next evaluated
the potential pathogen-associated molecular patterns (PAMPs), focusing on bacterial gDNA.
We challenged macrophages with 1 µg of gDNA (2 µg/mL) both externally, by adding gDNA to
the cell media, and internally through the Lipofectamine 3000 reagent (Figure 6A). We also added
300 µM of ATP to augment the IL-1β release. B. abortus gDNA induced a significant increase
in the Il1β gene transcription 24 h post challenge, following either extracellular or intracellular
challenge (Figure 6A). We observed significant increases in Il1β transcription under several different
conditions in gDNA-challenged Asc−/−macrophages compared to the wildtype cells. ELISA assessments
revealed that IL-1β protein was only released into the supernatant following internal gDNA stimulation
in wildtype cells (Figure 6B). This was highly dependent on ASC. The B. abortus gDNA challenge
resulted in significant increases in IL-1β in the wildtype cells, whereas the levels were below the level
of detection in the Asc−/− cells (Figure 6B). Together, these data confirm B. abortus gDNA as a potent
PAMP and suggest that its recognition by the canonical inflammasome, in an ASC-dependent
mechanism, underlies host defense. In addition to gDNA, we also evaluated the ability of the canonical
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inflammasome to recognize B. abortus LPS (1 µg/mL externally). The fold change in Il1β RNA at 8 h
post challenge indicated that there was elevated transcription in wildtype macrophages over Asc−/−

cells (Figure 6C). However, there was no IL-1β protein signaling for Brucella LPS (Figure 6D).
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Figure 5. ASC-dependent IL-1β generation and pyroptosis following B. abortus infection in BMDMs.
Bone marrow-derived macrophages (BMDMs) (500,000 cells per well, n = 3 per group) were harvested
from C57BL/6 WT and Asc−/− mice and challenged with a MOI 100:1 (107 CFUs) of Brucella abortus.
(A) BMDMs were measured for CFUs for a 48 h period post-challenge. (B) BMDMs were measured
for the Il1β fold change in RNA through RT-PCR. (C) BMDMs were analyzed for IL-1β protein
in the supernatant using an ELISA. (D) Lactate Dehydrogenase (LDH) was measured through
spectrophotometry through a 48 h time period post-challenge. (E) BMDMs were lysed at 24 h
post-challenge and used for Western blot analysis. BMDM protein (20µg) was probed for cleaved
gasdermin D and β-actin as a control for the protein amount. Invitrogen IBright Analysis was used to
determine the density ratio between the cleaved gasdermin D over β-actin. * p < 0.05, *** p < 0.001,
**** p < 0.0001.
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Figure 6. B. abortus gDNA is a potent PAMP and induces ASC-dependent IL-1β production.
Bone marrow-derived macrophages (BMDMs) (500,000 cells per well, n = 2 per group) were harvested
from C57BL/6 WT and Asc−/− mice. (A,B) BMDMs were challenged with 1 µg of gDNA (2µg/mL)
externally in media or transfected internally with 300 µM of ATP and harvested after 24 h. BMDMs
were analyzed for the IL-1β (A) RNA fold change through RT-PCR and (B) protein concentration
through ELISA. (C,D) BMDMs were challenged with 1 µg/mL of Brucella LPS externally to the media
with 300 µM of ATP and harvested after 8 h. BMDMs were analyzed for the IL-1β (C) RNA fold change
through RT-PCR and (D) protein concentration through ELISA. Note that there was no detectable (n.d.)
protein concentration in (D). * p < 0.05, **** p < 0.0001.

