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Abstract: Chlamydia trachomatis, Mycoplasma genitalium, herpes simplex virus (HSV) and human 
papillomavirus (HPV) cause sexually transmitted infections. In addition, human herpesvirus 6 
(HHV-6) may be a genital co-pathogen. The prevalence rates of HSV, HHV-6, HPV, M. genitalium, 
and the C. trachomatis ompA genotypes were investigated by PCR in urogenital samples of the C. 
trachomatis nucleic acid amplification test positive (n = 157) and age-, community- and time-matched 
negative (n = 157) women. The prevalence of HPV DNA was significantly higher among the C. 
trachomatis positives than the C. trachomatis negatives (66% vs. 25%, p < 0.001). The prevalence of 
HSV (1.9% vs. 0%), HHV-6 (11% vs. 14%), and M. genitalium DNA (4.5% vs. 1.9%) was not 
significantly different between the C. trachomatis-positive and -negative women. Thirteen per cent 
of test-of-cure specimens tested positive for C. trachomatis. The prevalence of HSV, HHV-6, HPV, M. 
genitalium, and the C. trachomatis ompA genotypes did not significantly differ between those who 
cleared the C. trachomatis infection (n = 105) and those who did not (n = 16). The higher prevalence 
of HPV DNA among the C. trachomatis positives suggests greater sexual activity and increased risk 
for sexually transmitted pathogens.  
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1. Introduction 

The global disease burden due to sexually transmitted infections (STIs) is substantial [1]. 
Chlamydia trachomatis urogenital infection is the most common sexually transmitted bacterial 
infection with 127 million cases annually [2]. Most chlamydial infections remain asymptomatic, but 
can result in pelvic inflammatory disease and severe reproductive complications [3]. Based on the 
ompA gene encoding the major outer membrane protein (MOMP), C. trachomatis can be classified into 
different genotypes, of which genotypes D-K cause most of the urogenital infections [4]. Mycoplasma 
genitalium infection is associated with non-gonococcal and non-chlamydial urethritis in men, and 
with urethritis, cervicitis, endometritis and pelvic inflammatory disease in women [5]. In addition, 
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asymptomatic infections are frequent [5]. The increasing antimicrobial resistance of M. genitalium to 
macrolides and fluoroquinolones causes concern [6]. 

Genital herpes caused by herpes simplex virus (HSV-2 or HSV-1) affects over 500 million people 
worldwide [7,8]. After initial infection, herpesviruses establish lifelong latency in which the viral gene 
expression is limited. Upon reactivation, infectious viral particles and viral DNA are shed, and 
clinical disease can recur [9]. Human herpesvirus 6 (HHV-6) now includes two different viruses, 
HHV-6A and HHV-6B, with different epidemiological and biological characteristics and disease 
associations [10]. While less is known about the epidemiology of HHV-6A, HHV-6B is a ubiquitous 
virus and the seroprevalence of HHV-6 among adults is approximately 98% [11]. HHV-6B infection 
usually occurs early in childhood and can cause fever and rash (exanthema subitum), but HHV-6 
infections including primary infections and reactivation can be asymptomatic [12]. Some individuals 
(less than 1%) have HHV-6 DNA integrated into telomeric ends of their chromosomes which could 
result in PCR positivity [12]. HHV-6 is known to be transmitted vertically, through saliva [12], and 
in addition, sexual transmission is possible [13]. Genital human papillomavirus (HPV) infections are 
common and the disease burden associated with HPV is enormous. The prevalence in women with 
normal cervical cytology is approximately 12% [14]. Many HPV infections clear spontaneously, but 
infections caused by the high-risk HPV genotypes can lead to cervical cancer, one of the leading 
cancers in women worldwide [15]. 

In Finland, C. trachomatis infections are notified by laboratories to the Finnish Infectious Disease 
Register maintained by the Finnish Institute for Health and Welfare since 1995. Genital HSV, HHV-
6, HPV and M. genitalium infections are not notifiable and their prevalence is not known. Here, we 
wanted to study the prevalence of HSV, HHV-6, HPV and M. genitalium among C. trachomatis nucleic 
acid amplification test (NAAT) positive, and age-, community- and time-matched C. trachomatis 
NAAT-negative young women participating in a community-randomized trial on the effectiveness 
of C. trachomatis screening in Finland [16]. As genital coinfections can play a role in development of 
cancer (HPV) [17,18] or drive C. trachomatis into a persistent state (herpesviruses) [19,20], we studied 
whether the co-infections affect clearance of C. trachomatis. 

