Advances and Challenges in Vaccination and Therapeutic Strategies Against Japanese Encephalitis Virus
Abstract
1. Introduction
2. JEV Biology and Immune Correlates
2.1. Virus Structure and Genome Organization
2.2. Replication and Pathogenesis
2.3. Host Immune Responses
2.4. Correlates of Protection
2.5. Cross-Reactivity and ADE (Antibody-Dependent Enhancement)
3. Epidemiology, Transmission Dynamics, and Genotype Distribution
3.1. Geographic Distribution and Changing Epidemiological Patterns
3.2. Genotype Shifts and Emerging Strains
3.3. Implications of Genotype Shifts for Vaccine Effectiveness
4. Licensed Vaccines
4.1. Historical Development of Licensed Vaccines
4.2. Comparative Immunogenicity and Efficacy of Licensed Vaccines
4.3. Safety Profiles and Adverse Events
| Vaccine Type | Representative Product (Strain) | Platform/Production | Dosing Schedule | Immunogenicity/Duration | WHO Status/Region | Genotype Origin | Ref. |
|---|---|---|---|---|---|---|---|
| Inactivated mouse-brain | Nakayama, Beijing-1 | Formalin-inactivated, mouse-brain derived | 3-dose (0, 7, 28 days) | Seroconversion 95–100%; protection ≈ 2–3 years | Historical use (Japan, Korea, Taiwan) | GIII | [95,96] |
| Inactivated Vero-cell | IXIARO®, JESPECT® (Beijing-1/SA14-14-2) | Vero-cell culture | 2-dose (0, 28 days) + booster (12 months) | 96–100% seroconversion; GMTs sustained 12–24 months | WHO-prequalified; global use | GIII | [81,97,98] |
| Live-attenuated | SA14-14-2 | Primary hamster kidney cell culture | Single dose | ≥95% seroconversion; ≥5 years protection | China, India, Nepal, Vietnam, SE Asia programs | GIII | [7,88,99] |
| Chimeric (YF 17D backbone) | IMOJEV®, JE-CV | Recombinant YF-17D vector expressing SA14-14-2 prM–E | Single dose | ≈99% seroconversion; ≥5 years immunity | Australia, Thailand, Philippines | GIII | [100,101,102] |
5. Emerging Vaccine Strategies
5.1. Novel Platforms and Preclinical Candidates
5.2. Pan-Flavivirus Vaccine Approaches and Cross-Protection Potential
5.3. Challenges and Future Directions in Vaccine Development
6. Therapeutic Approaches
6.1. Direct-Acting Antivirals
6.2. Monoclonal Antibody Therapies
6.3. Repurposed Antiviral Agents
7. Pathogenesis-Targeted and Immunomodulatory Therapies
7.1. Neuroinflammation and Cytokine Modulation
7.2. Neuroprotective and Regenerative Strategies
7.3. Combination Therapies and Integrated Treatment Models
| Category | Representative Agents | Molecular Target/Mechanism | Model Efficacy | Translational Limitations | Readiness Level | Ref. |
|---|---|---|---|---|---|---|
| Direct-acting antivirals | Sofosbuvir, Favipiravir, Ribavirin | Inhibit NS5 RdRp; block replication | Reduce viremia; increase survival in mice | Limited CNS penetration; toxicity; human data lacking | In vitro to mouse models | [137,146,165] |
| Host-targeted antivirals | Arbidol, Suramin, Chloroquine | Block viral entry or endosomal acidification | Inhibit replication in neuronal cells | Narrow therapeutic window; off-target effects | In vitro to early preclinical | [139,166,167] |
| Immunomodulators | Anti TNF, anti IL-6, JAK–STAT inhibitors | Suppress cytokine storms; modulate immune response | Reduce neuroinflammation and neuronal apoptosis | Risk of impairing viral clearance; timing-dependent efficacy | Mouse models | [168,169] |
| Neuroprotective agents | Memantine; antioxidants | Block NMDA receptor; reduce oxidative stress | Improve neuronal survival and behavior | Uncertain dosing window; incomplete durability data | Preclinical | [160,170,171] |
| Stem cell/exosome therapies | MSCs, hNSCs, MSC-derived exosomes | Enhance neurogenesis; repair BBB | Improve motor recovery; reduce inflammation | Delivery challenges, safety concerns; scalability issues | Early preclinical | [159,161] |
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tarantola, A.; Goutard, F.; Newton, P.; de Lamballerie, X.; Lortholary, O.; Cappelle, J.; Buchy, P. Estimating the burden of Japanese encephalitis virus and other encephalitides in countries of the mekong region. PLoS Neglected Trop. Dis. 2014, 8, e2533. [Google Scholar] [CrossRef]
- Quan, T.M.; Thao, T.T.N.; Duy, N.M.; Nhat, T.M.; Clapham, H. Estimates of the global burden of Japanese encephalitis and the impact of vaccination from 2000–2015. eLife 2020, 9, e51027. [Google Scholar] [CrossRef]
- Heffelfinger, J.D.; Li, X.; Batmunkh, N.; Grabovac, V.; Diorditsa, S.; Liyanage, J.B.; Pattamadilok, S.; Bahl, S.; Vannice, K.S.; Hyde, T.B.; et al. Japanese Encephalitis Surveillance and Immunization—Asia and Western Pacific Regions, 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 579–583. [Google Scholar] [CrossRef]
- Solomon, T.; Dung, N.M.; Kneen, R.; Gainsborough, M.; Vaughn, D.W.; Khanh, V.T. Japanese encephalitis. J. Neurol. Neurosurg. Psychiatry 2000, 68, 405–415. [Google Scholar] [CrossRef]
- Li, W.; Feng, Y.; Zhong, H.; Jiang, M.; Zhang, J.; Lin, S.; Chen, N.; He, S.; Zhang, K.; Fu, S.; et al. Incongruence between confirmed and suspected clinical cases of Japanese encephalitis virus infection. Front. Cell. Infect. Microbiol. 2024, 14, 1302314. [Google Scholar] [CrossRef]
- Letson, G.W.; Marfin, A.A.; Mooney, J.; Minh, H.V.; Hills, S.L.; The JE Vaccine Global Impact Assessment Team. Impact of vaccination against Japanese encephalitis in endemic countries. PLoS Neglected Trop. Dis. 2024, 18, e0012390. [Google Scholar] [CrossRef]
- Hennessy, S.; Liu, Z.; Tsai, T.F.; Strom, B.L.; Wan, C.M.; Liu, H.L.; Wu, T.X.; Yu, H.J.; Liu, Q.M.; Karabatsos, N.; et al. Effectiveness of live-attenuated Japanese encephalitis vaccine (SA14-14-2): A case-control study. Lancet 1996, 347, 1583–1586. [Google Scholar] [CrossRef]
- Ngwe Tun, M.M.; Kyaw, A.K.; Nwe, K.M.; Inoue, S.; Thant, K.Z.; Morita, K. Effectiveness of the SA 14-14-2 Live-Attenuated Japanese Encephalitis Vaccine in Myanmar. Vaccines 2021, 9, 568. [Google Scholar] [CrossRef]
- Davis, E.H.; Beck, A.S.; Li, L.; White, M.M.; Greenberg, M.B.; Thompson, J.K.; Widen, S.G.; Barrett, A.D.T.; Bourne, N. Japanese encephalitis virus live attenuated vaccine strains display altered immunogenicity, virulence and genetic diversity. Npj Vaccines 2021, 6, 112. [Google Scholar] [CrossRef]
- Harrison, J.J.; Nguyen, W.; Morgan, M.S.; Tang, B.; Habarugira, G.; de Malmanche, H.; Freney, M.E.; Modhiran, N.; Watterson, D.; Cox, A.L.; et al. A chimeric vaccine derived from Australian genotype IV Japanese encephalitis virus protects mice from lethal challenge. Npj Vaccines 2024, 9, 134. [Google Scholar] [CrossRef]
