

Article

High Prevalence of Salmonella spp. in Ready-to-Eat Artisanal Pork Sausages Sold at Food Outlets in Quindío, Colombia

Elizabeth Jaramillo-Bedoya ¹, Liliana Janeth Flórez-Elvira ² and Iván Darío Ocampo-Ibáñez ^{3,*}

- Laboratorio de Salud Pública Departamental, Secretaría de Salud Departamental del Quindío, Gobernación del Quindío, Armenia 630008, Colombia; lizzyjaramillo88@gmail.com
- School of Basic Sciences, Faculty of Health, Universidad del Valle, Cali 760042, Colombia; liliana.florez@correounivalle.edu.co
- Research Group of Microbiology, Industry and Environment (GIMIA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
- * Correspondence: ivan.ocampo00@usc.edu.co; Tel.: +57-518-3000

Abstract: Non-typhoidal salmonellosis is a foodborne disease caused by *Salmonella* spp. Most outbreaks of this disease are commonly associated with consuming contaminated meat products, hence the importance of monitoring ready-to-eat artisanal pork sausages for the presence of these bacteria. A total of 494 samples of grilled and smoked barbecue artisanal pork sausages were collected at food outlets from 12 municipalities of the Department of Quindío, Colombia, between 2017 and 2022. Salmonella spp. was identified using VIDAS[®] Easy SLM and confirmed through API[®] 20 E. Salmonella spp. was detected in 260 samples (52.6%), and the highest rates of contamination were found in Armenia (65.7%), Salento (65.2%), Circasia (57.7%), and Calarcá (56.4%). The highest proportion of these samples positive for Salmonella spp. was ready-to-eat smoked barbecue artisanal sausages (68.8%) sold by street vendors (58.4%) from 12 municipalities of the Department of Quindío. A significant association was observed between the municipality and contamination of samples with Salmonella spp. However, no link was found between the sampling year and the presence of the bacteria. This is the first study aimed at monitoring the presence of Salmonella spp. in artisanal pork sausages sold in the municipalities of the Department of Quindío over a 6-year period, and findings revealed very high percentages of contamination. Although Colombian legislation establishes sanitary and safety requirements for meat production, the presence of Salmonella spp. in artisanal sausages remains a persistent public health threat in developing countries.

Keywords: foodborne diseases; non-paratyphoid *Salmonella* spp.; artisanal pork sausages

Academic Editors: Chyer Kim and Yangjin Jung

Received: 16 October 2024 Revised: 27 December 2024 Accepted: 27 December 2024 Published: 4 January 2025

Citation: Jaramillo-Bedoya, E.; Flórez-Elvira, L.J.; Ocampo-Ibáñez, I.D. High Prevalence of *Salmonella* spp in Ready-to-Eat Artisanal Pork Sausages Sold at Food Outlets in Quindío, Colombia. *Pathogens* **2025**, 14, 31. https://doi.org/10.3390/ pathogens14010031

Correction Statement: This article has been republished with a minor change. The change does not affect the scientific content of the article and further details are available within the backmatter of the website version of this article.

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Non-paratyphoid *Salmonella* spp. are Gram-negative bacteria that cause non-typhoidal salmonellosis, a foodborne disease that poses a worldwide public health problem [1]. According to the White–Kauffmann–Le Minor scheme, this group of *Salmonella* comprises >2600 serotypes, approximately 1600 of which belong to the species *Salmonella* enterica [2,3]. Many serotypes can cause digestive disorders in humans; however, *S. enterica* serovar Enteriditis and *S. enterica* serovar Typhimurium are the two most common serotypes causing human non-typhoidal salmonellosis and are thus of significant public health relevance [3,4].