2. Results 

2.1. The Prevalence of HSV, HHV-6, HPV and M. genitalium 

The prevalence of HSV, HHV-6, HPV and M. genitalium DNA was analysed in the urogenital 
samples of 314 young women (157 C. trachomatis NAAT positive individuals and their 157 age-, 
community- and time-matched C. trachomatis NAAT negative controls). Among young women, HPV 
DNA was frequently (46%) detected and it was more common among the C. trachomatis positives 
than the C. trachomatis negatives (66% vs. 25%, p < 0.001) (Table 1). HHV-6 DNA was present in 12%, 
M. genitalium DNA in 3.2% and HSV DNA in 1.0% of the samples. Of the ten samples positive for M. 
genitalium DNA, two samples (20%) contained a mutation associated with macrolide resistance. A 
slightly higher prevalence of M. genitalium and HSV DNA in the C. trachomatis-positive samples was 
observed, but due to the small numbers, these differences were not statistically significant. Among 
the 314 samples, 22 (21 among C. trachomatis NAAT positive and one among NAAT negative) were 
positive for three of the microbes analysed in this study. Only one sample tested positive for Neisseria 
gonorrhoeae. 

Table 1. The prevalence (% and 95% confidence interval, CI) of HSV, HHV-6, HPV and M. genitalium 
DNA in the urogenital samples of 157 C. trachomatis nucleic acid amplification test (NAAT) positive 
and 157 age-, community- and time-matched C. trachomatis NAAT-negative women. 

 C. trachomatis Positive (n = 157) C. trachomatis Negative (n = 157) 
p-value1 

 
Total 

(n = 314) 
HSV 3 (1.9%; 0–4.3%) 0 (0%) 0.248 3 (1.0%) 

HHV-6 17 (11%; 5.6–16.0%) 22 (14%; 8.3–19.7%) 0.494 39 (12%) 
HPV 104 (66%; 58.5–73.9%) 39 (25%; 17.7–31.9%) <0.001 143 (46%) 

M. genitalium 7 (4.5%; 1.0–8.0%) 3 (1.9%; 0–4.3%) 0.336 10 (3.2%) 
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HSV–herpes simplex virus; HHV-6–human herpes virus 6; HPV–human papillomavirus. 1 Fisher’s 
exact test was used to calculate the statistical significance. 

Among the 157 C. trachomatis-positive women, 166 infection episodes were evaluated (nine 
women had two C. trachomatis infection episodes during the study period). A test-of-cure (TOC) 
sample for C. trachomatis detection was taken approximately one month after the treatment as 
recommended by the Finnish national guideline [21], and it was available from 121 (73%) cases. The 
infection episodes were classified into not cleared (C. trachomatis TOC-positive) and cleared (C. 
trachomatis TOC-negative). Of the 121 TOC specimens, sixteen (13%) tested positive for C. trachomatis. 
The prevalence of HSV, HHV-6, HPV and M. genitalium DNA was similar between those who cleared 
C. trachomatis infection and those who did not (Table 2). HHV-6 DNA seemed more frequent among 
those who gave a C. trachomatis positive TOC sample (19% vs. 10%). However, the difference was not 
significant.  

Table 2. The prevalence (% and 95% confidence interval, CI) of HSV, HHV-6, HPV and M. genitalium 
DNA in the urogenital samples of women who later gave a C. trachomatis test-of-cure positive (n = 16) 
and a C. trachomatis test-of-cure negative (n = 105) sample.  

 
C. trachomatis 

test-of-cure positive 
(n = 16) 

C. trachomatis 
test-of-cure negative 

(n = 105) 

p-
value1 

HSV  0 (0%) 1 (1.0%; 0–3.4%) 1.000 
HHV-6  3 (19%; 0–41.1%) 10 (10%; 3.4–15.6%) 0.377 

HPV  9 (56%; 28.9–83.7%) 75 (71%; 62.4–80.5%) 0.250 
M. 

genitalium  
0 (0%) 5 (4.8%; 0.2–9.4%) 1.000 

HSV—herpes simplex virus; HHV-6—human herpes virus 6; HPV—human papillomavirus. 1 Fisher’s 
exact test was used to calculate the statistical significance. 

2.2. The C. trachomatis ompA genotypes 

Of the C. trachomatis NAAT-positive urogenital samples from 166 infection episodes, 146 (88%) 
samples could be genotyped by ompA PCR. The three most prevalent C. trachomatis ompA genotypes 
were E (n = 69, 47%), F (n = 39, 27%) and G (n = 13, 9%) (Table 3). No statistically significant differences 
were observed in the genotype distribution between those who cleared the infection and those who 
did not. 