3. Discussion

In this report, we assessed inflammasome activation following Brucella abortus infection.
During canonical inflammasome activation, a pathogen is sensed by a NLR or ALR pattern recognition
receptor and forms a multi-protein complex with the binding protein ASC and caspase-1. This process
can initiate the cleavage of IL-1β and IL-18 in addition to pyroptosis [8]. While highly related to
the canonical inflammasome pathway, non-canonical inflammasome activation is often more closely
associated with the promotion of pyroptosis and the activation of caspase-11 [26]. Together, our
in vivo data reveal a more robust phenotype in the Asc−/− mice compared to the Caspase-11−/− animals,
suggesting that the canonical inflammasome plays a significantly greater role in host pathogen defense
following B. abortus infection. ASC and, by extension, the canonical inflammasome promotes survival,
augments inflammation, and attenuates bacterial load in vivo. This result is consistent with others
in the field that have used myriad of other inflammasome knockout models [5–7,27]. However, there
are certainly exceptions to these findings. For example, Gomes et al. (2103) recently reported
no inflammasome knockout mice (n = 5 per group) exhibited mortality under their experimental
conditions [6]. One difference to note is that our study utilized a much larger sample size per
group (n = 19). Because many of our animals recovered, it is certainly possible that greater power
through that increased sample size is necessary to better reflect the mortality data for the Asc−/−

animals. Ultimately, our comparison between Asc−/− and Caspase-11−/− mice expands upon the findings
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of many of these prior studies and provides a more direct assessment of the pathobiological effects
of the canonical and non-canonical inflammasome in B. abortus host defense.

Although non-canonical signaling through the Brucella LPS activation of caspase-11-mediated
pyroptosis has been previously indicated [28], we found inconsistent results in inflammasome activation
under our conditions. In Caspase-11−/− mice, we found no loss in survival or morbidity, no significant
inflammation through histopathology scoring, and no protective role in promoting inflammatory
signaling. Previous studies using Caspase-11−/− mice mimicked our non-significant results in bacterial
load at 3 days post-infection and only found significant bacterial load 1–2 weeks after infection [28].
Although we did not assess the bacterial load or inflammatory signaling after 3 d.p.i in this report, we
did assess the morbidity and mortality of Caspase-11−/−mice over 3 weeks, in which knockouts exhibited
no decrease in morbidity or loss in survival. This indicates that caspase-11 may play a small but
relatively insignificant role in promoting pyroptosis that perhaps may be slightly amplified 1–2 weeks
after Brucella infection. Additionally, these studies utilized immune cell priming in macrophages with
PAMPs, such as E. coli LPS and Pam3CSK4, and subsequently observed high cytokine signaling in their
challenge [28]. Contrasting this data, our results indicated no IL-1β protein response to Brucella LPS
stimulation in unprimed macrophages. These data suggest that the immune adjuvants directly impact
the activation of caspase-11 and that the role of non-canonical inflammasome in host defense against B.
abortus is minimal in the absence of macrophage priming.

Previously, pyroptosis had only been attributed to non-canonical inflammasome activation by
Brucella spp. [6,28]. This is further confirmed in this report through the presence of cleaved gasdermin
D bands in Asc−/− macrophages, indicating that ASC-independent pyroptosis occurs in response to
Brucella. However, our research demonstrates that the removal of ASC-dependent inflammasome
activation significantly decreases the activation of gasdermin D to form pyroptotic pores. As described
in the literature, ASC specks serve as recruitment factors for procaspase-1 through the polymerization
of its caspase activation recruitment domain (CARD). Caspase-1 only becomes activated through this
process during ASC-dependent inflammasome formation [29]. In turn, caspase-1 cleaves gasdermin
D, which has been identified as the most significant gene initiating caspase-1 induced pyroptosis,
and initiates inflammatory cell death [30]. Our results are consistent with this ASC-mediated pathway
of the capsase-1 activation of pyroptosis that is dependent on gasdermin D cleavage. To date, we know
that Brucella initiates the caspase-1 and -11 activation of pyroptosis in joints of animal models [31].
Additionally, pyroptosis is activated by gDNA in dendritic cells [5]. Our data supports a model where
both caspase-1 and -11 promote pyroptosis, and where gDNA from B. abortus functions as a robust
PAMP that specifically activates the canonical inflammasome, driving ASC-dependent inflammation
and pyroptosis.