Non-typhoidal salmonellosis usually presents as an acute diarrheal illness characterized by gastrointestinal symptoms such as diarrhea, fever, intestinal cramps, nausea,

Pathogens 2025, 14, 31 2 of 12

and vomiting lasting up to 7 days [5]. Although most cases of non-typhoidal salmonellosis are mild, the disease can occasionally be fatal due to serious complications such as bloodstream infections and focal infections. Children aged <5 years, adults >65 years, and immunocompromised individuals are at the highest risk [1,5]. The incidence of this disease is considered moderate, with an estimated 150 million cases and between 60,000 and 150,000 deaths worldwide every year [6]. It is a notifiable disease in Colombia, with an estimated 200,000–400,000 cases occurring annually [7]. In recent years, several outbreaks of non-typhoidal salmonellosis linked to the consumption of contaminated food have been reported in North and South America, Africa, Asia, and Europe [3,8–11]. The largest global outbreak of this disease to date was associated with a strain of *Salmonella typhimurium* linked to Belgian chocolate products [8]. A total of 151 genetically related cases were reported across 11 countries, potentially linked to the consumption of these chocolate products [8]. Numerous outbreaks of non-typhoidal salmonellosis associated with consuming contaminated food or water have been reported in Colombia in recent years, with a national average morbidity rate of 21.01 cases per 100,000 individuals [12].

Most outbreaks of non-typhoidal salmonellosis are usually associated with consuming animal-derived food products contaminated with Salmonella spp., primarily including eggs, meat, poultry, and dairy products [1,13]. Due to their ability to adapt to diverse environments and conditions, these bacteria can contaminate various types of food [14]. Although warm weather and non-refrigerated food provide ideal growth conditions [15], it has been observed that Salmonella spp. can adapt and grow under extreme conditions, with temperatures ranging from 2 °C to 54 °C and pH values between 3.8 and 9.5 [14,16]. Thus, they can multiply under conditions commonly used to preserve fresh or processed foods at room temperature and under refrigeration [14,16]. In particular, meat products that are consumed raw and produced in an artisanal manner have also been associated with non-typhoidal salmonellosis outbreaks, as they are often left to stand at room temperature, which facilitates the growth of Salmonella [15,17]. Furthermore, factors such as the product formulation, transportation without refrigeration from the store to the consumer's home, and inadequate storage at home can also contribute to the growth of Salmonella spp. in these raw meat products [18]. However, Salmonella spp. has also been detected in ready-to-eat meat, pork, and poultry products, despite being grilled, cooked, fried, or barbecued [18–21]. This bacteria can be found in this kind of food due to several factors such as cross-contamination, improper cooking, poor hygiene practices, and contaminated ingredients [18,19]. In many cases, artisanal pork products such as sausages, ham, bacon, and meat pies are homemade or produced informally, with poor food-handling practices and without complying with established sanitary regulations [14,22]. In most developing countries, these products are sold by street vendors, but serious concerns exist about their handling and safety, and therefore persistent concerns about health risks, mainly due to unregulated practices [23].

Many outbreaks of non-typhoidal salmonellosis have been linked to consuming artisanal pork sausages around the world. The primary risk factors associated with cross-contamination with *Salmonella* in these meat products include manufacturing conditions, sanitary and handling practices, storage, and contamination of the raw meat used as raw material [16,17,22,24,25]. In Colombia, even though regulations establish sanitary and safety requirements for the preparation of meat products [26–28], fresh raw artisanal sausages (known as *chorizos artesanales*) have been identified as the foods with the highest rates of *Salmonella* contamination [12,29]. Fresh raw artisanal sausages are meat products made from a mixture of raw pork, pork or beef fat, and seasonings (salt, garlic, oregano, and pepper) that are stuffed into natural pork casings [30]. In the department of Quindío, most of these products are homemade, and therefore no microbiological control is carried

Pathogens 2025, 14, 31 3 of 12

out on the raw materials or the finished products [12,29,30]. In addition, inadequate storage and poor food-handling practices are among the main risk factors associated with the contamination of these products [12,29]. According to a study conducted in the Caribbean region of Colombia, the prevalence of Salmonella spp. in artisanal sausages was 13%, while in other foods, such as raw meat, eggs, and chicken, it did not exceed 7%, likely due to the storage of the products at room temperature [12,29]. However, the actual prevalence of Salmonella spp. in ready-to-eat grilled, smoked, or fried artisanal sausages produced in artisanal conditions and sold throughout Colombia, particularly in the Department of Quindío, where these meat products are produced and consumed on a large scale, remains unknown. In Quindío, the ready-to-eat artisanal sausages are most commonly served in food outlets, especially in restaurants, quick-service restaurants, by street vendors, hotels, and even small outlets that involve different styles of preparations. In this region, most artisanal sausages are sold by street vendors, located in open spaces or along the streets, where they are exposed to the environment and without regulation or monitoring by the government authorities. Therefore, this study aimed to determine the presence of Salmonella spp. in artisanal sausages sold in food outlets across the 12 municipalities of the Department of Quindío between 2017 and 2022. Knowing the prevalence of Salmonella spp. in ready-to-eat artisanal sausages will provide important insights for preventing and controlling contamination with foodborne pathogenic bacteria. As the first study on the presence of Salmonella spp. in ready-to-eat artisanal sausages marketed in the Department of Quindío, Colombia, it will provide key data to enhance the control and surveillance measures established by the Colombian legislation, which regulates the sanitary and safety requirements for the production of these foods, as well as generate an alarm regarding the public health risk of the consumption of these foods that are produced in an artisanal manner and sold in food outlets.

