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Abstract: The grain yield, as well as the quality and safety of the wheat grains and corresponding
malt can be compromised by Fusarium spp. infection. The protein content of the grain affects
the chemical composition and enzyme levels of the finished malt. The malting industry demands
varieties with good malting and brewing performance, as well as good agronomic performance
and disease resistance. The best method of disease control is breeding and selection for resistant
varieties. Due to higher requirements for malting wheat worldwide, the goal of this investigation
was to explore changes in protein distribution in wheat grains and corresponding malt, which are
under higher pressure of Fusarium head blight (FHB) infestation in field conditions. The present
study provides new knowledge on the impact of the FHB on the distribution of protein components
of naturally Fusarium-infected (control) and Fusarium-inoculated wheat varieties in the grain and
the corresponding malt in two consecutive years (2015/2016 and 2016/2017). The results showed
that Fusarium infection of the susceptible variety Golubica, decreased total glutenins (5.9%), and
both high and low molecular weight glutenin subunits (2.5% and 3.5%, respectively) in wheat grains,
compared to control, in 2016. In contrast, gliadins and α-gliadins increased significantly (+7.6% and
+5.1%, respectively) in the same variety. Wheat grains of the more resistant variety Vulkan showed an
increase of the total glutenins content (+4.3%), and of high and of low molecular weight glutenin
subunits (+1.2% and +3.2%, respectively) after Fusarium-inoculation, compared to naturally infected
grains in 2016. Susceptible variety Golubica increased total glutenins (+9.1%), and both high and low
molecular weight glutenin subunits (+3.5% and +5.6%, respectively) after Fusarium-inoculation in
wheat malt, compared to naturally infected malt in 2016. In 2017, when disease pressure was higher
than in 2016, there was a tendency in all varieties to increase gliadins and its sub fractions after malting,
and to decrease glutenins and its sub fractions in Fusarium-inoculated treatment. In conclusion,
FHB dramatically depressed grain yield (up to 37%) and quality (glutenins and high molecular weight
subunits) in the susceptible Fusarium variety, which makes it inconvenient for malting.
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1. Introduction

Fusarium head blight (FHB) affects heads of the wheat and severe infection decreases grain yield
and quality. Moreover, FHB can have a negative impact on the malting process. It was previously
concluded that wheat proteins influence brewing because during malting a significant amount of
the cereal proteins are hydrolyzed and therefore become water-soluble [1,2]. In general, wheat
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grain proteins are divided into metabolic non-gluten (albumins and globulins) and storage proteins
(gliadins and glutenins). Gliadins have been classified as α-, β-, γ- and ω-gliadins with similar
amino acid sequences. High molecular weight and low molecular weight glutenin subunits contain
alcohol-insoluble polymeric proteins which can be often degraded by Fusarium infection. Moreover,
FHB affects the grain protein content [3]. This aspect has a negative impact on the malting process,
i.e., excessive grain proteins are undesirable because they are associated with lower malt quality and
extract levels [4]. Utilization of resistant wheat varieties is the best method to control FHB and to
prevent technological damages of the grain [5–7].

Barley heads infected with Fusarium spp. can influence the final malt and beer as well as beer
consumers’ health, due to mycotoxin contamination [8]. In addition, the presence of Fusarium spp. in
barley kernels is related to gushing [9]. Therefore, barley with high concentrations of deoxynivalenol
(DON) is rejected for malting and beer production [10] and is instead used as feed or in biogas/bioethanol
production. DON is one of several mycotoxins produced by certain Fusarium species that frequently
infect wheat in the field or during storage [11].

The malting process consists of steeping the grain in the water which will lead to germination in
controlled conditions. Afterwards, green malt is subjected to kilning (drying) at gradually increased
temperatures. During steeping and germination, hydrolytic enzymes will breakdown the endosperm
cell walls, which results in a source of sugars, degradable starch, amino acids, and enzymes. Therefore,
studies of protein content during technological stages are of interest [12].

