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Abstract: In order to determine the relationship between an exposure dose of Staphylococcus aureus
(S. aureus) on the skin and the risk of infection, an understanding of the bacterial growth and decay
kinetics is very important. Models are essential tools for understanding and predicting bacterial
kinetics and are necessary to predict the dose of organisms post-exposure that results in a skin
infection. One of the challenges in modeling bacterial kinetics is the estimation of model parameters,
which can be addressed using an inverse problem approach. The objective of this study is to construct
a microbial kinetic model of S. aureus on human skin and use the model to predict concentrations of S.
aureus that result in human infection. In order to model the growth and decay of S. aureus on skin, a
Gompertz inactivation model was coupled with a Gompertz growth model. A series of analyses,
including ordinary least squares regression, scaled sensitivity coefficient analysis, residual analysis,
and parameter correlation analysis were conducted to estimate the parameters and to describe the
model uncertainty. Based on these analyses, the proposed model parameters were estimated with
high accuracy. The model was then used to develop a new dose-response model for S. aureus using the
exponential dose–response model. The new S. aureus model has an optimized k parameter equivalent
to 8.05 × 10−8 with 95th percentile confidence intervals between 6.46 × 10−8 and 1.00 × 10−7.
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1. Introduction

Staphylococcus aureus is a common gram-positive bacterium of clinical significance causing skin
and soft-tissue infections worldwide [1,2]. Approximately 10% to 30% of the population is estimated to
be colonized with S. aureus on the skin or in the nose [3]. However, development of antibiotic-resistant
strains such as methicillin-resistant S. aureus (MRSA) has become a major health concern, especially for
hospital settings and community-acquired infections [4,5]. MRSA is often found at higher incidence
in healthcare settings as compared to community settings. In a U.K. study, nearly 2% of patients
were colonized after admission [6], while a U.S. study estimates that 4% of hospital inpatients are
colonized [7,8]. Klevens et al. [9] reported about 9000 observed cases of MRSA per year in the U.S., in
which 58.4% were associated with healthcare settings and 26.6% were community-based. The national
burden of MRSA infections in the U.S. in 2014 was about 72,000 infections [10]. The Centers for Disease
Control and Prevention Emerging Infections Program (EIP) population-based surveillance from 2009
to 2013 found a total of 4607 nursing-home onset and 4344 hospital-onset cases of invasive MRSA [11].

The anterior nares is the primary reservoir of the S. aureus in humans and the replication occurs
followed by dispersal of the organism to the skin [12,13]. About 30% of all humans carry S. aureus in
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their nose persistently, while another 20% to 30% carry intermittently [14]. The typical transmission
route of S. aureus is from the nose to the hand of a person [15], then to a surface (e.g., a door knob),
and/or via the hand to the nose of a second person [16,17]. Activities involving close physical contact
and the risk of minor injuries are positively correlated with S. aureus spread and acquisition [18]. Even
a brief contact of fingers with a S. aureus contaminated surface may cause the transfer of a large amount
of organisms resulting in a potential infection hazard [19]. The transfer rate is higher from moist
contaminated surfaces than dry surfaces [20,21].

S. aureus can survive on dry surfaces between 2 and 4 days, and then can be easily transferred
to hands and foods [22]. Other experiments showed more than a day of survival in hospital fabrics
(cotton, terry, blend, and polyester) to over 90 days of survival in polyethylene [23]. These long survival
times indicate a potential high risk of transmission of S. aureus through the surface-to-hand pathway.
Once S. aureus is in the human body, it is believed to form biofilms, which makes the pathogen less
vulnerable to host immune responses and allows them to cause colonization and local infections [14].