Previous literature indicates that the role of pyroptosis in brucellosis serves to restrict Brucella
growth in macrophages of the joints and control infection [31]. Our findings are consistent with this
previous study. Under our conditions, the ASC-mediated initiation of pyroptosis appears to ensure
mouse survival, immune cell recruitment, and inflammatory signaling. However, we should also
point out the bacteria clearance and IL-1β data in the BMDM studies (Figure 5A,C). In Figure 5A,
these data would suggest that the lack of ASC and canonical inflammasome signaling actually
improved the bacteria clearance from these BMDMs, despite having reduced IL-1β and pyroptosis.
While these data seem to conflict with each other, several recent studies have reported similar findings
for other bacterial pathogens. For example, Citrobacter rodentium infection results in significant osmotic
changes in targeted cells that can augment inflammasome signaling [32]. However, the clearance
of the pathogen itself appears to be independent of the inflammasome and the ASC modulation
of inflammation and pyroptosis [33]. Thus, it is possible that a similar mechanism is associated
here with B. abortus. Looking at the IL-1β graph in Figure 5C, it suggests that B. abortus infection
in macrophages suppresses IL-1β production from wildtype cells. It is possible that the attenuation
of total IL-1β in this figure may be due to the subversion of TLR signaling generating pro- IL-1β.
Many studies have shown Brucella subversion of TLR signaling through proteins such as Tcbp, which
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leads to decreased proinflammatory cytokine expression [10]. Additionally, Brucella microRNAs
can lead to the downregulation of the mRNA and protein expression of innate immune PRRs [34].
These mechanisms likely did not occur in our gDNA studies as there was no inclusion of these
immunosuppressive proteins or production of inhibitory microRNAs. Therefore, it is possible that
the full Brucella bacterium may be utilizing these methods of immunosuppression to contribute to
decreased total IL-1β.

Our data suggests that ASC and the canonical inflammasome contribute to host defense in response
to B. abortus. These results are consistent with several others in the field and provide additional insight
into host defense against this highly intriguing pathogen. Currently, brucellosis is having a significantly
negative impact on a growing number of human populations worldwide. Therefore, it is essential that
we expand our understanding of the underlying disease mechanisms and host immune response to
B. abortus. This finding that the canonical inflammasome plays a dominate role in driving the host
innate immune response and pyroptosis following the sensing of gDNA is an encouraging discovery
that may contribute to the development of future therapeutics or strategic approaches to combat this
disease and its underlying pathogen.

4. Materials and Methods

4.1. Bacterial Strains and Growth Conditions

Brucella abortus 2308 was routinely grown on Schaedler blood agar (SBA), which is composed
of Schaedler agar (BD, Franklin Lakes, NJ, USA) containing 5% defibrinated bovine blood (Quad Five,
Ryegate, MT, USA). All work with live Brucella strains was performed in a biosafety level 3 (BSL3)
facility. Animal work conducted in ABSL3 conditions was conducted under IACUC protocol # 14-055
at Virginia Tech following the ethical standards of animal use in research.

4.2. In Vivo Brucella Studies

C57BL/6 WT mice (n = 26), Asc−/− mice (C57BL/6 background; n = 19), and Caspase-11−/− (C57BL/6
background; n = 19) mice were inoculated intraperitoneally with 1 × 105 CFU of Brucella abortus.
The percent weight change was measured each day post-Brucella inoculation to determine morbidity
warranting euthanasia (>20%) following the IACUC protocol.

Additionally, 20 canonical knockout (Asc−/−, n = 6 U, 14 I), 27 non-canonical (Caspase-11−/−, n = 8 U,
19 I), and 34 C57BL/6 WT (n = 11 U, 23 I) mice were euthanized at 3 days post infection and harvested for
the liver and spleen. Both organs were sectioned into three equal parts. The first section of both organs
was taken for histopathology analysis to determine the scoring of extramedullary hematopoiesis (EMH)
and inflammation. The remaining sections were homogenized in 1×PBS and analyzed for the number
of CFUs per gram and the RNA and protein concentrations of IL-1β. RNA was isolated from the liver
and spleen with TRIzol reagents (Invitrogen) followed by ethanol precipitation. Genomic DNA was
removed with DNase I, and samples were cleaned using phenol-chloroform extractions and precipitated
with ethanol. RNA samples were then resuspended in nuclease-free H2O, and the purity of samples
was checked with a NanoDrop 1000 spectrophotometer (ThermoFisher).

After isolation, RNA was converted into 1 µg cDNA through a High-Capacity cDNA Reverse
Transcription Kit (ThermoFisher). This cDNA was analyzed for IL-1β by RT-qPCR (40× cycles) using
Taqman Fast MasterMix (ThermoFisher). Protein was determined through a sandwich ELISA kit
(R&D systems).