The aim of our study was to extend the research of protein distribution in wheat malt from
naturally Fusarium-infected and Fusarium-inoculated grains in a two-year field experiment where
resistant and susceptible varieties were compared. In addition, agronomical, qualitative, and physical
characteristics were measured. The utilization of resistant wheat varieties in disease management
programs and the malting industry can provide an effective, safe, and sustainable means to control
Fusarium disease. To our knowledge, protein distribution has not been previously investigated in wheat
malt, as the result of the cumulative impact of the FHB species complex in naturally and artificially
infected wheat.

2. Results and Discussion

Even if Fusarium spp. severity in inoculated treatment changed throughout the considered
years, all the analyzed wheat varieties were revealed to be artificially infected by these fungal species,
with some varieties showing higher susceptibility with respect to others based on disease severity.
The ‘variety (V)’, ‘treatment (T)’, ‘year (Y)’ and ‘malt/grain (MG)’ effect was always significant
and explained the highest proportion of data variability except for of γ-gliadins in different years
(Supplementary Material 1). All interactions were significant except for % of albumins and % γ-gliadins
in the ‘malt/grain by treatment’, % of ω- and γ-gliadins in the ‘malt/grain by treatment by variety’
interaction (data not shown). Since the weather conditions varied greatly between these two years,
this explains the strong influence of the year. While for albumins and globulins the effect of the
treatment was relatively small, the influence of variety was the largest among other traits of protein
distribution. ANOVA indicated that the year grown affected glutenins more than other protein
components, which gave us indication that glutenins seemed to be more variable due to environmental
changes then other components. It is well documented that the gluten protein composition can be
influenced either by genetic [13] or environmental factors [14,15]. Fusarium head blight (FHB) severity
varied across the years (Table 1). In general, FHB severity increased linearly during the time-course
experiment. Overall, the area under disease progress curve (AUDPC) for disease severity per variety
in 2016 ranged from 18.3 (Vulkan) to 114.5 (Golubica), while AUDPC disease severity per variety in
2017 ranged from 72.5 (Olimpija) to 430.0 (Golubica). The first rating was performed once the first
symptoms appeared at 18 days post inoculation (dpa) in 2016, and at 10 dpa in 2017. Furthermore,
the FHB severity was higher in 2017 compared with 2016 for all wheat varieties. In 2016, Olimpija and
Kraljica were moderately resistant, with the Fusarium severity per plot at the last sampling point at
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18% and 20%, respectively. At the last sampling point in 2017, Vulkan, Olimpija and Kraljica were
moderately resistant, with scores of 20%, 18% and 20%, respectively. (Table 1).

Table 1. Disease severity at 10, 14, 18, 22 and 26 days post inoculation (dpa) and the area under disease
progress curve (AUDPC) calculation in Fusarium-inoculated treatment.

2016

10 14 18 22 26 AUDPC
Vulkan 0.00 0.0 1.0 4.0 7.5 18.3

Olimpija 0.00 0.0 1.5 7.5 17.5 38.3
Kraljica 0.00 0.0 2.5 6.5 20.0 44.0

Golubica 0.00 0.0 4.0 20.0 55.0 114.5

2017

Vulkan 1.75 4.0 7.5 17.5 20.0 90.8
Olimpija 1.25 5.0 5.0 10.0 17.5 72.5
Kraljica 2.00 3.5 5.0 10.0 20.0 75.5