2. Materials and Methods

2.1. Sampling

This study was conducted between February 2017 and March 2022 in the Department of Quindío, located in Central-Western Colombia between 04°04′41″ N-04°43′18″ N and 75°23′41″ W-75°53′56″ O. Samples of artisanal "santarrosano" sausages were randomly collected from various ready-to-eat food outlets, including restaurants, quick-service restaurants, and street vendors, in the 12 municipalities of the Department of Quindío, namely Armenia, Buenavista, Calarcá, Circasia, Córdoba, Filandia, Génova, La Tebaida, Montenegro, Pijao, Quimbaya, and Salento. A cross-sectional design was used yearly, with a total non-probability convenience sampling of 494 ready-to-eat artisanal sausage samples (each weighing 100 and 150 g), including grilled, fried, or smoked barbecue sausages. Some differences in the number of samples for municipalities were found because most of the municipalities in the Department of Quindío are very small and located in rural areas. Consequently, many of them have only one food outlet for ready-to-eat artisanal sausages, making the availability and access to sample collection in these areas quite difficult. Despite all the artisanal sausages being made under artisanal conditions, the information about the origin of ingredients and production conditions was not available. The Departmental Public Health Laboratory of Quindío carried out sample collection as part of the laboratory surveillance procedures.

2.2. Isolation and Identification of Salmonella spp.

The presence of *Salmonella* spp. in the samples was determined according to the ISO standards [31] and the guidelines of the Food and Drug Administration [32]. The detection of *Salmonella* spp. was carried out using the commercial kit VIDAS® Easy SLM

Pathogens 2025, 14, 31 4 of 12

(bioMérieux, Marcy l'Etoile, France) following the manufacturer's instructions. Briefly, 25 g of artisanal sausage was homogenized and selectively enriched for *Salmonella* spp. in 225 mL buffered peptone water (bioMérieux) and incubated at 37 °C for 22 h. Next, 0.1 mL of this suspension was transferred to 10 mL of *Salmonella* Xpress 2 selective broth (bioMérieux) and incubated at 41.5 °C for 22 h. Subsequently, 500 μ L was used for detection in the VIDAS® system. From suspensions containing *Salmonella* spp., 10 μ L were taken for colony isolation on ChromIDTM *Salmonella* selective media (bioMérieux) and incubated at 37 °C for 24 h. Finally, the colonies obtained were confirmed by biochemical tests using the API® 20E kit (bioMérieux) according to the manufacturer's instructions. All assays were performed in triplicate, and at least two independent assays were performed for each sample of artisanal sausages.

2.3. Statistical Analysis

The frequency distribution of qualitative variables was determined through univariate and bivariate analyses using contingency tables. The distribution of *Salmonella* spp. relative to the municipality of origin of the artisanal sausage and the year was determined. Statistical significance was evaluated using Fisher's exact test with a significance level of 0.05. All analyses were performed using the R-Project statistical package, version 4.3.1.