4.3. Bone Marrow-Derived Macrophage (BMDM) Isolation

Bone marrow-derived macrophages (BMDMs) were derived from the bone marrow of C57BL/6
WT and Asc−/− mice under the IACUC protocol #18-104 at Virginia Tech. Two adult mice from
each group were sacrificed using CO2 fixation followed by cervical dislocation. Bone marrow was
extracted from the tibias and femora of the mice. Cells were cultured in non-TC culture dishes in our
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formulation of culture media (Dulbecco’s Modified Eagle Medium (DMEM) (ThermoFisher) containing
10% Fetal Bovine Serum (FBS), 1% penicillin/streptomycin, 1% nonessential amino acids, and 20% L929
conditioned media [35]). These culture dishes were incubated at 37 ◦C with 5% CO2. After 6–7 days
of culture, these cells had differentiated into macrophages. BMDMs were collected from the bottom
of the plates through a cold 1× PBS solution containing 5 mM of EDTA. After 1 h on ice, we checked for
macrophage detachment via microscope. Macrophages were collected and seeded at 500,000 cells/well
in 24-well plates in media without antibiotics and left to adhere overnight in culture media.

4.4. Live Brucella Challenge in BMDMs

Macrophages were infected with a MOI 100:1 (107 CFUs/5 × 105 BMDMs) with B. abortus 2308.
At the 2, 24, and 48 h time points, intracellular B. abortus was determined through a gentamicin
protection assay [36]. At 2 h, the infected macrophages were treated with gentamicin (50µg/mL) for
1 h. Macrophages were then lysed with 0.1% deoxycholate in PBS, and serial dilutions were plated on
Schaedler blood agar (SBA) containing 5% bovine blood (Quad Five). For the 24 and 48 h time points,
macrophages were washed with PBS and fresh cell culture medium containing gentamicin (20µg/mL)
was added to the macrophages. At the indicated time points, macrophages were lysed, and serial
dilutions were plated on SBA in triplicates.

The supernatant of BMDMs was sterile-filtered for later IL-1β protein analysis through a sandwich
ELISA kit (R&D systems). Macrophages at each time point were lysed with 0.1% deoxycholate
and isolated for RNA. After isolation, RNA was converted into 0.5µg cDNA through a High-Capacity
cDNA Reverse Transcription Kit (ThermoFisher). This cDNA was analyzed for IL-1β by RT-qPCR
(40× cycles) using Taqman Fast MasterMix (ThermoFisher).

4.5. LDH Assay

Macrophages were infected with a MOI 100:1 (107 CFUs/5 × 105 BMDMs) with B. abortus.
At the 2, 24, and 48 h time points, extracellular B. abortus was killed through gentamicin (50 µg/mL).
The supernatant of BMDMs was collected and centrifuged at 1000× g for 10 min to remove cell
debris. The remaining supernatant (50 µL) was used for the CyQUANT™ LDH Cytotoxicity Assay kit
(Invitrogen) and read at a corrected absorbance of 490–680 nm.

4.6. Brucella PAMP Isolation

4.6.1. Brucella gDNA

B. abortus gDNA was isolated from the 2308 strain by phenol:chloroform extraction. Approximately
3 mL of an overnight culture of B. abortus was pelleted by centrifugation. The pellet was resuspended
in 200 µL of 0.04 M sodium acetate, 200 µL of 10% SDS, and 600 µL of TRIzol. A total of 250 µL
of chloroform was added to this mixture in a Phase Lock tube (5PRIME) and centrifuged at 20,000× g
(max speed) for 2 min. A second chloroform wash was performed in a Phase Lock tube. The resulting
aqueous layer is then removed and added to 1 mL of 100% ethanol. DNA precipitation is carried out
from this point.