Table 3. The C. trachomatis ompA genotype distribution in the urogenital samples of women who gave 
a C. trachomatis test-of-cure positive (n = 14) and a C. trachomatis test-of-cure negative (n = 94) sample. 
A test-of-cure sample was not available for 38 women. 

Genotype 
C. trachomatis test-of-

cure positive 
C. trachomatis test-of-

cure negative 
p-

value1 
No test-of-cure sample 

available 
All 

samples 
E 8 (57%) 37 (39%) 0.251 24 (63%) 69 (47%) 
F 3 (21%) 27 (29%) 0.753 9 (24%) 39 (27%) 
G 2 (14%) 10 (11%) 0.653 1 (3%) 13 (9%) 
K 0 (0%) 11 (12%) 0.353 0 (0%) 11 (8%) 
D 0 (0%) 5 (5%) 1.000 3 (8%) 8 (5%) 
H 1 (7%) 3 (3%) 0.431 0 (0%) 4 (3%) 
J 0 (0%) 1 (1%) 1.000 1 (3%) 2 (1%) 

Total 14 (100%) 94 (100%)  38 (100%) 
146 

(100%) 
1 Fisher’s exact test was used to calculate the statistical significance. 

3. Discussion 

In this study, we explored the prevalence rates of HSV, HHV-6, HPV and M. genitalium by PCR 
among young women (18 and 22 years old) participating in a community-randomized C. trachomatis 
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screening trial in Finland. HPV DNA was significantly more frequently detected among the C. 
trachomatis positives than the C. trachomatis negatives (66% vs. 25%). This finding is in an agreement 
with results of a large Italian study showing an HPV co-infection in 68% of C. trachomatis-positive 
≤25-year-old women [22]. Globally, there is a relationship between HPV prevalence and age as the 
highest rates are observed in younger women of less than 25 years old, with a decline at older ages 
[14]. The high HPV prevalence suggests greater sexual activity and exposure to sexually transmissible 
microbes among those positive for C. trachomatis. This is of importance, as concomitant C. trachomatis 
and HPV infection is associated with high risk of cervical precancer [23], supporting the active role 
of C. trachomatis in the development of cervical precancer [17,18]. 

In contrast to HPV, the prevalence of HSV, HHV-6 and M. genitalium did not significantly differ 
among the C. trachomatis-positive and -negative young women. In this study, HSV DNA, indicating 
most likely asymptomatic shedding and including both HSV-1 and HSV-2, was rarely detected in the 
urogenital specimens (1%) among young women. This is in line with the previous Finnish data: 
genital herpes was clinically diagnosed in 3% of women attending twelve outpatient clinics in 1995–
2006 [24], and approximately 2% of the STI clinic patients were culture-positive for HSV in 1994–2012 
[25,26]. Among Finnish pregnant women, the seroprevalence for HSV-1 was 45% and for HSV-2 was 
11% in 2012 [27]. The global estimates for genital HSV infections suggest higher prevalence: 0.8% (15–
19 years old) and 2% (20–24 years old) for HSV1 [7], and 4.6% (15–19 years old) and 7.8% (20–24 years 
old) for HSV2 [8]. In our study, HHV-6 DNA was detected in 12% of the specimens. Similarly, an 
HHV-6 prevalence of up to 10% was reported in the genital tract of non-pregnant women in the USA 
[13], whereas up to 26% of Japanese pregnant women were shown to have HHV-6 DNA in their 
genital tract [28]. As HHV-6 induces a lifelong latent infection in humans and is capable of 
reactivation, either reactivation or (re)infection can explain HHV-6 DNA positivity.  

The global estimate for the prevalence of M. genitalium is 1.7% in under 25-year-old women [29], 
that is slightly lower than the global prevalence of 3.8% for C. trachomatis in 15–49-year-old-women 
[2]. In our study, M. genitalium DNA was detected in 3.2% of the specimens, approximately as often 
as C. trachomatis [16]. Earlier, a somewhat higher prevalence of 5.6% for M. genitalium was reported 
among STI clinic patients in Finland [30]. In the other Nordic countries, the prevalence of 9.8% in 
Sweden, 4.9% in Norway and 9.0% in Denmark has been reported for M. genitalium [31]. In Norway, 
the prevalence of M. genitalium is suggested to be lower due to enhanced testing, treatment and 
partner notification [31]. In this study, two samples (20%) contained mutations in the 23S rRNA gene, 
leading to macrolide resistance in M. genitalium. Previously, such mutations were detected in 31% of 
M. genitalium-positive samples among STI clinic patients in Finland [30]. In the other Nordic 
countries, the prevalence of M. genitalium macrolide resistance is 18% in Sweden, 56% in Norway and 
57% in Denmark [31]. This obviously reflects differences in the national treatment guidelines, as 
doxycycline is recommended in Sweden and azithromycin in Norway and Denmark in the treatment 
of C. trachomatis infection.  