- Halstead, S.B.; Thomas, S.J. Japanese encephalitis: New options for active immunization. Clin. Infect. Dis. 2010, 50, 1155–1164. [Google Scholar] [CrossRef]
- Chan, K.R.; Ismail, A.A.; Thergarajan, G.; Raju, C.S.; Yam, H.C.; Rishya, M.; Sekaran, S.D. Serological cross-reactivity among common flaviviruses. Front. Cell. Infect. Microbiol. 2022, 12, 975398. [Google Scholar] [CrossRef]
- Lee, A.R.; Kim, W.J.; Choi, H.; Kim, S.H.; Hong, S.Y.; Shim, S.M.; Lee, H.I.; Song, J.M.; Kim, S.J.; Ishikawa, T.; et al. Genotype III-Based Japanese Encephalitis Vaccines Exhibit Diminished Neutralizing Response to Reemerging Genotype V. J. Infect. Dis. 2025, 231, 1281–1289. [Google Scholar] [CrossRef]
- Han, N.; Adams, J.; Chen, P.; Guo, Z.Y.; Zhong, X.F.; Fang, W.; Li, N.; Wen, L.; Tao, X.Y.; Yuan, Z.M.; et al. Comparison of genotypes I and III in Japanese encephalitis virus reveals distinct differences in their genetic and host diversity. J. Virol. 2014, 88, 11469–11479. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, Y.; Zhang, Y.; Zhou, L.; Ma, X.; Xiao, C.; Zhang, J.; Li, Z.; Liu, K.; Li, B.; et al. Shift in dominant genotypes of Japanese encephalitis virus and its impact on current vaccination strategies. Front. Microbiol. 2023, 14, 1302101. [Google Scholar] [CrossRef]
- Yun, B.R.; Kwon, J.Y.; Noh, B.E.; Cho, S.; Kwak, D.; Lee, H.I. Genetic shifts of Japanese encephalitis virus (JEV) in mosquitoes in the Republic of Korea, 2017–2022. PLoS Neglected Trop. Dis. 2025, 19, e0013258. [Google Scholar] [CrossRef]
- Lee, A.R.; Kim, S.H.; Hong, S.Y.; Lee, S.H.; Oh, J.S.; Lee, K.Y.; Kim, S.J.; Ishikawa, T.; Shim, S.M.; Lee, H.I.; et al. Characterization of genotype V Japanese encephalitis virus isolates from Republic of Korea. Emerg. Microbes Infect. 2024, 13, 2362392. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Li, D.; Zheng, J.; Zhang, J.; Li, Z.; Liu, K.; Li, B.; Shao, D.; Qiu, Y.; et al. Partial protective efficacy of the current licensed Japanese encephalitis live vaccine against the emerging genotype I Japanese encephalitis virus isolated from sheep. Front. Immunol. 2025, 16, 1513261. [Google Scholar] [CrossRef]
- Kulkarni, R.; Sapkal, G.N.; Kaushal, H.; Mourya, D.T. Japanese Encephalitis: A Brief Review on Indian Perspectives. Open Virol. J. 2018, 12, 121–130. [Google Scholar] [CrossRef]
- Joe, S.; Salam, A.A.A.; Neogi, U.; Babu N, N.; Mudgal, P.P. Antiviral drug research for Japanese encephalitis: An updated review. Pharmacol. Rep. 2022, 74, 273–296. [Google Scholar] [CrossRef]
- Turtle, L.; Bali, T.; Buxton, G.; Chib, S.; Chan, S.; Soni, M.; Hussain, M.; Isenman, H.; Fadnis, P.; Venkataswamy, M.M.; et al. Human T cell responses to Japanese encephalitis virus in health and disease. J. Exp. Med. 2016, 213, 1331–1352. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Kamitani, W.; Shin, H.J.; Lee, H.M. Japanese Encephalitis Virus Genotype 5 Infectious Clone and Reporter System for Antiviral Evaluation. J. Med. Virol. 2025, 97, e70608. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, H.M.; Jun, S.H.; Kamitani, W.; Kim, O.; Shin, H.J. Insights into the Pathogenesis and Development of Recombinant Japanese Encephalitis Virus Genotype 3 as a Vaccine. Vaccines 2024, 12, 597. [Google Scholar] [CrossRef]
- Tandale, B.V.; Deshmukh, P.S.; Tomar, S.J.; Narang, R.; Qazi, M.S.; Goteti Venkata, P.; Jain, M.; Jain, D.; Guduru, V.K.; Jain, J.; et al. Incidence of Japanese Encephalitis and Acute Encephalitis Syndrome Hospitalizations in the Medium-Endemic Region in Central India. J. Epidemiol. Glob. Health 2023, 13, 173–179. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, H.M. Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies. Life 2025, 15, 1260. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Guo, J.; Wang, P.; Zhang, L.; Xiao, G.; Wang, W. Screening of FDA-Approved Drugs for Inhibitors of Japanese Encephalitis Virus Infection. J. Virol. 2017, 91. [Google Scholar] [CrossRef]
- Lin, K.C.; Chang, H.L.; Chang, R.Y. Accumulation of a 3′-terminal genome fragment in Japanese encephalitis virus-infected mammalian and mosquito cells. J. Virol. 2004, 78, 5133–5138. [Google Scholar] [CrossRef]
- Mazeaud, C.; Freppel, W.; Chatel-Chaix, L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front. Genet. 2018, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.H.; Jeong, Y.E.; Jo, J.E.; Shim, S.M.; Ryou, J.; Kim, K.C.; Lee, W.J.; Lee, J.Y. Genetic Characterization of Japanese Encephalitis Virus Genotype 5 Isolated from Patient, South Korea, 2015. Emerg. Infect. Dis. 2020, 26, 1002–1006. [Google Scholar] [CrossRef] [PubMed]
- Puerta-Guardo, H.; Glasner, D.R.; Espinosa, D.A.; Biering, S.B.; Patana, M.; Ratnasiri, K.; Wang, C.; Beatty, P.R.; Harris, E. Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Rep. 2019, 26, 1598–1613.e8. [Google Scholar] [CrossRef]
- Yun, S.I.; Lee, Y.M. Early Events in Japanese Encephalitis Virus Infection: Viral Entry. Pathogens 2018, 7, 68. [Google Scholar] [CrossRef]
- Kumar, S.; Verma, A.; Yadav, P.; Dubey, S.K.; Azhar, E.I.; Maitra, S.S.; Dwivedi, V.D. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch. Virol. 2022, 167, 1739–1762. [Google Scholar] [CrossRef]
- Anwar, M.N.; Akhtar, R.; Abid, M.; Khan, S.A.; Rehman, Z.U.; Tayyub, M.; Malik, M.I.; Shahzad, M.K.; Mubeen, H.; Qadir, M.S.; et al. The interactions of flaviviruses with cellular receptors: Implications for virus entry. Virology 2022, 568, 77–85. [Google Scholar] [CrossRef]
- Nain, M.; Mukherjee, S.; Karmakar, S.P.; Paton, A.W.; Paton, J.C.; Abdin, M.Z.; Basu, A.; Kalia, M.; Vrati, S. GRP78 Is an Important Host Factor for Japanese Encephalitis Virus Entry and Replication in Mammalian Cells. J. Virol. 2017, 91. [Google Scholar] [CrossRef]
- Yadav, P.; Chakraborty, P.; Jha, N.K.; Dewanjee, S.; Jha, A.K.; Panda, S.P.; Mishra, P.C.; Dey, A.; Jha, S.K. Molecular Mechanism and Role of Japanese Encephalitis Virus Infection in Central Nervous System-Mediated Diseases. Viruses 2022, 14, 2686. [Google Scholar] [CrossRef]
- Sharma, K.B.; Vrati, S.; Kalia, M. Pathobiology of Japanese encephalitis virus infection. Mol. Asp. Med. 2021, 81, 100994. [Google Scholar] [CrossRef]
- Ye, J.; Chen, Z.; Li, Y.; Zhao, Z.; He, W.; Zohaib, A.; Song, Y.; Deng, C.; Zhang, B.; Chen, H.; et al. Japanese Encephalitis Virus NS5 Inhibits Type I Interferon (IFN) Production by Blocking the Nuclear Translocation of IFN Regulatory Factor 3 and NF-kappaB. J. Virol. 2017, 91. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Zhang, H.X.; Chen, H.W.; Lv, P.; Su, J.; Chen, Y.R.; Fu, Z.F.; Cui, M. Type I/type III IFN and related factors regulate JEV infection and BBB endothelial integrity. J. Neuroinflamm. 2023, 20, 216. [Google Scholar] [CrossRef]