S. aureus is an opportunistic pathogen and does not usually pose a fatal risk to humans even
if it colonizes human mucosa or skin [14]. However, in some cases, S. aureus can cause severe or
fatal infections. S. aureus infections progress in five stages: colonization, local infection, systematic
dissemination, metastatic infection, and toxinosis [24]. Severe forms of S. aureus infection include
bacteremia, sepsis, pneumonia, endocarditis, and osteomyelitis [25]. The causative agent of 50% of all
cutaneous infections is S. aureus [26,27]. Young children, the elderly population living in poor hygienic
conditions, persons with diabetes and overweight conditions, and people living in high temperatures
and humid conditions are particularly sensitive to S. aureus infection [28].

Quantitative microbial risk assessment (QMRA) is the process of characterizing health risk
associated with pathogen exposures through environmental media [29]. QMRA follows a four-step
paradigm similar to chemical risk assessment which begins with hazard identification, followed
by an exposure assessment to quantify the number of organisms a receptor (i.e., human) comes
in contact with based on the fate and transport of the organisms across an exposure pathway (i.e.,
hand-to-surface-to-mouth). Dose –response models are generally developed from controlled animal
or human trials to describe the mathematical relationship between a given exposure dose and
the probability of an adverse health outcome (i.e., infection, illness, or death). Such models are
quasi-mechanistic in that they are derived from mathematical models that describe the plausibility of
biological processes resulting in a measurable health endpoint [30] rather than the deep incorporation
of mechanisms of in vivo physiological response. The final step in QMRA integrates the exposure dose
prediction with the dose–response model to estimate risks with a characterization of the variability
and uncertainty in the predicted values.

For the majority of pathogens with peer-reviewed dose–response models (primarily for ingestion,
inhalation, and similar exposure routes), no manipulation of the exposed dose in human and/or
animal trials is required to fit a dose–response relationship. Due to the testing procedures used to
estimate S. aureus infection—inoculation of the skin followed by occlusion which promotes growth—a
transformation of the exposure dose is required prior to modeling the probability of infection [28].
This article describes the development of a S. aureus dose–response model using previously collected
peer-reviewed data. The dose–response model is based on a model fit to a previously untested model to
describe S. aureus growth on skin that captures the S. aureus growth and decay kinetics after inoculation
(or exposure) with a low relative error and low correlation among estimated parameters as compared
to the previous work in this area [28]. As S. aureus has recently risen to be among the leading causes
of hospital-acquired infections, this new dose–response model should be a useful tool in estimating
human S. aureus risk in order to support risk management evaluation (e.g., test behavioral changes on
risk reduction or surface decontamination strategies). While the best fit parameter of the dose–response
model remains unchanged over the previous work, uncertainty bounds around this estimate were
desirable and the previous fit of the kinetic model could not be reproduced, thereby generating an
opportunity to illustrate the inverse problem parameter estimation approach in a novel context.
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2. Results and Discussion

2.1. Review of the Previous Model

To evaluate the model developed by Rose and Haas [28], scaled sensitivity coefficients and
correlation matrices for all the parameter estimates were created for each of the curves shown in
Figure 1. Figure 2 shows the scaled sensitivity coefficients for the first curve (highest initial dose). As
can be seen from the figure, the parameters are highly correlated, and after three days, it would be
impossible to estimate most of the parameters.
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Figure 1. S. aureus growth and decay after inoculation.
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Figure 2. Scaled sensitivity coefficients of the parameter estimates from the first curve (high dose) for
the model (Equation (1)) developed by Rose and Haas [28].

Table 1 shows the parameter correlation matrix of the parameter estimate corresponding to the
first curve in Figure 1 (highest initial dose). As can be seen from the table, parameters K1 and K2 are
highly correlated, making it hard to estimate the parameters separately.
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Table 1. Correlation matrix of the parameter estimates from Rose and Haas [28].