Golubica 4.25 15.0 52.5 75.0 87.5 430.0

2.1. Protein Distribution in the Grain and Malt Dependently of Control and Inoculation

In 2016, there were not any significant differences between albumins and globulins in naturally
infected and Fusarium-inoculated treatment for grains of Vulkan (the most FHB resistant variety in
2016) and Olimpija (moderately FHB resistant variety in 2016) (Figure 1a,b). Kraljica (moderately
FHB resistant variety in 2016) increased albumins and globulins in inoculated treatment, compared
to naturally infected (Figure 1c) and Golubica (FHB susceptible variety in 2016) remained albumins
and globulins at the same significant level (Figure 1d). Olimpija had the lowest values of albumins
and globulins in the naturally infected grains by far compared to other varieties (data not shown).
An increasing trend occurred in malt in 2016, where in addition to Kraljica, both Olimpija and Vulkan
increased albumins and globulins in Fusarium-inoculated treatment (Figure 2a–d). The exception was
Golubica, which showed decreased albumins and globulins after Fusarium inoculation, compared to
natural infection (Figure 2d). In 2017, in both grains and malt, Vulkan (moderately FHB resistant in
2017) increased albumins and globulins after Fusarium inoculation (Figures 3a and 4a). The other three
varieties did not significantly change albumins and globulins in the grains in inoculated treatment,
compared to naturally infected treatment (Figure 3b–d). After malting, albumins and globulins were
decreased in those varieties in Fusarium-inoculated treatment (Figure 4b–d). The highest values of
albumins and globulins in malt inoculated samples in 2016 were for Vulkan and Kraljica. Albumins
and globulins as a soluble protein could be important for the yeast growth in fermentation and also in
malt beer color development. The increase ratio of the albumins and other soluble proteins and the
decrease ratio of the glutenins were found to have a significant positive correlation with the Kolbach
index, and the corresponding r-values were 0.883 and 0.975 [10].
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Figure 1. Protein components in the wheat grain of Vulkan (a); Olimpija (b); Kraljica (c) and Golubica 
(d) in two treatments. Values are means±SE from two independent trials in 2016. Different letters 
indicate significant differences (LSD test with p = 0.05) in naturally infected and artificially inoculated 
plants. a, b—Different letters mean different statistical differences in naturally infected or artificially 
inoculated treatment for each variety; AG—Albumins and globulins, GLI—Gliadins, GLU—
Glutenins; HMW-GS—High molecular weight-glutenin subunits, LMW-GS—Low molecular weight-
glutenin subunits. 
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Figure 2. Protein components in the wheat malt of Vulkan (a), Olimpija (b), Kraljica (c) and Golubica 
(d) in two treatments. Values are means ±SE from two independent trials in 2016. Different letters 
indicate significant differences (LSD test with p = 0.05) in naturally infected and artificially inoculated 
plants. a, b—Different letters mean different statistical differences in naturally infected or artificially 

Figure 1. Protein components in the wheat grain of Vulkan (a); Olimpija (b); Kraljica (c) and
Golubica (d) in two treatments. Values are means±SE from two independent trials in 2016. Different
letters indicate significant differences (LSD test with p = 0.05) in naturally infected and artificially
inoculated plants. a, b—Different letters mean different statistical differences in naturally infected
or artificially inoculated treatment for each variety; AG—Albumins and globulins, GLI—Gliadins,
GLU—Glutenins; HMW-GS—High molecular weight-glutenin subunits, LMW-GS—Low molecular
weight-glutenin subunits.
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Figure 2. Protein components in the wheat malt of Vulkan (a), Olimpija (b), Kraljica (c) and Golubica
(d) in two treatments. Values are means ±SE from two independent trials in 2016. Different
letters indicate significant differences (LSD test with p = 0.05) in naturally infected and artificially
inoculated plants. a, b—Different letters mean different statistical differences in naturally infected
or artificially inoculated treatment for each variety; AG—Albumins and globulins, GLI—Gliadins,
GLU—Glutenins; HMW-GS—High molecular weight-glutenin subunits, LMW-GS—Low molecular
weight-glutenin subunits.
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In 2016, Olimpija and Golubica experienced significantly increased gliadins and α-gliadins in
Fusarium-inoculated grains, compared to naturally infected grains (Figure 1b,d), as well as gliadins and
ω- and α-gliadins in the malt (Vulkan) and gliadins and α-gliadins (Olimpija) after malting (Figure 2b).
Kraljica and Golubica decreased glutenins, high and low molecular weight subunits. Also, Olimpija
decreased glutenins and low molecular weight subunits, in inoculated grains, compared to naturally
infected grains, with exception of FHB resistant variety Vulkan which increased glutenins, high and
low molecular weight subunits in Fusarium infection. Similar increase in resistant variety was obtained
by Spanic et al. [16]. Only Golubica (FHB susceptible variety) increased glutenins, high and low
molecular weight subunits in inoculated malt samples, compared to naturally infected malt (Figure 2d).
Other three varieties decreased those parameters in Fusarium infection (Figure 2a–c). Interestingly,
Vulkan had the lowest glutenins, high molecular weight subunits in naturally infected grain samples,
as well as Golubica in naturally infected malt among other varieties, which both increased glutenins
and high molecular weight subunits.