- Chen, S.T.; Liu, R.S.; Wu, M.F.; Lin, Y.L.; Chen, S.Y.; Tan, D.T.; Chou, T.Y.; Tsai, I.S.; Li, L.; Hsieh, S.L. CLEC5A regulates Japanese encephalitis virus-induced neuroinflammation and lethality. PLoS Pathog. 2012, 8, e1002655. [Google Scholar] [CrossRef]
- Li, Y.; Counor, D.; Lu, P.; Duong, V.; Yu, Y.; Deubel, V. Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model. Virol. J. 2012, 9, 135. [Google Scholar] [CrossRef]
- Fadnis, P.R.; Ravi, V.; Desai, A.; Turtle, L.; Solomon, T. Innate immune mechanisms in Japanese encephalitis virus infection: Effect on transcription of pattern recognition receptors in mouse neuronal cells and brain tissue. Viral Immunol. 2013, 26, 366–377. [Google Scholar] [CrossRef]
- Turtle, L.; Solomon, T. Japanese encephalitis—The prospects for new treatments. Nat. Rev. Neurol. 2018, 14, 298–313. [Google Scholar] [CrossRef]
- Nazmi, A.; Dutta, K.; Basu, A. RIG-I mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLoS ONE 2011, 6, e21761. [Google Scholar] [CrossRef]
- Tarigan, R.; Shimoda, H.; Doysabas, K.C.C.; Ken, M.; Iida, A.; Hondo, E. Role of pattern recognition receptors and interferon-beta in protecting bat cell lines from encephalomyocarditis virus and Japanese encephalitis virus infection. Biochem. Biophys. Res. Commun. 2020, 527, 1–7. [Google Scholar] [CrossRef]
- Rastogi, M.; Sharma, N.; Singh, S.K. Flavivirus NS1: A multifaceted enigmatic viral protein. Virol. J. 2016, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Wang, T.; Xu, J.; Ouyang, T.; Wang, Q.; Zhang, Y.; Weng, S.; Li, Y.; Wang, Y.; Xin, X.; et al. Novel Japanese encephalitis virus NS1-based vaccine: Truncated NS1 fused with E. coli heat labile enterotoxin B subunit. eBioMedicine 2021, 67, 103353. [Google Scholar] [CrossRef]
- Li, G.; Teleki, C.; Wang, T. Memory T Cells in Flavivirus Vaccination. Vaccines 2018, 6, 73. [Google Scholar] [CrossRef]
- Van Gessel, Y.; Klade, C.S.; Putnak, R.; Formica, A.; Krasaesub, S.; Spruth, M.; Cena, B.; Tungtaeng, A.; Gettayacamin, M.; Dewasthaly, S. Correlation of protection against Japanese encephalitis virus and JE vaccine (IXIARO((R))) induced neutralizing antibody titers. Vaccine 2011, 29, 5925–5931. [Google Scholar] [CrossRef] [PubMed]
- Bonaparte, M.; Dweik, B.; Feroldi, E.; Meric, C.; Bouckenooghe, A.; Hildreth, S.; Hu, B.; Yoksan, S.; Boaz, M. Immune response to live-attenuated Japanese encephalitis vaccine (JE-CV) neutralizes Japanese encephalitis virus isolates from south-east Asia and India. BMC Infect. Dis. 2014, 14, 156. [Google Scholar] [CrossRef] [PubMed]
- Larena, M.; Prow, N.A.; Hall, R.A.; Petrovsky, N.; Lobigs, M. JE-ADVAX vaccine protection against Japanese encephalitis virus mediated by memory B cells in the absence of CD8(+) T cells and pre-exposure neutralizing antibody. J. Virol. 2013, 87, 4395–4402. [Google Scholar] [CrossRef]
- Hills, S.L.; Walter, E.B.; Atmar, R.L.; Fischer, M. Japanese Encephalitis Vaccine: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm. Rep. 2019, 68, 1–33. [Google Scholar] [CrossRef]
- Vannice, K.S.; Hills, S.L.; Schwartz, L.M.; Barrett, A.D.; Heffelfinger, J.; Hombach, J.; Letson, G.W.; Solomon, T.; Marfin, A.A.; Japanese Encephalitis Vaccination Experts Panel. The future of Japanese encephalitis vaccination: Expert recommendations for achieving and maintaining optimal JE control. Npj Vaccines 2021, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.P.S.; St John, A.L. Cross-Reactive Immunity Among Flaviviruses. Front. Immunol. 2020, 11, 334. [Google Scholar] [CrossRef]
- Kotaki, T.; Nagai, Y.; Yamanaka, A.; Konishi, E.; Kameoka, M. Japanese Encephalitis DNA Vaccines with Epitope Modification Reduce the Induction of Cross-Reactive Antibodies against Dengue Virus and Antibody-Dependent Enhancement of Dengue Virus Infection. Vaccines 2022, 10, 1411. [Google Scholar] [CrossRef] [PubMed]
- Yen, L.C.; Chen, H.W.; Ho, C.L.; Lin, C.C.; Lin, Y.L.; Yang, Q.W.; Chiu, K.C.; Lien, S.P.; Lin, R.J.; Liao, C.L. Neutralizing antibodies targeting a novel epitope on envelope protein exhibited broad protection against flavivirus without risk of disease enhancement. J. Biomed. Sci. 2023, 30, 41. [Google Scholar] [CrossRef]
- Pearce, J.C.; Learoyd, T.P.; Langendorf, B.J.; Logan, J.G. Japanese encephalitis: The vectors, ecology and potential for expansion. J. Travel Med. 2018, 25, S16–S26. [Google Scholar] [CrossRef]
- Lindahl, J.; Chirico, J.; Boqvist, S.; Thu, H.T.V.; Magnusson, U. Occurrence of Japanese encephalitis virus mosquito vectors in relation to urban pig holdings. Am. J. Trop. Med. Hyg. 2012, 87, 1076–1082. [Google Scholar] [CrossRef]
- Li, F.; Feng, Y.; Wang, G.; Zhang, W.; Fu, S.; Wang, Z.; Yin, Q.; Nie, K.; Yan, J.; Deng, X.; et al. Tracing the spatiotemporal phylodynamics of Japanese encephalitis virus genotype I throughout Asia and the western Pacific. PLoS Neglected Trop. Dis. 2023, 17, e0011192. [Google Scholar] [CrossRef]
- Do, L.P.; Bui, T.M.; Hasebe, F.; Morita, K.; Phan, N.T. Molecular epidemiology of Japanese encephalitis in northern Vietnam, 1964–2011: Genotype replacement. Virol. J. 2015, 12, 51. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Williams, D.T.; van den Hurk, A.F.; Smith, D.W.; Currie, B.J. Japanese Encephalitis Virus: The Emergence of Genotype IV in Australia and Its Potential Endemicity. Viruses 2022, 14, 2480. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Gao, T.; Wang, Z.; Zhang, J.; Cui, B.; Shen, X.; Zhou, A.; Zhang, Y.; Zhao, J.; Liu, H.; et al. Re-Emerged Genotype IV of Japanese Encephalitis Virus Is the Youngest Virus in Evolution. Viruses 2023, 15, 626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yin, Q.; Wang, H.; Liang, G. The reemerging and outbreak of genotypes 4 and 5 of Japanese encephalitis virus. Front. Cell. Infect. Microbiol. 2023, 13, 1292693. [Google Scholar] [CrossRef]
- Kishore, K.J.N.; Praharaj, M.R.; Tanuj, G.N.; Sahoo, A.P.; Ambati, T.; Pyatla, M.K.G.; Peela, S.M.; Dhanze, H.; Gandham, R.K.; Majumdar, S. Tracing the evolutionary trajectory of Japanese encephalitis virus across hosts and countries. Sci. Rep. 2025, 15, 35061. [Google Scholar] [CrossRef]
- Schuh, A.J.; Ward, M.J.; Brown, A.J.; Barrett, A.D. Phylogeography of Japanese encephalitis virus: Genotype is associated with climate. PLoS Neglected Trop. Dis. 2013, 7, e2411. [Google Scholar] [CrossRef]