K1 K2 K3 Nmax
K1 1 Symmetric
K2 0.9932 1
K3 −0.0392 −0.0943 1

Nmax −0.2894 −0.2788 −0.7364 1

2.2. Gompertz Growth and Decay Model

Various mathematical models has been used to capture the growth kinetics of S. aureus on
different food products (i.e., cheese [31]; pork, ham, and sausages [32]; milk [33]; cooked potato and
potato salad [34]; rice cake [35]; and sandwiches [36]). In these studies, a modified version of the
following three models was used to model S. aureus growth: the Baranyi model [31,35,37]; the logistic
model [32–34,38]; and the Gompertz model [36]. In this study, the Gompertz growth/inactivation
models were used due to their capability to capture both the growth and decay kinetics of S. aureus
on human skin (see Figure 3). Additionally, several studies have referred to the Gompertz model
adaptively in capturing log-linear kinetics and shoulder and/or tailing effects, which is the case in
Singh et al.’s data [39–41].
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Figure 3. Data and fitted values from the Gompertz growth and decay model.

The results of parameter estimation to estimate S. aureus kinetic parameters are presented in this
section. Figure 3 shows the observed and fitted values using the Gompertz growth and decay model.
The figure shows that the model was able to capture the growth and decay kinetics of the S. aureus
growth data.

Table 2 shows the mean parameter values, 95% confidence interval, and relative error of the
estimated parameters. The results showed that the new model parameters could be estimated with
higher confidence and low relative error.
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Table 2. Estimates of parameters with ordinary least square (OLS) and relative errors for the
Gompertz model.

Parameters Estimate 95% Confidence Interval Relative Error (%)

A 1.00 0.94 1.05 2.63

µ 1.02 0.80 1.25 10.95

M 1.48 1.20 1.76 9.45

C 6.71 6.51 6.91 1.52

B 1.47 1.25 1.69 7.48

β6 2.35 2.25 2.45 2.1

β7 1.63 1.40 1.87 7.33

The scaled sensitivity coefficient plot shows that the parameters are independent of each other
(Figure 4). Based on the absolute value of the scaled sensitivity coefficient plots, the parameters
can then be estimated in the following order, from easiest to most difficult, a, C, β7, M, µ, B, and β6,
respectively. (The larger and more uncorrelated scaled sensitivity coefficients indicate computational
ease in the estimation of the parameters.)
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Figure 4. Scaled sensitivity coefficients of the parameters in the new S. aureus growth model (Equations
(3) and (4)).

The correlation matrix of parameters is presented in Table 3. A smaller correlation between
parameters indicates that parameters are more independent from each other and can be estimated
better. The lowest correlation is found between C and M, and B and β7 with the values of −0.26 and
0.04, respectively. Among all the parameters, the highest correlation is found between M and β7 with a
value of 0.85.
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Table 3. Correlation matrix for the S. aureus growth model parameters.

A µ M C B β6 β7
a 1.00
µ −0.42 1.00 Symmetric
M −0.56 −0.07 1.00
C −0.08 0.37 −0.26 1.00
B −0.24 0.57 0.18 −0.28 1.00
β6 −0.07 −0.37 0.51 −0.04 −0.13 1.00
β7 −0.19 −0.34 0.85 −0.26 0.04 0.53 1.00

The estimated values of parameters obtained from OLS, the relative errors, and 95% confidence
intervals for each parameter are given in Table 2. As predicted from Figure 3, the lowest relative error
was for C and β6, which have the largest scaled sensitivity coefficients. All the parameters have a
relative error below 11%. The root mean square error (RMSE) was 0.353, a low value compared to the
total span of ~6 log (Figure 3).

2.3. Development of a New Dose–Response Model

Following the development of a new S. aureus growth model, the dose–response data presented
in Table 4 were revisited and adjusted. Table 5 presents the revised dose–response data that account
for the S. aureus growth and decay kinetics for the six days of occluding.

Table 4. S. aureus dose–response data.

Initial Dose (No./cm2) Subjects with Infection Total Subjects

40 4 20

220 8 20

2000 13 20

105,000 14 20

1,600,000 19 20

10,000,000 20 20

Table 5. Revised S. aureus dose–response data from Singh et al. [39].