In 2017, in Fusarium-inoculated grains, Kraljica increased gliadins andω-gliadins, and Golubica
gliadins and α-gliadins. But those varieties had significantly decreased glutenins and its sub fractions
in inoculated grains, compared to naturally infected grains (except low molecular weight subunits for
Kraljica) (Figure 3c,d). After malting, all varieties had tendency to increase gliadins and its sub-fractions
(except α- and γ- for Vulkan). Also, a significant decrease of glutenins, high and low molecular weight
subunits was observed among all four varieties in Fusarium-inoculated samples, compared to naturally
infected (Figure 4a–d). Similarly in previous investigations, the wheat glutenin fractions and types
were found to be more strongly affected by the Fusarium spp. [17]. The significantly lowest glutenins,
high and low molecular weight subunits had Golubica in inoculated treatment of malt, similarly
as in inoculated treatment of grains in 2017. The increase of gliadin content is explained by the
degradation of glutenin sub fractions by Fusarium proteases [18], which was the case in current research
and particularly pronounced in Golubica in both years where glutenins, high and low molecular
weight subunits were significantly reduced in Fusarium-inoculated treatment, compared to naturally
infected treatment both in the grains and malt. A similar increase of total gliadins content and all
gliadins sub fractions and decrease of glutenins in inoculated wheat, compared to naturally infected
was observed by Eggert et al. [17] and Horvat et al. [3]. It is very interesting that the FHB resistant
variety Vulkan showed opposite tendency of increase of glutenins, high and low molecular weight
subunits in Fusarium-inoculated grains. Fusarium spp. has been shown to be aggressive invaders of
wheat kernels and are known to invade the endosperm, leading to degradation of gluten proteins by
secreting proteolytic enzymes. Also, in this research, higher Fusarium spp. infection reduced glutenins.
Similarly, in the research of Horvat et al. [3] the highest Fusarium affected protein components were
glutenins, high and low molecular weight subunits. According to Eggert et al. [18] gluten digestion
by F. graminearum proteases occurred while the high molecular weight sub fraction was the mostly
affected. High molecular weight sub fractions are known to be important for dough properties and
baking volume of the bread. It is well known that glutenins are synthesized more rapidly than gliadins
during the later stages of the kernel maturation process [19] and possibly accumulation of glutenins
could be incomplete if forced maturity occurs due to weather conditions with gliadins escaping disease.
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Figure 3. Protein components in the wheat grain of Vulkan (a), Olimpija (b), Kraljica (c) and Golubica
(d) in two treatments. Values are means ± SE from two independent trials in 2017. Different
letters indicate significant differences (LSD test with p = 0.05) in naturally infected and artificially
inoculated plants. a, b—Different letters mean different statistical differences in naturally infected
or artificially inoculated treatment for each variety; AG—Albumins and globulins, GLI—Gliadins,
GLU—Glutenins; HMW-GS—High molecular weight-glutenin subunits, LMW-GS—Low molecular
weight-glutenin subunits.