- Fernandez, E.; Kose, N.; Edeling, M.A.; Adhikari, J.; Sapparapu, G.; Lazarte, S.M.; Nelson, C.A.; Govero, J.; Gross, M.L.; Fremont, D.H.; et al. Mouse and Human Monoclonal Antibodies Protect against Infection by Multiple Genotypes of Japanese Encephalitis Virus. mBio 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Wang, G.; Yang, H.; Kang, X.; Yang, L.; Yuan, Y.; Wang, X.; Wang, Z. Generation of soluble, immunoreactive recombinant JEV E protein through a simplified inclusion body extraction and refolding approach in vitro. Heliyon 2024, 10, e34372. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Fu, S.; Gao, X.; Li, M.; Cui, S.; Li, X.; Cao, Y.; Lei, W.; Lu, Z.; He, Y.; et al. Low Protective Efficacy of the Current Japanese Encephalitis Vaccine against the Emerging Genotype 5 Japanese Encephalitis Virus. PLoS Neglected Trop. Dis. 2016, 10, e0004686. [Google Scholar] [CrossRef]
- Peng, C.; Qin, H.; Yu, F.; Hao, Y.; Yuan, Y.; Ma, W.; Zhang, D.; Xiao, P.; Li, N. Epidemiology, Transmission, and Evolution of Japanese Encephalitis Virus. Microorganisms 2025, 13, 1226. [Google Scholar] [CrossRef]
- Hu, Y.L.; Lee, P.I. Safety of Japanese encephalitis vaccines. Hum. Vaccines Immunother. 2021, 17, 4259–4264. [Google Scholar] [CrossRef]
- Yang, S.E.; Pan, M.J.; Tseng, H.F.; Liau, M.Y. The efficacy of mouse-brain inactivated Nakayama strain Japanese encephalitis vaccine--results from 30 years experience in Taiwan. Vaccine 2006, 24, 2669–2673. [Google Scholar] [CrossRef]
- Fischer, M.; Lindsey, N.; Staples, J.E.; Hills, S.; Centers for Disease Control and Prevention. Japanese encephalitis vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2010, 59, 1–27. [Google Scholar] [PubMed]
- Kwak, B.O.; Hong, Y.J.; Kim, D.H. Changes in age-specific seroprevalence of Japanese encephalitis virus and impact of Japanese encephalitis vaccine in Korea. Clin. Exp. Pediatr. 2022, 65, 108–114. [Google Scholar] [CrossRef]
- Tsai, T.F. New initiatives for the control of Japanese encephalitis by vaccination: Minutes of a WHO/CVI meeting, Bangkok, Thailand, 13–15 October 1998. Vaccine 2000, 18 (Suppl. S2), 1–25. [Google Scholar] [CrossRef]
- Erra, E.O.; Askling, H.H.; Yoksan, S.; Rombo, L.; Riutta, J.; Vene, S.; Lindquist, L.; Vapalahti, O.; Kantele, A. Cross-protective capacity of Japanese encephalitis (JE) vaccines against circulating heterologous JE virus genotypes. Clin. Infect. Dis. 2013, 56, 267–270. [Google Scholar] [CrossRef]
- Firbas, C.; Jilma, B. Product review on the JE vaccine IXIARO. Hum. Vaccines Immunother. 2015, 11, 411–420. [Google Scholar] [CrossRef]
- Li, X.; Ma, S.J.; Liu, X.; Jiang, L.N.; Zhou, J.H.; Xiong, Y.Q.; Ding, H.; Chen, Q. Immunogenicity and safety of currently available Japanese encephalitis vaccines: A systematic review. Hum. Vaccines Immunother. 2014, 10, 3579–3593. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Use of Japanese encephalitis vaccine in children: Recommendations of the advisory committee on immunization practices, 2013. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 898–900. [Google Scholar]
- Monath, T.P.; Levenbook, I.; Soike, K.; Zhang, Z.X.; Ratterree, M.; Draper, K.; Barrett, A.D.; Nichols, R.; Weltzin, R.; Arroyo, J.; et al. Chimeric yellow fever virus 17D-Japanese encephalitis virus vaccine: Dose-response effectiveness and extended safety testing in rhesus monkeys. J. Virol. 2000, 74, 1742–1751. [Google Scholar] [CrossRef]
- Appaiahgari, M.B.; Vrati, S. IMOJEV((R)): A Yellow fever virus-based novel Japanese encephalitis vaccine. Expert Rev. Vaccines 2010, 9, 1371–1384. [Google Scholar] [CrossRef]
- Dubischar, K.L.; Kadlecek, V.; Sablan, J.B.; Borja-Tabora, C.F.; Gatchalian, S.; Eder-Lingelbach, S.; Kiermayr, S.; Spruth, M.; Westritschnig, K. Immunogenicity of the Inactivated Japanese Encephalitis Virus Vaccine IXIARO in Children From a Japanese Encephalitis Virus-endemic Region. Pediatr. Infect. Dis. J. 2017, 36, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Taucher, C.; Kollaritsch, H.; Dubischar, K.L. Persistence of the immune response after vaccination with the Japanese encephalitis vaccine, IXIARO(R) in healthy adults: A five year follow-up study. Vaccine 2019, 37, 2529–2531. [Google Scholar] [CrossRef]
- Kadlecek, V.; Borja-Tabora, C.F.; Eder-Lingelbach, S.; Gatchalian, S.; Kiermayr, S.; Sablan, B., Jr.; Kundi, M.; Taucher, C.; Dubischar, K.L. Antibody Persistence up to 3 Years After Primary Immunization With Inactivated Japanese Encephalitis Vaccine IXIARO in Philippine Children and Effect of a Booster Dose. Pediatr. Infect. Dis. J. 2018, 37, e233–e240. [Google Scholar] [CrossRef] [PubMed]
- Bista, M.B.; Banerjee, M.K.; Shin, S.H.; Tandan, J.B.; Kim, M.H.; Sohn, Y.M.; Ohrr, H.C.; Tang, J.L.; Halstead, S.B. Efficacy of single-dose SA 14-14-2 vaccine against Japanese encephalitis: A case control study. Lancet 2001, 358, 791–795. [Google Scholar] [CrossRef]
- Turtle, L.; Tatullo, F.; Bali, T.; Ravi, V.; Soni, M.; Chan, S.; Chib, S.; Venkataswamy, M.M.; Fadnis, P.; Yaich, M.; et al. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area. PLoS Neglected Trop. Dis. 2017, 11, e0005263. [Google Scholar] [CrossRef] [PubMed]
- Furuya-Kanamori, L.; Xu, C.; Doi, S.A.R.; Clark, J.; Wangdi, K.; Mills, D.J.; Lau, C.L. Comparison of immunogenicity and safety of licensed Japanese encephalitis vaccines: A systematic review and network meta-analysis. Vaccine 2021, 39, 4429–4436. [Google Scholar] [CrossRef]
- Kim, D.S.; Houillon, G.; Jang, G.C.; Cha, S.H.; Choi, S.H.; Lee, J.; Kim, H.M.; Kim, J.H.; Kang, J.H.; Kim, J.H.; et al. A randomized study of the immunogenicity and safety of Japanese encephalitis chimeric virus vaccine (JE-CV) in comparison with SA14-14-2 vaccine in children in the Republic of Korea. Hum. Vaccines Immunother. 2014, 10, 2656–2663. [Google Scholar] [CrossRef]
- Chin, R.; Torresi, J. Japanese B Encephalitis: An Overview of the Disease and Use of Chimerivax-JE as a Preventative Vaccine. Infect. Dis. Ther. 2013, 2, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Hegde, N.R.; Gore, M.M. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease. Hum. Vaccines Immunother. 2017, 13, 1–18. [Google Scholar] [CrossRef]
- Takahashi, H.; Pool, V.; Tsai, T.F.; Chen, R.T. Adverse events after Japanese encephalitis vaccination: Review of post-marketing surveillance data from Japan and the United States. The VAERS Working Group. Vaccine 2000, 18, 2963–2969. [Google Scholar] [CrossRef]
- (CDC) Centers for Disease Control and Prevention. ACIP Evidence to Recommendations Framework: Japanese Encephalitis Vaccine in Children. Available online: https://www.cdc.gov/acip/evidence-to-recommendations/JE-etr-framework.html (accessed on 24 October 2025).