In addition, we studied whether co-infections affect clearance of C. trachomatis. The prevalence 
of HSV, HHV-6, HPV and M. genitalium did not significantly differ between those who cleared the C. 
trachomatis infection and those who did not, although in vitro studies suggest that herpesviruses and 
C. trachomatis might interact during human infection. Indeed, it has been shown that HSV and HHV-
6 co-infections promote C. trachomatis persistence in vitro [19,20], and persistent forms of C. 
trachomatis are more resistant to antimicrobial therapy [32]. As 13% of TOC samples were positive for 
C. trachomatis, the impact of co-infections, especially those due to herpesviruses, warrants further 
studies.  

Overall, the ompA genotype distribution in Finland has remained fairly stable during the last ten 
years, with E, F and G representing the most predominant genotypes [33,34]. Here, samples collected 
from asymptomatic women during a screening trial were studied, whereas the earlier studies 
included mainly samples from symptomatic patients. Previous studies have attempted to link certain 
C. trachomatis ompA genotypes to different clinical outcomes of the infection [35]. In this study, the 
ompA genotype distribution was similar among those who cleared the infection and those who did 
not suggesting that the C. trachomatis ompA genotype is not a decisive factor in the clearance of 
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infection. Multiple factors, including host immunity [36] and infectious load [37] probably play a role 
in clearance.  

This was the first study to explore the prevalence rates of HSV and HHV-6 DNA in urogenital 
samples among young women in Finland. Although the study was rather small, the participants and 
their controls were carefully matched to avoid confounding factors related to age, local epidemiology 
of these agents, and sampling time. The samples were collected from females volunteering in an HPV 
vaccination trial and simultaneously in a community-randomized C. trachomatis screening trial and 
the risk-taking behaviour among the participants may have been higher. Due to this, the true 
population-based prevalence rates and the prevalence of C. trachomatis and HPV co-infection might 
be lower than the ones reported here.  

The interactions and consequences of co-infections with C. trachomatis, M. genitalium, HSV, 
HHV-6 and HPV can be numerous but are not well studied. In addition, STIs increase the risk of 
human immunodeficiency virus (HIV) acquisition and transmission [38]. Thus, it is important to 
understand the local and global epidemiology of the sexually transmitted microbes and also co-
infections. This information can be used to prevent and control infections, to investigate the impact 
of screening interventions, and to develop guidelines for management. In addition, prevalence data 
can be used for monitoring purposes if drug resistance promotes further spread of infections. 
Ultimately, the development of vaccines against these sexually transmitted agents will result in 
permanent decline of the prevalence rates, as has already been observed with the implementation of 
HPV vaccination programs [39]. 

4. Materials and Methods  

4.1. Participants and Samples 

The samples studied here represent a subset of samples collected from women participating in 
an HPV vaccination trial [40,41] and simultaneously in a community-randomized trial on the 
effectiveness of C. trachomatis screening [16] at the age of 18 and 22 in Finland in 2010–2017. The self-
collected vaginal swabs rinsed in first-void urine were sent to Fimlab, Tampere, Finland for C. 
trachomatis and N. gonorrhoeae testing with the Abbott RealTime CT/NG assay (Abbott Molecular, Des 
Plaines, IL, USA). All women with a C. trachomatis-positive sample and their partners received free-
of-cost treatment (1 g single dose azithromycin) and were invited to give a test-of-cure sample one 
month later. The samples had previously been analysed for HPV DNA with methods described 
earlier at the Department of Clinical Microbiology, Skåne University Hospital, Malmö, Sweden 
[42,43]. 