During process of malting larger molecules (proteins and carbohydrates) are broken and utilized
by germination shoots and roots and due to that reduction in the protein content occurred in barley
during malting [20]. Guo et al. [21] indicated that the wheat protein content has to be in the range of
12.72%–13.88% for obtaining satisfactory wheat malt quality and the insoluble/soluble protein ratio
should be in the range of 1.44–2.23. In 2016, after malting, the situation completely changed for the FHB
resistant variety-Vulkan and two moderately FHB resistant varieties-Olimpija and Kraljica, with all
three indicating significantly increased albumins and globulins and reduced high and low molecular
weight subunits in Fusarium-inoculated malt, compared to naturally infected malt. In 2017, Vulkan
increased albumins and globulins in both Fusarium-inoculated grains and malt. In the research of
Osman et al. [1] malting was the most effective process remarkably increasing the soluble protein
contents in barley, but in non-inoculated grains. According to Faltermaier et al. [2], during malting,
proteins were hydrolyzed and therefore became water-soluble. In our research, on the other side,
in Fusarium-inoculated malt, compared to naturally infected malt, all wheat varieties had tendency
to increase gliadins and some sub fractions and to reduce high and low molecular weight subunits
(Figure 4a–d). This is in accordance to research of Oliveira et al. [22] who showed that Fusarium spp.
interfered with the grain hydrolytic protein profile, thereby altering the grain’s protein content and
quality, during malting. According to Sarlin et al. [23] it is likely that more of the fungal proteinases
were synthesized during the grain germination in barley which hydrolyzed cereal storage proteins.

Since Fusarium infection of wheat in this study was provoked by artificial inoculation, it was
assumed that Fusarium severity in this treatment will be higher than in naturally infected plants. In 2016
and 2017, Golubica (FHB-susceptible variety) significantly reduced glutenins, high and low molecular
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weight subunits in Fusarium-inoculated grains, compared to naturally infected grains, while in 2016,
Vulkan increased glutenins, high and low molecular weight subunits. In 2017, Vulkan did not show
any significant changes in those parameters. These protein fractions are the main responsible protein
components for the quality of wheat dough properties.

As consequence, after malting there was a reduction in glutenins and high molecular weight
subunits in Fusarium-inoculated grain samples, compared to some varieties that were naturally infected,
such as in FHB-resistant variety Vulkan in both 2016 and 2017. In more infected grains this is not
the case [24], as we could observe in the Golubica-FHB susceptible variety, which in malt in 2016
increased glutenins or high molecular weight subunits in infected samples, compared to naturally
infected samples.
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Figure 4. Protein components in the wheat malt of Vulkan (a), Olimpija (b), Kraljica (c) and
Golubica (d) in two treatments. Values are means±SE from two independent trials in 2017. Different
letters indicate significant differences (LSD test with p = 0.05) in naturally infected and artificially
inoculated plants. a, b—different letters mean different statistical differences in naturally infected
or artificially inoculated treatment for each variety; AG—Albumins and globulins, GLI—Gliadins,
GLU—Glutenins; HMW-GS—High molecular weight-glutenin subunits, LMW-GS—Low molecular
weight-glutenin subunits.

2.2. Grain Yield and Other Agronomical Traits

Determination of the grain yield and other agronomical and physiological characters has been
analyzed in two consecutive years of the research, and for this reason those traits were introduced
later in the manuscript, as a tool for fulfilling broader image about FHB losses in some important
traits during Fusarium attack and its relation with protein composition after malting. Relative losses
in wheat grain yield due to the effect of FHB ranged from 0% (Kraljica in 2016) to 56.2% (Golubica
in 2017) (Table 2). The physical characteristics of kernel, meaning the test weight and 1000 kernel
weight in Fusarium-inoculated treatment, resulted in a decrease of these two traits, compared to during
naturally infected treatment (except for Kraljica in 2016). Mostly pronounced decrease was in Golubica
in both years for the test weight (15.4%). Highly susceptible FHB variety had grain yield losses in
Fusarium-inoculated treatment, compared to being naturally infected, as consequence of losses in test
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weight and 1000 kernel weight in 2017, as components of the yield. Common decrease of grain yield
and test weight in correlation with increase of Fusarium severity was previously reported by many
researchers [25,26].