- (CDC) Centers for Disease Control and Prevention. Grading of Recommendations, Assessment, Development, and Evaluation (GRADE): Japanese Encephalitis Vaccine in Children. Available online: https://www.cdc.gov/acip/grade/je-child.html (accessed on 24 October 2025).
- Ma, H.Y.; Lai, C.C.; Chiu, N.C.; Lee, P.I. Adverse events following immunization with the live-attenuated recombinant Japanese encephalitis vaccine (IMOJEV(R)) in Taiwan, 2017–18. Vaccine 2020, 38, 5219–5222. [Google Scholar] [CrossRef]
- Feroldi, E.; Capeding, M.R.; Boaz, M.; Gailhardou, S.; Meric, C.; Bouckenooghe, A. Memory immune response and safety of a booster dose of Japanese encephalitis chimeric virus vaccine (JE-CV) in JE-CV-primed children. Hum. Vaccines Immunother. 2013, 9, 889–897. [Google Scholar] [CrossRef]
- Tauber, E.; Kollaritsch, H.; von Sonnenburg, F.; Lademann, M.; Jilma, B.; Firbas, C.; Jelinek, T.; Beckett, C.; Knobloch, J.; McBride, W.J.; et al. Randomized, double-blind, placebo-controlled phase 3 trial of the safety and tolerability of IC51, an inactivated Japanese encephalitis vaccine. J. Infect. Dis. 2008, 198, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Japanese Encephalitis Vaccines: WHO position paper—February 2015. Wkly. Epidemiol. Rec. 2015, 90, 69–87.
- Hoke, C.H.; Nisalak, A.; Sangawhipa, N.; Jatanasen, S.; Laorakapongse, T.; Innis, B.L.; Kotchasenee, S.; Gingrich, J.B.; Latendresse, J.; Fukai, K.; et al. Protection against Japanese encephalitis by inactivated vaccines. N. Engl. J. Med. 1988, 319, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Eder, S.; Dubischar-Kastner, K.; Firbas, C.; Jelinek, T.; Jilma, B.; Kaltenboeck, A.; Knappik, M.; Kollaritsch, H.; Kundi, M.; Paulke-Korinek, M.; et al. Long term immunity following a booster dose of the inactivated Japanese Encephalitis vaccine IXIARO(R), IC51. Vaccine 2011, 29, 2607–2612. [Google Scholar] [CrossRef]
- Dubischar-Kastner, K.; Eder, S.; Buerger, V.; Gartner-Woelfl, G.; Kaltenboeck, A.; Schuller, E.; Tauber, E.; Klade, C. Long-term immunity and immune response to a booster dose following vaccination with the inactivated Japanese encephalitis vaccine IXIARO, IC51. Vaccine 2010, 28, 5197–5202. [Google Scholar] [CrossRef]
- Liu, Z.L.; Hennessy, S.; Strom, B.L.; Tsai, T.F.; Wan, C.M.; Tang, S.C.; Xiang, C.F.; Bilker, W.B.; Pan, X.P.; Yao, Y.J.; et al. Short-term safety of live attenuated Japanese encephalitis vaccine (SA14-14-2): Results of a randomized trial with 26,239 subjects. J. Infect. Dis. 1997, 176, 1366–1369. [Google Scholar] [CrossRef]
- Torresi, J.; McCarthy, K.; Feroldi, E.; Meric, C. Immunogenicity, safety and tolerability in adults of a new single-dose, live-attenuated vaccine against Japanese encephalitis: Randomised controlled phase 3 trials. Vaccine 2010, 28, 7993–8000. [Google Scholar] [CrossRef]
- Chokephaibulkit, K.; Sirivichayakul, C.; Thisyakorn, U.; Sabchareon, A.; Pancharoen, C.; Bouckenooghe, A.; Gailhardou, S.; Boaz, M.; Feroldi, E. Safety and immunogenicity of a single administration of live-attenuated Japanese encephalitis vaccine in previously primed 2- to 5-year-olds and naive 12- to 24-month-olds: Multicenter randomized controlled trial. Pediatr. Infect. Dis. J. 2010, 29, 1111–1117. [Google Scholar] [CrossRef]
- Kosalaraksa, P.; Watanaveeradej, V.; Pancharoen, C.; Capeding, M.R.; Feroldi, E.; Bouckenooghe, A. Long-term Immunogenicity of a Single Dose of Japanese Encephalitis Chimeric Virus Vaccine in Toddlers and Booster Response 5 Years After Primary Immunization. Pediatr. Infect. Dis. J. 2017, 36, e108–e113. [Google Scholar] [CrossRef]
- Filgueira, L.; Lannes, N. Review of Emerging Japanese Encephalitis Virus: New Aspects and Concepts about Entry into the Brain and Inter-Cellular Spreading. Pathogens 2019, 8, 111. [Google Scholar] [CrossRef]
- Sistrom, M.; Andrews, H.; Edwards, D.L. Comparative genomics of Japanese encephalitis virus shows low rates of recombination and a small subset of codon positions under episodic diversifying selection. PLoS Neglected Trop. Dis. 2024, 18, e0011459. [Google Scholar] [CrossRef]
- Chen, T.; Zhu, S.; Wei, N.; Zhao, Z.; Niu, J.; Si, Y.; Cao, S.; Ye, J. Protective Immune Responses Induced by an mRNA-LNP Vaccine Encoding prM-E Proteins against Japanese Encephalitis Virus Infection. Viruses 2022, 14, 1121. [Google Scholar] [CrossRef]
- Zhu, J.; He, C.; Liu, Y.; Chen, M.; Zhang, J.; Chen, D.; Ni, H.; Wen, J. An engineered Japanese encephalitis virus mRNA-lipid nanoparticle immunization induces protective immunity in mice. Front. Microbiol. 2024, 15, 1472824. [Google Scholar] [CrossRef]
- Bollman, B.; Nunna, N.; Bahl, K.; Hsiao, C.J.; Bennett, H.; Butler, S.; Foreman, B.; Burgomaster, K.E.; Aleshnick, M.; Kong, W.P.; et al. An optimized messenger RNA vaccine candidate protects non-human primates from Zika virus infection. Npj Vaccines 2023, 8, 58. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhou, Y.; Li, X.; Feng, G. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor. Mol. Med. Rep. 2015, 12, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.I.; Lee, Y.M. Japanese encephalitis: The virus and vaccines. Hum. Vaccines Immunother. 2014, 10, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, H.; Segawa, M.; Nakamura, M.; Katsuda, T.; Kuwahara, M.; Konishi, E. Production of Japanese encephalitis virus-like particles using the baculovirus-insect cell system. J. Biosci. Bioeng. 2012, 114, 657–662. [Google Scholar] [CrossRef]
- Tarbe, M.; Dong, W.; Hu, G.; Xu, Y.; Sun, J.; Grayo, S.; Chen, X.; Qin, C.; Zhao, J.; Liu, L.; et al. Japanese Encephalitis Virus Vaccination Elicits Cross-Reactive HLA-Class I-Restricted CD8 T Cell Response Against Zika Virus Infection. Front. Immunol. 2020, 11, 577546. [Google Scholar] [CrossRef] [PubMed]
- Appaiahgari, M.B.; Saini, M.; Rauthan, M.; Jyoti; Vrati, S. Immunization with recombinant adenovirus synthesizing the secretory form of Japanese encephalitis virus envelope protein protects adenovirus-exposed mice against lethal encephalitis. Microbes Infect. 2006, 8, 92–104. [Google Scholar] [CrossRef]