3. Results

This study aimed to determine the presence of *Salmonella* spp. in ready-to-eat artisanal pork sausages sold across the Department of Quindío between 2017 and 2022. A total of 494 samples of ready-to-eat grilled, fried, or smoked barbecue artisanal sausages were collected during this 6-year period from the 12 municipalities evaluated (Figure 1). *Salmonella* spp. was detected in 260 samples (prevalence of 52.6%) from 11 municipalities out of the 12 districts under study (Figure 1). The prevalence of *Salmonella* spp. over 6 years evaluated here varied significantly among the municipalities of Quindío (Figure 1), ranging from 13.3% in Génova to 68.7% in Armenia (Figure 1). The highest prevalence values were observed in Salento (65.2%), Circasia (57.7%), and Calarcá (56.4%) (Figure 1). The municipalities with the lowest prevalence of *Salmonella* spp. were La Tebaida (35.3%) and Génova (13.3%). Meanwhile, none of the samples from Córdoba tested positive for *Salmonella* spp. (prevalence of 0%) (Figure 1). Comparative analyses showed significant differences in the distribution of samples positive and negative for *Salmonella* spp. relative to the municipality (Figure 1).

In the analysis of the annual prevalence of *Salmonella* spp. in ready-to-eat artisanal pork sausages in the Department of Quindío, Fisher's test showed no significant differences in the distribution of samples positive and negative for *Salmonella* spp. in relation to the year (Table 1). The highest proportion of positive samples was found in 2017 (56.5%) and 2022 (55.1%) (Table 1), while the highest number of samples negative for *Salmonella* spp. was observed in 2021 (50.6%) and 2020 (49.4%) (Table 1).

Based on the analysis of the proportion of sausages contaminated with *Salmonella* spp. annually in each municipality over the 6-year period under study, the highest number of positive samples was found in Armenia (2017, 17 samples; 2021, 14 samples) and Calarcá (2021, 8 samples; 2022, 8 samples) (Table 2). Pijao, Génova, and Buenavista had the lowest number of contaminated samples every year, with a maximum of two positive samples in 2017, 2019, and 2022 (Table 2). Córdoba was the only municipality with no samples positive for *Salmonella* spp. over these 6 years (Table 2). Finally, regarding the annual prevalence of *Salmonella* spp. in each municipality, 11 of the municipalities of the Department of Quindío (all except Córdoba) had prevalence values above 25% in at least one of the years evaluated (Table 2). Armenia, Buenavista, Calarcá, Circasia, Filandia, and Salento presented extremely

Pathogens 2025, 14, 31 5 of 12

high prevalence of *Salmonella* spp. in artisanal sausages, some years even exceeding 60% (Table 2). The highest prevalence values were observed in Armenia in 2022 (76%) and 2021 (73%), and Salento in 2022 (71%) (Table 2).

Table 1. The proportion of ready-to-eat artisanal sausage samples positive and negative for *Salmonella* spp. over the different years under study.

Year ¹	Negative Samples		Positive	Samples	Total Samples	
	N	%	N	%	N	%
2017	40	43.5	52	56.5	92	100
2018	39	47.0	44	53.0	83	100
2019	37	49.3	38	50.7	75	100
2020	39	49.4	40	50.6	79	100
2021	44	50.6	43	49.4	87	100
2022	35	44.9	43	55.1	78	100
Total	234		260		494	

 $[\]overline{1}$ The significance level for the distribution of negative and positive samples for *Salmonella* spp. in relation to the year (p-value = 0.92 > 0.05). Abbreviations: N, number of samples.

Table 2. The annual proportion of samples tested positive for *Salmonella* spp. in each municipality of Quindío.

	Year								
Municipality	2017 +/N (%)	2018 +/N (%)	2019 +/N (%)	2020 +/N (%)	2021 +/N (%)	2022 +/N (%)			
Armenia	17/25 (68)	9/15 (60)	9/14 (64)	9/13 (69)	14/19 (73)	10/13 (76)			
Buenavista	2/3 (66)	1/4 (25)	2/4 (50)	1/3 (33)	1/3 (33)	2/4 (50)			
Calarcá	7/12 (58)	7/12 (58)	7/13 (53)	7/13 (53)	8/15 (53)	8/13 (61)			
Circasia	3/5 (60)	3/5 (60)	3/5 (60)	3/5 (60)	1/3 (33)	2/3 (66)			
Córdoba	0/1(0)	0/1(0)	0/1(0)	0/1(0)	0/1(0)	0/1(0)			
Filandia	3/5 (60)	4/6 (66)	1/3 (33)	3/6 (50)	2/5 (40)	2/5 (40)			
Génova	1/3 (33)	1/3 (33)	0/2(0)	0/2(0)	0/3(0)	0/2(0)			
La Tebaida	3/7 (42)	2/6 (33)	1/4 (25)	2/5 (40)	2/6 (33)	2/6 (33)			
Montenegro	4/10 (40)	5/10 (50)	5/11 (45)	5/11 (45)	3/10 (30)	5/11 (45)			
Pijao	1/2 (50)	1/2 (50)	1/2 (50)	1/2 (50)	1/2 (50)	2/3 (66)			
Quimbaya	7/13 (53)	5/10 (50)	4/8 (50)	5/11 (45)	5/11 (45)	5/10 (50)			
Salento	4/6 (66)	6/9 (66)	5/8 (62)	4/7 (57)	6/9 (66)	5/7 (71)			