The study material consisted of urogenital samples from 314 women (157 C. trachomatis NAAT 
positive individuals, and their 157 age-, community- and time-matched C. trachomatis NAAT negative 
controls). Altogether 166 C. trachomatis infection episodes were analysed among the 157 women. A 
test-of-cure sample was available from 121 (73%) women. These women were classified as C. 
trachomatis test-of-cure positive (infection not cleared) (n = 16) or C. trachomatis test-of-cure negative 
(infection cleared) (n = 105). A test-of-cure sample was not available from 45 women (27%). All 
participants gave their informed consent for inclusion before they participated in the C. trachomatis 
screening trial. The study was conducted in concordance with the Declaration of Helsinki and an 
ethics approval for the C. trachomatis screening trial was obtained from the Ethical Review Board of 
the North Ostrobothnia Hospital District (19.11.2012; §295/2012). 

4.2. DNA Extraction and Real-Time PCR 

DNA was extracted from the urogenital samples with the MagNA Pure LC 2.0 System (Roche 
Molecular Systems, Pleasanton, CA, USA) using a MagNA Pure LC DNA Isolation Kit - Large 
Volume (Roche Molecular Systems).  

HSV (HSV-1 and HSV-2 DNA polymerase gene) [44], HHV-6 (HHV-6A and HHV-6B U67 gene) 
[45] and M. genitalium (mgbB gene) [46] were detected with real-time PCRs developed earlier with 
modifications described below. The samples positive for M. genitalium DNA were analysed for 
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mutations associated with macrolide resistance within the 23S rRNA gene with a method developed 
previously [47]. To evaluate the specimen quality (i.e., the presence of PCR inhibitors) and the 
performance of the nucleic acid extraction, the human beta-globin gene was amplified [47]. The ompA 
genotype of the C. trachomatis positive samples was determined with a method described earlier [48] 
with modifications [33]. 

The primers and probes were purchased from Integrated DNA Technologies (IDT, Coralville, 
IA, USA) and Applied Biosystems (Thermo Fisher Scientific, Waltham, MA, USA). The real-time 
PCRs were performed in a 25 μL volume containing 12.5 μL Maxima Probe/ROX qPCR Master Mix 
(Thermo Fisher Scientific). The PCR for HSV contained 400 nM primers and 160 nM probes, for HHV-
6 the PCR contained 100 nM forward primers, 600 nM reverse primers and 200 nM probes, for M. 
genitalium the PCR contained 100 nM primers and 100 nM probes, for M. genitalium macrolide 
resistance the PCR contained 50 nM of forward primers, 400 nM of reverse primers and 150 nM of 
probes, and for beta-globin the PCR contained 200 nM primers and 100 nM probes. All the probes 
included 6-FAM as a reporter dye and the HSV probe included a ZEN/Iowa Black FQ double-
quencher. 

The PCR analyses were performed on an ABI 7500 instrument and Sequence Detection Software 
version 1.3.1 (Applied Biosystems, Thermo Fisher Scientific). The thermal cycling conditions were 
two minutes at 50 °C, ten minutes at 95 °C, 45 cycles of 15 seconds at 95 °C and one minute at 60 °C. 
The template volume was 5 μL, and each sample was amplified in duplicate for HSV, M. genitalium 
and C. trachomatis ompA PCR, and in quadruplicate for HHV-6 PCR. The beta-globin gene PCR was 
performed in a single reaction and the gene was successfully amplified among all the samples 
analysed. No-template control was included in each run to assess for reagent contamination and it 
remained negative for all of the PCRs. As an amplification control for HSV, HHV-6 and M. genitalium 
PCR, the PCR target sequences in pIDTSMART-AMP plasmids were purchased from IDT. As an 
amplification control, DNA extracted from C. trachomatis reference strain types D to K (D:VR-885, 
E:VR-348B, F:VR-346, G:VR-878, H:VR-879, I:VR-880, J:VR-886, K:VR-887; American Type Culture 
Collection, Manassas, VA, USA) propagated in McCoy cells (from Pekka Saikku) was used in the C. 
trachomatis ompA PCR.  

4.3. Statistical Analysis 

For comparison of the prevalence of HSV, HHV-6, HPV and M. genitalium DNA in C. trachomatis 
positives and negatives, the prevalence of HSV, HHV-6, HPV and M. genitalium DNA in C. trachomatis 
TOC positives and negatives, and the prevalence of C. trachomatis ompA genotypes D–K in C. 
trachomatis TOC positives and negatives, Fisher’s exact test was used. A p-value less than 0.05 was 
considered statistically significant. Statistical analyses were performed with the IBM SPSS Statistics 
v24 (IBM, Armonk, NY, USA). The 95% confidence intervals for the proportion of positives for HSV, 
HHV-6, HPV and M. genitalium were also calculated [49]. 
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