- Han, X.; Cai, Z.; Dai, Y.; Huang, H.; Cao, X.; Wang, Y.; Fang, Y.; Liu, G.; Zhang, M.; Zhang, Y.; et al. Re-burying Artificially Exposed Surface of Viral Subunit Vaccines Through Oligomerization Enhances Vaccine Efficacy. Front. Cell. Infect. Microbiol. 2022, 12, 927674. [Google Scholar] [CrossRef]
- Kim, J.D.; Lee, A.R.; Moon, D.H.; Chung, Y.U.; Hong, S.Y.; Cho, H.J.; Kang, T.H.; Jang, Y.H.; Sohn, M.H.; Seong, B.L.; et al. Efficacy of genotype-matched vaccine against re-emerging genotype V Japanese encephalitis virus. Emerg. Microbes Infect. 2024, 13, 2343910. [Google Scholar] [CrossRef] [PubMed]
- Adugna, T.; Niu, Q.; Guan, G.; Du, J.; Yang, J.; Tian, Z.; Yin, H. Advancements in nanoparticle-based vaccine development against Japanese encephalitis virus: A systematic review. Front. Immunol. 2024, 15, 1505612. [Google Scholar] [CrossRef]
- Konishi, E.; Yamaoka, M.; Khin Sane, W.; Kurane, I.; Mason, P.W. Induction of protective immunity against Japanese encephalitis in mice by immunization with a plasmid encoding Japanese encephalitis virus premembrane and envelope genes. J. Virol. 1998, 72, 4925–4930. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.J.; Lee, S.C.; Huang, H.W.; Tao, M.H. In vivo electroporation of skeletal muscles increases the efficacy of Japanese encephalitis virus DNA vaccine. Vaccine 2004, 22, 1457–1464. [Google Scholar] [CrossRef]
- Sheng, Z.; Gao, N.; Cui, X.; Fan, D.; Chen, H.; Wu, N.; Wei, J.; An, J. Electroporation enhances protective immune response of a DNA vaccine against Japanese encephalitis in mice and pigs. Vaccine 2016, 34, 5751–5757. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, X.; Wang, Y.; Turtle, L.; Cui, M.; Wang, R.; Yin, C. Complete protection for mice conferred by a DNA vaccine based on the Japanese encephalitis virus P3 strain used to prepare the inactivated vaccine in China. Virol. J. 2020, 17, 126. [Google Scholar] [CrossRef]
- Nam, J.H.; Wyatt, L.S.; Chae, S.L.; Cho, H.W.; Park, Y.K.; Moss, B. Protection against lethal Japanese encephalitis virus infection of mice by immunization with the highly attenuated MVA strain of vaccinia virus expressing JEV prM and E genes. Vaccine 1999, 17, 261–268. [Google Scholar] [CrossRef]
- Higuchi, A.; Toriniwa, H.; Komiya, T.; Nakayama, T. Recombinant Measles AIK-C Vaccine Strain Expressing the prM-E Antigen of Japanese Encephalitis Virus. PLoS ONE 2016, 11, e0150213. [Google Scholar] [CrossRef] [PubMed]
- Shoushtari, M.; Roohvand, F.; Salehi-Vaziri, M.; Arashkia, A.; Bakhshi, H.; Azadmanesh, K. Adenovirus vector-based vaccines as forefront approaches in fighting the battle against flaviviruses. Hum. Vaccines Immunother. 2022, 18, 2079323. [Google Scholar] [CrossRef]
- Zhang, A.; Mo, X.; Zhou, N.; Wang, Y.; Wei, G.; Hao, Z.; Chen, K. Identification of Chitinolytic Enzymes in Chitinolyticbacter meiyuanensis and Mechanism of Efficiently Hydrolyzing Chitin to N-Acetyl Glucosamine. Front. Microbiol. 2020, 11, 572053. [Google Scholar] [CrossRef]
- Duan, Z.L.; Zou, W.W.; Chen, D.; Zhu, J.Y.; Wen, J.S. Japanese encephalitis virus E protein domain III immunization mediates cross-protection against Zika virus in mice via antibodies and CD8(+)T cells. Virus Res. 2024, 345, 199376. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Franco, L.; Gushi, L.T.; Luiz, W.B.; Amorim, J.H. Seeking Flavivirus Cross-Protective Immunity. Front. Immunol. 2019, 10, 2260. [Google Scholar] [CrossRef] [PubMed]
- Rey, F.A.; Stiasny, K.; Vaney, M.C.; Dellarole, M.; Heinz, F.X. The bright and the dark side of human antibody responses to flaviviruses: Lessons for vaccine design. EMBO Rep. 2018, 19, 206–224. [Google Scholar] [CrossRef]
- Deng, Y.Q.; Dai, J.X.; Ji, G.H.; Jiang, T.; Wang, H.J.; Yang, H.O.; Tan, W.L.; Liu, R.; Yu, M.; Ge, B.X.; et al. A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein. PLoS ONE 2011, 6, e16059. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.F.; Galula, J.U.; Liu, J.H.; Liao, M.Y.; Huang, C.H.; Wang, Y.C.; Wu, H.C.; Liang, J.J.; Lin, Y.L.; Whitney, M.T.; et al. Epitope resurfacing on dengue virus-like particle vaccine preparation to induce broad neutralizing antibody. eLife 2018, 7, e38970. [Google Scholar] [CrossRef]
- Zhang, N.; Li, C.; Jiang, S.; Du, L. Recent Advances in the Development of Virus-Like Particle-Based Flavivirus Vaccines. Vaccines 2020, 8, 481. [Google Scholar] [CrossRef]
- Yamanaka, A.; Rattanaamnuaychai, P.; Matsuda, M.; Suzuki, R.; Matsuura, Y.; Tatsumi, M.; Konishi, E. Engineered flavivirus vaccines control induction of crossreactive infection-enhancing and -neutralizing antibodies. Vaccine 2022, 40, 6004–6011. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Ding, X.; Zhao, J.; Zeng, J.; Zhou, Y.; Xiao, W.; Hua, D.; Liu, M.; Guo, H.; Zhang, Y.; et al. A novel pan-epitope based nanovaccine self-assembled with CpG enhances immune responses against flavivirus. J. Nanobiotechnol. 2024, 22, 738. [Google Scholar] [CrossRef]
- Dutta, S.K.; Langenburg, T. A Perspective on Current Flavivirus Vaccine Development: A Brief Review. Viruses 2023, 15, 860. [Google Scholar] [CrossRef]
- Mills, D.J.; Gyawali, N.; Nammunige, N.A.; Mills, C.; Devine, G.J.; Lau, C.L.; Furuya-Kanamori, L. Long-term immunogenicity of a single-dose live recombinant chimeric Japanese encephalitis vaccine in adults. J. Travel Med. 2025, 32, taaf006. [Google Scholar] [CrossRef]
- Fan, Y.C.; Chen, J.M.; Chiu, H.C.; Chen, Y.Y.; Lin, J.W.; Shih, C.C.; Chen, C.M.; Chang, C.C.; Chang, G.J.; Chiou, S.S. Partially neutralizing potency against emerging genotype I virus among children received formalin-inactivated Japanese encephalitis virus vaccine. PLoS Neglected Trop. Dis. 2012, 6, e1834. [Google Scholar] [CrossRef]
- Vista, F.E.S.; Dalmacio, L.M.M.; Solis, P.R.; Maramba-Lazarte, C.N.C.; Lang, D.M.; Rothman, A.L.; de Paz-Silava, S.L.M. Antibody responses to Japanese encephalitis virus and dengue virus serotype 2 in children from an orthoflavivirus endemic region after IMOJEV vaccination. PLoS Neglected Trop. Dis. 2025, 19, e0013550. [Google Scholar] [CrossRef]