4.6.2. Brucella LPS

B. abortus LPS was isolated from the B. abortus 2308 using hot-phenol extraction, as described
previously [31]. Bacteria were killed with ethanol: acetone, and the cells were recovered by
centrifugation. The pellet was suspended in deionized water at 66 ◦C and then mixed with 90% phenol
w/v that was heated to 66 ◦C. After stirring for 20 min, the suspension was chilled on ice. The solution
was then subjected to centrifugation (15 min at 13,000× g). The phenol layer was aspirated, filtered
through a Whatman #1 filter, and the LPS was precipitated with methanol containing 1% methanol
saturated with sodium acetate. Following incubation at 4 ◦C for 1 h, the mixture was subjected to
centrifugation (10,000× g for 10 min). The precipitate was stirred with deionized water for 12 h at 4 ◦C.
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Following centrifugation (10,000× g for 10 min), the supernatant was precipitated with trichloroacetic
acid, and the resulting supernatant following centrifugation (10,000× g for 10 min) was dialyzed with
deionized water and stored at −20 ◦C. The concentration of LPS was determined through the Pierce™
Chromogenic Endotoxin Quant Kit (ThermoFisher).

4.7. Brucella PAMP Challenge

After PAMP isolation, B. abortus gDNA (2 µg/mL) and LPS (1 µg/mL) were introduced to BMDMs.
gDNA was introduced both intracellularly, through the Lipofectamine 3000 Transfection Reagent
(Invitrogen), and extracellularly in media. LPS was only introduced extracellularly. Timepoints for this
challenge included 24 h for gDNA and 8 h for LPS post-challenge. Samples were run with and without
the priming of 300 µM of ATP 45 min before each time point to stimulate IL-1β protein release after
transcription. At each time point, supernatant was collected from each well and centrifuged at 1000×
g for 10 min to remove cell debris. The supernatant was later used for protein quantification using
an IL-1β sandwich ELISA (R&D Systems). Macrophages were lysed with 200 µL of TRIzol Reagent
(Invitrogen) and followed the TRIzol RNA isolation protocol. After isolation, RNA was converted into
1 µg of cDNA through a High-Capacity cDNA Reverse Transcription Kit (ThermoFisher). This cDNA
was analyzed for IL-1β by RT-qPCR (40× cycles) using the Taqman Fast MasterMix (ThermoFisher).

4.8. Western Blot

Macrophages from live Brucella challenge were lysed using a sodium lysis buffer (0.3% SDS, 200
mM dithiothreitol, 22 mM Tris-base, and 28 mM Tris-HCl pH 8.0). Samples were then boiled for
a period of 1 h, vortexing the samples every 10 min. Samples were frozen at −20 ◦C until use. Prior to
running the gel, samples were sonicated for 10 s each. Protein quantification was determined using
the Pierce™ Detergent Compatible Bradford Assay Kit (ThermoFisher). Samples (20 µg of protein)
were heated at 97 ◦C with a reducing buffer for 7 min and run on pre-cast Bolt™ 4 to 12%, Bis-Tris,
1.0 mm, Mini Protein Gel, 10-well gels (Invitrogen) for 45 min at 165 V with a 1×Micro Extraction
Packet Sorbent (MEPS) buffer (ThermoFisher). Gel was transferred onto a polyvinylidene difluoride
(PVDF) membrane using a transfer chamber with transfer buffer (20% methanol in 1× Tris Glycine
(TGE)). The membrane was then blocked in 5% milk for 1 h, and then incubated overnight with
a cleaved gasdermin D rabbit antibody (diluted 1:1000, Cell Signaling #36425S). Membrane was washed
in Tris-buffered saline with Tween 20 (1× TBST) 4× for 15 min each and then blocked with goat
anti-rabbit IgG antibody conjugated with horseradish peroxidase (HRP) (diluted 1:2000, Cell Signaling
#7074) for 1 h. Membrane was washed again with 1× TBST 4× for 15 min each and then imaged using
West Pico Substrate for imaging (ThermoFisher). Gels were imaged using an IBright CL1500 imaging
machine. Sample bands were normalized using the β-actin rabbit antibody (Cell Signaling #4970) using
the same protocol above. The density of bands was calculated using the IBright Analysis software
(ThermoFisher) to calculate a cleaved gasdermin D/β-actin ratio.

4.9. Graphing and Statistical Analyses

All the figures and statistical analyses were generated in GraphPad 8.4.3 (Prism). Statistical tests
included two-way ANOVAs, using the Tukey or Sidak post-hoc tests, and two sample t-tests when
appropriate. All the data are contained within the article.
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