Abbreviations: +, number of positive samples; N, total number of samples; %, proportion of positive samples.

The artisanal sausages marketed in three typical ready-to-eat food outlets analyzed in this study, restaurants, quick-service restaurants, and street vendors, presented different prevalence values for Salmonella spp. (Table 3). In this regard, the ready-to-eat artisanal sausages from street vendors were the most frequently contaminated products (67.6%) (Table 3). Among the positive samples, sausages from street vendors and quick-service restaurants showed the highest percentages of contamination, 58.4% and 25.8%, respectively (Table 3). Fisher's test showed significant differences in the positive and negative samples' behavior for Salmonella spp. in relation to the place of sale (Table 3).

Pathogens **2025**, 14, 31 6 of 12

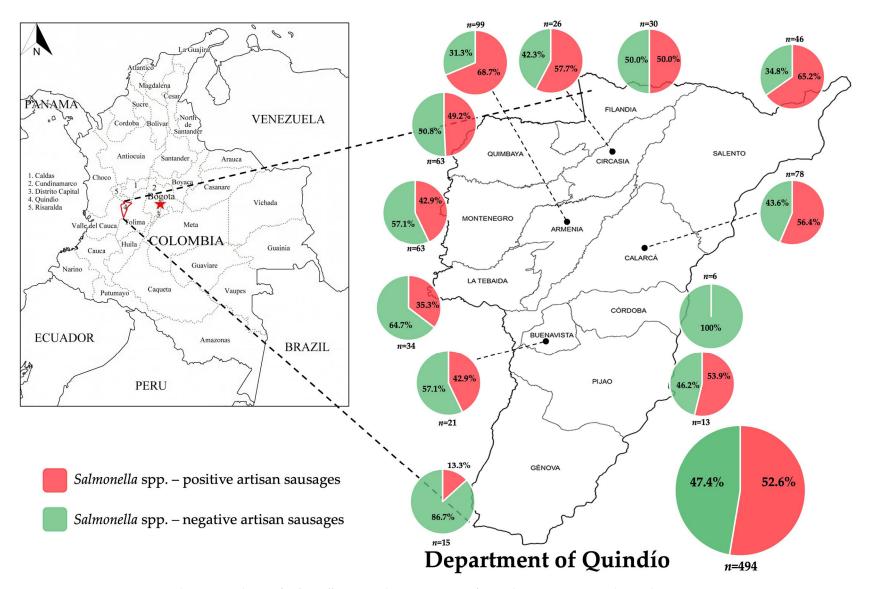


Figure 1. Cumulative prevalence of Salmonella spp. in the Department of Quindío over 6 years under study.

Pathogens 2025, 14, 31 7 of 12

Table 3. The proportion of ready-to-eat artisanal sausage samples positive and negative for <i>Salmonella</i>
spp. in the different food outlets.

Ready-to-Eat Food Outlets ¹	Negative Samples		Positive Samples		Total Samples	Prevalence
Ready-to-Eat rood Outlets	N	%	N	%		(%)
Restaurants	95	40.6	41	15.8	136	30.1
Quick-service restaurants	66	28.2	67	25.8	133	50.4
Street vendors	73	31.2	152	58.4	225	67.6
Total	234	100	260	100	494	

¹ The significance level for the distribution of negative and positive samples for *Salmonella* spp. in relation to food outlets (p-value = 0.00001 < 0.05). Abbreviations: N, number of samples.

Comparison analysis showed significant differences in the distribution of positive and negative samples for Salmonella spp. about the types of cooking of artisanal sausages (Table 4). Of the 260 samples positive for Salmonella spp., the highest proportion of contaminated samples was found for smoked sausages (68.8%) (Table 4), and among the samples negative for Salmonella spp., fried sausages accounted for the highest proportions of non-contaminated samples of 42.3% (Table 4).