- Salem, G.M.; Galula, J.U.; Wu, S.R.; Liu, J.H.; Chen, Y.H.; Wang, W.H.; Wang, S.F.; Song, C.S.; Chen, F.C.; Abarientos, A.B.; et al. Antibodies from dengue patients with prior exposure to Japanese encephalitis virus are broadly neutralizing against Zika virus. Commun. Biol. 2024, 7, 15. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, S.; Lurong, Q.; Qi, Z. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses 2023, 15, 1033. [Google Scholar] [CrossRef]
- Srivastava, K.S.; Jeswani, V.; Pal, N.; Bohra, B.; Vishwakarma, V.; Bapat, A.A.; Patnaik, Y.P.; Khanna, N.; Shukla, R. Japanese Encephalitis Virus: An Update on the Potential Antivirals and Vaccines. Vaccines 2023, 11, 742. [Google Scholar] [CrossRef]
- Haviernik, J.; Stefanik, M.; Fojtikova, M.; Kali, S.; Tordo, N.; Rudolf, I.; Hubalek, Z.; Eyer, L.; Ruzek, D. Arbidol (Umifenovir): A Broad-Spectrum Antiviral Drug That Inhibits Medically Important Arthropod-Borne Flaviviruses. Viruses 2018, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Sacramento, C.Q.; de Melo, G.R.; de Freitas, C.S.; Rocha, N.; Hoelz, L.V.; Miranda, M.; Fintelman-Rodrigues, N.; Marttorelli, A.; Ferreira, A.C.; Barbosa-Lima, G.; et al. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci. Rep. 2017, 7, 40920. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, J.; Heffernan, J.; Edeling, M.; Fernandez, E.; Jethva, P.N.; Diamond, M.S.; Fremont, D.H.; Gross, M.L. Epitope Mapping of Japanese Encephalitis Virus Neutralizing Antibodies by Native Mass Spectrometry and Hydrogen/Deuterium Exchange. Biomolecules 2024, 14, 374. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, J.; Liu, Y.; Zhu, J.; Chen, J.; Ni, H.; Wen, J. A human monoclonal antibody isolated from Japanese encephalitis virus vaccine-vaccinated volunteer neutralizing various flaviviruses. Front. Microbiol. 2024, 15, 1508923. [Google Scholar] [CrossRef]
- Gupta, A.K.; Koshy, A.A.; Lad, V.J. Enhanced protection of mice against Japanese encephalitis virus infection by combinations of monoclonal antibodies to glycoprotein E. Acta Virol. 2011, 55, 165–168. [Google Scholar] [CrossRef]
- Abdeldaim, D.T.; Schindowski, K. Fc-Engineered Therapeutic Antibodies: Recent Advances and Future Directions. Pharmaceutics 2023, 15, 2402. [Google Scholar] [CrossRef]
- Kim, J.A.; Seong, R.K.; Kumar, M.; Shin, O.S. Favipiravir and Ribavirin Inhibit Replication of Asian and African Strains of Zika Virus in Different Cell Models. Viruses 2018, 10, 72. [Google Scholar] [CrossRef]
- Kumar, R.; Tripathi, P.; Baranwal, M.; Singh, S.; Tripathi, S.; Banerjee, G. Randomized, controlled trial of oral ribavirin for Japanese encephalitis in children in Uttar Pradesh, India. Clin. Infect. Dis. 2009, 48, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Son, H.; Sunwoo, J.S.; Lee, S.K.; Chu, K.; Lee, S.T. Clinical Outcomes of Japanese Encephalitis after Combination Treatment of Immunoglobulin, Ribavirin, and Interferon-alpha2b. J. Clin. Neurol. 2021, 17, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, L.; Madhusudana, S.N.; Ravi, V.; Desai, A. Mycophenolic acid inhibits replication of Japanese encephalitis virus. Chemotherapy 2011, 57, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Yang, P.; Xiao, Q.; Sun, P.; Zhang, X.; Zhao, J.; Hu, X.; Shan, C. Novel antiviral discoveries for Japanese encephalitis virus infections through reporter virus-based high-throughput screening. J. Med. Virol. 2024, 96, e29382. [Google Scholar] [CrossRef]
- Diani, E.; Lagni, A.; Lotti, V.; Tonon, E.; Cecchetto, R.; Gibellini, D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023, 11, 2427. [Google Scholar] [CrossRef]
- Guo, J.; Mi, Y.; Guo, Y.; Bai, Y.; Wang, M.; Wang, W.; Wang, Y. Current Advances in Japanese Encephalitis Virus Drug Development. Viruses 2024, 16, 202. [Google Scholar] [CrossRef]
- Thongtan, T.; Thepparit, C.; Smith, D.R. The involvement of microglial cells in Japanese encephalitis infections. Clin. Dev. Immunol. 2012, 2012, 890586. [Google Scholar] [CrossRef]
- Ghoshal, A.; Das, S.; Ghosh, S.; Mishra, M.K.; Sharma, V.; Koli, P.; Sen, E.; Basu, A. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 2007, 55, 483–496. [Google Scholar] [CrossRef]
- Ye, J.; Jiang, R.; Cui, M.; Zhu, B.; Sun, L.; Wang, Y.; Zohaib, A.; Dong, Q.; Ruan, X.; Song, Y.; et al. Etanercept reduces neuroinflammation and lethality in mouse model of Japanese encephalitis. J. Infect. Dis. 2014, 210, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wang, K.; Xiang, W.; Li, Y.; Hao, Y.; Guan, Y. Rosiglitazone polarizes microglia and protects against pilocarpine-induced status epilepticus. CNS Neurosci. Ther. 2019, 25, 1363–1372. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, B.; Hong, S.; Cai, Y. A case report and literature review on tocilizumab-cured acute necrotizing encephalopathy caused by influenza A virus. Front. Pediatr. 2024, 12, 1351478. [Google Scholar] [CrossRef] [PubMed]
- Kitidee, K.; Samutpong, A.; Pakpian, N.; Wisitponchai, T.; Govitrapong, P.; Reiter, R.J.; Wongchitrat, P. Antiviral effect of melatonin on Japanese encephalitis virus infection involves inhibition of neuronal apoptosis and neuroinflammation in SH-SY5Y cells. Sci. Rep. 2023, 13, 6063. [Google Scholar] [CrossRef] [PubMed]
- Komorowska, J.; Watroba, M.; Bednarzak, M.; Grabowska, A.D.; Szukiewicz, D. Anti-Inflammatory Action of Resveratrol in the Central Nervous System in Relation to Glucose Concentration-An In Vitro Study on a Blood-Brain Barrier Model. Int. J. Mol. Sci. 2024, 25, 3110. [Google Scholar] [CrossRef]
- Bian, P.; Ye, C.; Zheng, X.; Yang, J.; Ye, W.; Wang, Y.; Zhou, Y.; Ma, H.; Han, P.; Zhang, H.; et al. Mesenchymal stem cells alleviate Japanese encephalitis virus-induced neuroinflammation and mortality. Stem Cell Res. Ther. 2017, 8, 38. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, M.; Liu, C.; Tang, Y.; Xiao, K.; Dai, J.; Gao, Z.; Siew, L.; Cao, G.; Wu, X.; et al. Memantine can relieve the neuronal impairment caused by neurotropic virus infection. J. Med. Virol. 2019, 91, 935–940. [Google Scholar] [CrossRef]