According to different losses for grain yield in Fusarium-inoculated treatment, compared to
naturally infected, susceptible wheat variety does not possess type V Fusarium resistance (yield
tolerance), trait which was suggested by Mesterhazy et al. [27]. Also, the spike length was reduced
by Fusarium infection up to 17.4% with reduced glutenins, high and molecular weight subunits for
Golubica in 2016. Vulkan showed the opposite tendency, involving increased spike length with
increased glutenins, high and low molecular weight subunits in 2016. Protein content in all wheat
varieties in 2016 was higher in Fusarium-inoculated treatment then in naturally infected, while in
2017 Vulkan and Olimpija increased protein content in naturally infected treatment, compared to
Fusarium-inoculated treatment. Also, starch value was affected up to 7.1% in Olimpija in 2017 (Table 2).
Golubica increased starch in Fusarium-inoculated grains along with gliadins andω-gliadins. Pathogens
of the FHB complex impacted negatively on the grain yield and quality parameters, depending on the
resistance of wheat varieties.

During kernel development, protein is formed first, while starch synthesis and kernel fill occurs
later. Thinner and high protein kernels have less extract (inverse relationship between protein and
starch). We can conclude that higher losses for starch and low molecular weight subunits during
Fusarium infection will make some varieties (Olimpija) less convenient for malting. Also, we observed
that some varieties had higher losses among other varieties in spike length and starch, because the
interruption of assimilate transport within the spike reduced the normal development of kernels, leading
to shrunken and shriveled kernels and therefore to a reduced 1000 kernel weight and test weight. Since
biosynthesis of storage proteins is being held earlier in grain-filling than in starch synthesis, it might be
the case that starch content and protein composition are affected more severely than protein content,
where gluten make a major proportion of the total wheat protein. In Fusarium-inoculated treatment
some varieties increased protein content, suggesting that FHB does not affect grain biosynthesis
processes but rather impacts the transport of assimilates caused by changes in the grain composition,
which was previously concluded by Martin et al. [28]. The most FHB resistant varieties can be used
for the crossing programs to improve the technological quality of the bread wheat, as was previously
concluded for desired technological traits by other researchers [29]. Nevertheless, the best control
option for Fusarium disease, when available, is using FHB resistant wheat varieties. As a result,
we investigated the protein distribution of four winter wheat varieties with different FHB resistance
in the grains and corresponding malt, under higher FHB pressure, as well as in natural infection
in the field conditions. While the majority of work conducted on Fusarium in malting has been on
barley, the use of wheat grains is also more and more important for the malting industry. In this
investigation we showed that behavior of proteins after malting differed between susceptible and
resistant varieties, where FHB susceptible varieties are inconvenient for malting, due to yield and
quality losses (glutenins and its subfractions changes). Selection of FHB resistant varieties can be an
effective method in selecting wheat varieties with good quality for malting.
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Table 2. Relative losses in Fusarium-infected treatment, compared to naturally infected in two years
data (2016 and 2017) for grain yield (GY) *, test weight (TW), 1000 kernel weight (TKW), spike length
(SL), protein content (PRO) and starch (ST).

Relative Losses (%)

2016

Varieties GY* TW TKW SL PRO ST
Vulkan 10.3 0.8 5.0 −21.4 −0.4 2.2

Olimpija 38.5 3.0 8.7 0.0 −4.6 3.2
Kraljica −13.0 −7.9 −20.4 16.7 −11.9 4.8

Golubica 37.0 15.4 −2.2 17.4 −1.5 4.1
2017

Vulkan 15.6 2.7 6.6 5.9 −0.9 1.6
Olimpija 8.1 3.5 5.4 11.1 −1.0 7.1
Kraljica 25.6 4.0 16.6 0.0 0.6 2.2