Integrated Dose (AUC) (Days × No./cm2) Subjects with Infection Total Subjects

7.32 × 106 4 20

8.45 × 106 8 20

1.03 × 107 13 20

1.59 × 107 14 20

2.26 × 107 19 20

4.15 × 107 20 20

Revised doses from Table 4 were fitted into Equation (5) to obtain dose–response parameters.
Figure 5 shows the revised doses, fitted model, observed and predicted risks along with the 95% and
99% confidence intervals.
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Table 6 presents the S. aureus parameter values for the new dose–response model. The median
value (or MLE) estimate was obtained by using the maximum likelihood estimation (MLE) method,
and the uncertainty estimates are based on the bootstrapping resampling technique [29]. The best fit
parameter, k, is equivalent to 8.05 × 10−8. The previously published model had a slightly higher k
value, which would provide a more conservative estimate of risk.

Table 6. Dose-response model parameters for S. aureus.

Parameter MLE Estimate
Percentiles

0.5% 2.5% 5% 95% 97.5% 99.5%

k 8.05 × 10−8 6.06 × 10−8 6.46 × 10−8 6.70 × 10−8 9.69 × 10−8 1.00 × 10−7 1.08 × 10−7

3. Method

3.1. Development of the S. aureus Growth Model

3.1.1. Data Source

In this study, data from Singh et al. [39] were used to develop S. aureus growth and decay models.
Figure 1 shows the S. aureus growth data presented in Singh et al. [39] in which the growth of S. aureus
on skin was investigated over 6 days after inoculation. The forearm skin of the human volunteers
was initially inoculated with 7.30 [log10 (#/cm2)] (high), 4.18 [log10 (#/cm2)] (medium), and 2.60 [log10

(#/cm2)] (low) of S. aureus bacteria. The bacterial population kinetics of S. aureus were measured on
1, 2, 3, 4, and 6 days after application. As presented in Figure 1 in Section 2.1, each curve contains
only six observations without any replication. Therefore, to fill the data gaps, three additional random
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data points were generated at each observation. The random points were generated using a normal
distribution with a standard deviation of 0.3.

3.1.2. Review of the Previous Model

As a part of the model development process, the previous model developed by Rose and Haas [28]
was analyzed. Equation (1) shows the S. aureus model developed by Rose and Haas [28]:

dN
dt

= −k1Nexp(−k2t) − k3N(Nmax −N) (1)

where, N is the microorganism density (#/cm2), Nmax is the maximum microorganism density (#/cm2),
k1 is the initial inactivation rate constant (1/time), k2 is the rate constant for the decrease in inactivation
(1/time), and k3 is the growth rate constant (cm2/#-time). The data were refitted to Equation (1) and the
statistical parameters, correlation coefficient, and scaled sensitivity coefficient (see Section 2.1) were
analyzed. Results for Equation (1) are shown in Figure 2 (Section 2.1).

3.1.3. Gompertz Growth and Decay Models

In order to model S. aureus growth and decay on skin, the Gompertz inactivation model [42] was
combined with the Gompertz growth model [43]. Each of these models has three parameters summing
up to six parameters. The combined model is as follows:

log N(t) = log N(0) {1-exp[-exp(-µ(t-M))]} + C exp{-exp[-B(t-L)]} (2)

where log N(t) is the microbial concentration at time t, log N(0) is the initial microbial concentration
(log10(#/cm2)), µ is the inactivation rate (day-1), t is the time (day), M is the lag factor (day), C is the
difference between the upper and lower asymptote (log10(#/cm2)), B is the growth rate (day-1), and L is
the time at which the inflection point occurs when the growth rate is maximum [41].

At the initial time (t = 0), Equation (2) does not equal log N(0) but rather equals to a multiple of log
N(0). Therefore, a new term, a, is introduced as the first parameter instead of log N(0).

log N(t) = a log N(0) {1-exp[-exp(-µ(t-M))]} + C exp{-exp[-B(t-L)]} (3)

where, a is the ratio of logN(t) to logN(0) at t = 0.
Additionally, we noted that the parameter L in Equations (2) and (3) is linearly correlated to log

N(0). Therefore, we developed an empirical linear equation for L with two parameters, called β6 and
β7, as shown in Equation (4).