- Soni, N.; Tripathi, A.; Mukherjee, S.; Gupta, S.; Mohanty, S.; Basu, A.; Banerjee, A. Bone marrow-derived extracellular vesicles modulate the abundance of infiltrating immune cells in the brain and exert an antiviral effect against the Japanese encephalitis virus. FASEB BioAdv. 2022, 4, 798–815. [Google Scholar] [CrossRef]
- Xiong, J.; Yang, L.; Nan, X.; Zhu, S.; Yan, M.; Xiang, S.; Zhang, L.; Li, Q.; Yang, C.; Wang, X.; et al. Extracellular vesicles promote the infection and pathogenicity of Japanese encephalitis virus. J. Extracell. Vesicles 2025, 14, e70033. [Google Scholar] [CrossRef]
- Bharucha, T.; Gangadharan, B.; Kumar, A.; Myall, A.C.; Ayhan, N.; Pastorino, B.; Chanthongthip, A.; Vongsouvath, M.; Mayxay, M.; Sengvilaipaseuth, O.; et al. Deep Proteomics Network and Machine Learning Analysis of Human Cerebrospinal Fluid in Japanese Encephalitis Virus Infection. J. Proteome Res. 2023, 22, 1614–1629. [Google Scholar] [CrossRef]
- Pichl, T.; Wedderburn, C.J.; Hoskote, C.; Turtle, L.; Bharucha, T. A systematic review of brain imaging findings in neurological infection with Japanese encephalitis virus compared with Dengue virus. Int. J. Infect. Dis. 2022, 119, 102–110. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Zaverucha-do-Valle, C.; Reis, P.A.; Barbosa-Lima, G.; Vieira, Y.R.; Mattos, M.; Silva, P.P.; Sacramento, C.; de Castro Faria Neto, H.C.; Campanati, L.; et al. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. Sci. Rep. 2017, 7, 9409. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Ren, H.; Zhu, J.; Yang, Y.; Liao, F. Suramin inhibits the in vitro expression of encephalitis B virus proteins NS3 and E. J. Huazhong Univ. Sci. Technol. 2003, 23, 375–379. [Google Scholar] [CrossRef]
- Zhang, J.; Han, W.; Xie, C.; Gao, M.; Wang, X.; Hu, X.; Zhang, W.; Cao, S.; Liu, X.; Cheng, G.; et al. Autophagy inhibitors alleviate Japanese encephalitis virus-induced cerebral inflammation in mice. Arch. Virol. 2022, 167, 849–859. [Google Scholar] [CrossRef]
- Mishra, M.K.; Basu, A. Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. J. Neurochem. 2008, 105, 1582–1595. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Pickering, M.T.; Cho, N.H.; Chang, H.; Volkert, M.R.; Kowalik, T.F.; Jung, J.U. Deregulation of DNA damage signal transduction by herpesvirus latency-associated M2. J. Virol. 2006, 80, 5862–5874. [Google Scholar] [CrossRef]
- Moon, J.H.; Hong, J.M.; Seol, J.W.; Park, B.Y.; Eo, S.K.; Park, S.Y. Melatonin inhibits Japanese encephalitis virus replication and neurotoxicity via calcineurin-autophagy pathways. BMC Neurosci. 2023, 24, 59. [Google Scholar] [CrossRef] [PubMed]
- Hoze, C.; Fritz, S.; Phocas, F.; Boichard, D.; Ducrocq, V.; Croiseau, P. Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population. J. Dairy Sci. 2014, 97, 3918–3929. [Google Scholar] [CrossRef]
- Xiao, J.; Kendal, E.; Kwa, F.A.A. Harnessing the Power of AI to Improve Detection, Monitoring, and Public Health Interventions for Japanese Encephalitis. Biomedicines 2024, 13, 42. [Google Scholar] [CrossRef]
| Genotype | Reported PRNT Reduction Compared with GIII Derived Vaccines | Field or Experimental Evidence |
|---|---|---|
| GI | Approximately two-fold reduction reported. | High vaccine effectiveness is still observed with no clear increase in breakthrough infections. |
| GIV | Limited data suggest a modest reduction in neutralizing titers, although the precise fold reduction has not been consistently quantified. | No consistent evidence of higher infection rates among vaccinated populations. |
| GV | More than four-fold reduction reported in several studies. | Some animal studies report loss of neutralization or reduced protection. Human field data remain very limited. |
| Platform | Antigen Design/Genotype Relevance | Expression System | Immune Profile/Protection | Ref. |
|---|---|---|---|---|
| mRNA vaccine | E or EDIII mRNA (GI or GIII); rapid antigen updating enables fast response to genotype I and genotype V emergence | LNP-encapsulated mRNA | Strong neutralizing antibodies; balanced Th1 and Th2; complete protection in mice with GI-matched constructs | [105,106] |
| DNA vaccine | prM–E with molecular adjuvants; can incorporate genotype-matched inserts to enhance breadth | Plasmid DNA via electroporation | Humoral and cellular responses; moderate NAb titers; requires delivery optimization for improved cross-genotype coverage | [116,117,118,119] |
| VLP | prM + E; preserves quaternary epitopes important for cross-genotype neutralization including against GV | Baculovirus or mammalian systems | Strong neutralizing responses; complete protection in murine models; enhanced recognition of conformational epitopes | [112,120,121,122] |
| Viral-vector vaccine | prM–E expressed from recombinant adenovirus, measles, or vaccinia; flexible backbone allows rapid insertion of genotype-updated sequences | Adenovirus, measles, vaccinia vectors | Robust antibody and CD8+ responses; broad cross-reactivity | [70,120,121,122,123] |
| Recombinant subunit/epitope-focused vaccine | EDIII or NS1 constructs; epitope focusing avoids ADE-associated regions and targets conserved epitopes shared across genotypes | Pichia pastoris/CHO cells | Type-specific and cross-neutralizing antibodies; reduced enhancement risk | [40,124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-Y.; Lee, H.-M. Advances and Challenges in Vaccination and Therapeutic Strategies Against Japanese Encephalitis Virus. Pathogens 2025, 14, 1204. https://doi.org/10.3390/pathogens14121204
Park J-Y, Lee H-M. Advances and Challenges in Vaccination and Therapeutic Strategies Against Japanese Encephalitis Virus. Pathogens. 2025; 14(12):1204. https://doi.org/10.3390/pathogens14121204
Chicago/Turabian StylePark, Jae-Yeon, and Hye-Mi Lee. 2025. "Advances and Challenges in Vaccination and Therapeutic Strategies Against Japanese Encephalitis Virus" Pathogens 14, no. 12: 1204. https://doi.org/10.3390/pathogens14121204
APA StylePark, J.-Y., & Lee, H.-M. (2025). Advances and Challenges in Vaccination and Therapeutic Strategies Against Japanese Encephalitis Virus. Pathogens, 14(12), 1204. https://doi.org/10.3390/pathogens14121204