Golubica 56.2 15.4 30.6 13.6 2.2 −2.6

3. Materials and Methods

3.1. Field Trials

The study was conducted on the four commercially grown Croatian winter wheat
(Triticum aestivum L.) varieties Vulkan, Olimpija, Kraljica and Golubica grown during two consecutive
seasons (2015/2016 and 2016/2017) in 7.56 m2 field experimental plots arranged in a complete randomized
block design and located at the Experimental Station of Agricultural Institute Osijek (Osijek, Croatia,
45◦32′ N, 18◦44’ E). Vulkan is known as a high yielding variety with moderate quality, previously
characterized as more FHB resistant [30], while Kraljica and Olimpija have a good quality with moderate
resistance. Golubica is a high quality variety with moderate yield, previously characterized as being
Fusarium susceptible [31]. To control seed-borne diseases, seeds were treated with Vitavax 200 FF
(thiram + carboxin) at a rate of 200 mL 100 kg−1. In each year, one treatment in two replications was left
to natural infection and one treatment in two replications was artificially inoculated using Fusarium spp.
twice at two day intervals. No fungicides were applied during the two years of investigation to gain
possible natural infection, which regularly appears every year depending on the weather conditions.
Insecticides and herbicides were used as needed to keep trials free from weeds and aphids.

The major soil type in this region is a eutric cambisol (measured at the experimental station of
Agricultural Institute Osijek, pH-KCl—6.25, humus—2.20%, K2O 37.70 mg 100 g−1, P2O5 39.70 mg
100 g−1) with the average humus content 2.23%. To meet the winter wheat plant nutrient requirements,
fertilization differed during the study (N:P:K 120-140:80-100:120-150 kg ha−1). The mean annual
temperatures during the vegetation seasons 2015/2016 and 2016/2017 were 11.0 and 10.0 ◦C, respectively.
The sum of annual precipitation during this period was 705.8 and 481.5 mm. respectively. Wheat was
harvested during beginning of July 2016 and 2017, respectively, by combine harvester, upon which
grain yield was measured and converted in dt ha−1. Whole plot was harvested and samples were
taken for further analysis (from each replications separately).

3.2. Inoculum Production, Inoculation and Disease Assessment

Fusarium inoculum was produced in the Phytopathological laboratory of Agricultural Institute
Osijek. Spore cultures of F. graminearum (PIO 31, isolate from the field of eastern Croatia obtained
from a single spore technique [32]) and F. culmorum (IFA 104, DON chemotype and highly aggressive
isolate, obtained from Institute of Biotechnology, IFA-Tulln, Austria) were sub-cultured on synthetic
nutrient-poor agar (SNA) medium. After ten days, the agar was cut into plugs and these were used
for multiplication of spores. The required amount of inoculum (concentration 1 × 105 mL−1) for
F. graminearum was produced by the ‘bubble breeding method’ [33] by using mung bean medium and
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for F. culmorum production (concentration 1 × 105 mL−1) was done with mixture of wheat and oat (3:1
in volume) [34]. Spray inoculations with both Fusarium spp. (1:1) were performed at the flowering
stage (Zadok’s scale 65) [35] at late afternoon using a tractor back sprayer. Disease assessment began
with the appearance of the first symptoms, 10 or 18 days after Fusarium inoculation treatment in 2016
and 2017, respectively, followed by four consecutive scores at intervals of four days which was used
to calculate the area under disease progress curve (AUDPC). The percentage of bleached spikelets
(disease intensity) per plot was estimated according to a linear scale (0%–100%). FHB intensity per plot
was taken as a measure for general resistance (GR).

3.3. Agronomical and Physiological Traits

The spike length was measured in the field from the base of the spike to the tip, excluding awns.
After threshing, kernels were weighed followed by determination of the grain yield and 1000 kernel
weight. Wheat yields were standardized to 14% moisture. Indirect quality traits (test weight, protein
and starch) were analyzed with Infratec 1241 Analyzer (ICC standard method No 105/2; No 155;
No 116/1). Relative trait measure loss in both years in Fusarium-inoculated treatment was determined
relative to naturally infected treatment.