L =
log N(0)max − logN(0)

log N(0)max − logN(0)min
β6 +

logN(0) − log N(0)min

log N(0)max − logN(0)min
β7 (4)

where, log N(0)max is the maximum initial concentration in Singh et al.’s (1971) data (7.30 (log(#/cm2))),
and log N(0)min is the minimum initial concentration in Singh data (2.60 (log(#/cm2))). Our hypothesis,
based on the data, was that L linearly increased with logN(0).

3.1.4. Parameter Estimation Methods

Ordinary Least Squares Estimation (OLS).

The “nlinfit” command in MATLAB R2013b (Mathworks Inc., Natick, MA) was used to estimate
the parameters by minimizing the sum of squares in the model, using the MATLAB nonlinear regression
function, nlinfit. Detailed procedures to determine the confidence interval and the correlation matrix
of parameters are given by Mishra et al. [44] and Dolan et al. [45].
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Scaled Sensitivity Coefficients

Sensitivity coefficients are the first derivative of the model with respect to the parameter. Scaled
sensitivity coefficients (SSCs) are the product of each parameter and its sensitivity coefficient, so that
the SSC units are the same as those of the model. The SSCs visualize the sensitivity of the model to
each parameter, and the dependency of parameters on each other in the model [41]. Larger and more
uncorrelated scaled sensitivity coefficients indicate easier estimation of those parameters. A forward
finite- difference method was used to compute the scaled sensitivity coefficients.

3.2. Development of the S. aureus Dose-Response Model

3.2.1. Data Source

Dose–response data were also obtained from Singh et al. [39]. The 20 test subjects were inoculated
with six different doses of S. aureus and occluded for six days. Skin infection, which Singh et al. [39]
described as “takes”, was appraised after six days. Table 4 shows the dose–response data after six days
(see Section 2.3).

3.2.2. Revised S. aureus Dose

As Singh et al. [39] reported, there was S. aureus growth over the six-day period. Hence, the initial
inoculation, as shown in Table 1, cannot be used as the dose. Therefore, Equation (3) was used to
estimate the S. aureus growth over the six-day period. Initial doses presented in Table 4 were revised
by calculating the area under the curve (AUC) for each day and summing up the dose for six days (see
Table 5, Section 2.3).

3.2.3. Fitting Dose–Response Model and Uncertainty Analysis

The revised data were used to fit the exponential dose–response model as shown in Equation (5).

P(response) = 1− exp(−k× dose) (5)

where P(response) is the risk of infection, k is the dose–response function parameter representing the
probability that the organism survives to initiate infection (CFU−1), and dose is the exposure dose (CFU).

The model was fit in the R package (The R Project for Statistical Computing, r-project.org) using a
maximum likelihood estimation (MLE). Confidence intervals were estimated using a bootstrapping
technique, which provides a description of the uncertainty in the parameter estimated [29].

4. Conclusions

This study describes the development of a predictive microbial kinetic model to capture S. aureus
growth and decay on human skin and a new fit of the S. aureus dose–response model which can be
used to characterize the risk of infection through quantitative microbial risk assessment (QMRA) [29].
To our knowledge, it is the first study to use an inverse problem approach to estimate S. aureus kinetic
parameters. The results indicate that the proposed model is highly capable of predicting S. aureus
kinetics on human skin. The model parameters were easier to estimate and had lower relative error
than those in Equation (1) (the Rose and Haas model [28]). This study also demonstrates that the
inverse problem is a convenient approach in estimating the kinetic parameters of S. aureus on skin. The
kinetic model developed would need to be modified in order to be used for other hosts (i.e., animals
and food products). The newly developed kinetic model was also used to predict S. aureus growth in
order to estimate the dose on the skin that produced observed infections in order to develop a new
dose–response model. The new dose-response model and parameters can be useful to estimate the risk
of human skin infection as the result of dermal contact with S. aureus.
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