3.4. Malting

The malting was done in an Automated Joe White Malting Systems Micro-malting Unit (Perth,
Australia) at the Agricultural Institute Osijek, Croatia by using 200 g of the grains. The process started
with 37 h of steeping (16 ◦C, 5 h submerged; 17 ◦C, 12 h air rest with 100% airflow; 17 ◦C, 6 h submerged;
18 ◦C, 12 h air rest with 100% airflow; 17 ◦C, 2 h submerged) to increase the moisture of the grain to
approximately 45%. The germination phase lasted 96 h (17 ◦C, 75% airflow, 1.5 turn every 2 h). At the
end of program, 18 h of kilning occurred (60 ◦C, 6 h; 65 ◦C, 3 h; 68 ◦C, 2 h; 70 ◦C, 2 h; 80 ◦C, 2 h; 83 ◦C,
2 h; 85 ◦C, 1 h). Shoots and roots were removed and the malt was stored in plastic containers with caps
at −20 ◦C until further analysis.

3.5. Protein Composition Analysis

Extracted wheat proteins from the grain and malt were analyzed according to the method of
Wieser et al. [36] using high-performance liquid chromatography (HPLC) (Perkin Elmer Instruments,
USA) coupled with Total-Chrom software and a photodiode array detector. Elution of AG, GLI and
GLU was performed with linear gradient of acetonitrile (ACN/0.1%TFA) in the water (H2O/0.1%TFA)
from 24–54% over 30 min at flow rate of 1 mL min−1 and column temperature of 50 ◦C. Proteins
were separated on a C18 reverse phase column (5 µm, 4.6 × 150 mm; Sigma-Aldrich Chemie GmbH,
Germany). Quantification of protein fractions was based on measuring its peak area at 210 nm. All the
determinations were repeated twice. The peak areas under AG, GLI and GLU chromatograms were
summed and used as a direct measure of total content of extractable wheat proteins. Consequently,
the proportions (%) of protein fractions and single protein types were calculated.

3.6. Data Analysis

For disease severity, the area under disease progress curve (AUDPC) of individual assessment data
was calculated. The data obtained for FHB severity for non-inoculated plots were not included because
they were not visually scored due to showing no visual symptoms. Data about protein composition in
both treatments were statistically processed by Statistica version 13.1 (TIBCO Software, Palo Alto. CA,
USA) with a level of significance set at α = 0.05. Differences between means were evaluated using the
nonparametric Fisher-LSD test. Protein composition was expressed as means of two replications (±SE).
Different letters indicated a significant difference between treatments (naturally-infected/inoculated)
in varieties.
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4. Conclusions

Our results showed that under higher pressure Fusarium Head Blight (FHB) infestation, the content
of glutenins decreased in the susceptible variety Golubica. On the other side, the content of glutenins
in resistant varieties was slightly reduced or unchanged. In the susceptible variety Golubica during
Fusarium-inoculated treatment, compared to naturally-infected treatment, glutenins, and high and
low molecular weight glutenin subunits were increased after malting in 2016. In 2017, when disease
pressure was higher than in 2016, after malting, there was a tendency in all varieties to increase gliadins
and its sub fractions, and to decrease glutenins and its sub fractions in Fusarium-inoculated treatment.

High quality malt provides the color and flavor compounds which contribute to the final character
of beer. Satisfactory wheat malt quality needs to have a good insoluble/soluble protein ratio, which was
obtained by resistant varieties in Fusarium-inoculated samples, compared to during naturally-infected
treatment. FHB induced significant yield and quality losses in susceptible Fusarium variety Golubica.
Therefore, if wheat protein content is degraded in susceptible varieties, there may be insufficient
enzymatic activity to modify the wheat grain and break down starch for brewing.

The majority of information on the impact of FHB disease on malting and brewing quality can be
provided by artificially inoculated pre- or post-harvest experiments of wheat grain and malt.
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