Table 4. The proportion of ready-to-eat artisanal sausage samples positive and negative for *Salmonella* spp. according to types of cooking.

T	Negative	Negative Samples		Samples	Total Samples	Prevalence
Type of Cooking ¹	N	%	N	%		(%)
Smoked barbecue	79	33.8	179	68.8	258	69.4
Grilled	56	23.9	47	18.1	103	45.6
Fried	99	42.3	34	13.1	133	25.5
Total	234	100	260	100	494	

 $^{^{1}}$ The significance level for the distribution of negative and positive samples for *Salmonella* spp. in relation to food outlets (*p*-value = 0.00003 < 0.05). Abbreviations: N, number of samples.

4. Discussion

This is the first study conducted to determine the annual prevalence of Salmonella spp. in ready-to-eat cooked artisanal pork sausages sold in food outlets in the municipalities of the Department of Quindío, Colombia. The overall prevalence observed for Quindío over the 6-year period under study was extremely high (52.6%) and significantly higher than the average prevalence reported for ready-to-eat pork sausages in regions of some countries in Asia (China, 0.56%) [33], Europe (0.07% in Italy, 11.1% in Spain, and 8.6% in the United Kingdom) [34,35], South America (Brazil, 24.4%) [24,36], and North America (United States, 0.74%) [18]. Nevertheless, our results are consistent with data previously reported in certain North American countries, including Mexico, where Salmonella spp. prevalence in pork sausages reached up to 41% [37]. Even though legislation establishes sanitary and safety requirements for producing meat products, including pork sausages [26–28], reports on the surveillance and prevalence of Salmonella spp. in this type of food in Colombia are scarce [38]. In this regard, only a few studies have reported the prevalence of these bacteria in artisanal sausages in other departments and regions of Colombia [29,38,39]. The overall prevalence observed in the present study was higher than the previously reported values for other departments, such as Atlántico, Bolívar, and Córdoba (ranging from 2% to 12.6%), as well as Bogotá D.C. (ranging from 8% to 28%) [29,39–41].

Compared to previous studies conducted in Colombia [29,39–41], the overall prevalence of *Salmonella* spp. observed is remarkably high, particularly in some municipalities such as Armenia, Salento, Circasia, and Calarcá, where values exceeded 56% (Figure 1). Notably, Armenia, Calarcá, and Circasia have the highest population densities in the de-

Pathogens 2025, 14, 31 8 of 12

partment, which implies a higher risk of potential outbreaks associated with consuming ready-to-eat artisanal sausages in these municipalities. In contrast, the lowest prevalence was found in La Tebaida and Génova (below 35%) and Córdoba (0%) (Figure 1). Significant differences were observed in the prevalence of *Salmonella* spp. relative to the municipality, indicating a relationship between the presence of the bacteria in ready-to-eat artisanal pork sausages and the municipality of the Department of Quindío where they are sold (Figure 1).

Ready-to-eat artisanal meat products are among the major public health concerns due to their elevated risk of Salmonella spp. contamination [15,17]. Many factors could be hazards for artisanal meat products, including initial contamination of raw foods at preparation and subsequent contamination by vendors during handling [42]. The primary risk factors associated with cross-contamination with Salmonella spp. in these products during preparation include unhygienic conditions, improper food-handling practices by manufacturers, transportation without refrigeration, inadequate storage, and contamination of the raw meat used as raw material [15–17,22,24,25]. Despite the lack of information on the manufacturing conditions of the products analyzed in our study, it is known that many meat products manufactured and sold in the Department of Quindío are homemade or artisan-produced in an informal way at home in rural areas. Therefore, the contamination observed here could be attributed to poor handling of raw materials and non-compliance with established sanitary standards for production [14,22] or using contaminated raw materials [16]. The facilities used for manufacturing sausages sold in the Department of Quindío may not meet the sanitary conditions required by Colombian regulations, among others, having minimum biosecurity measures to avoid direct and indirect crosscontamination [26–28].

On the other hand, poor and improper sanitary and hygienic practices during food preparation and handling are key factors for the transmission of pathogens from food handlers to consumers [23,43]. In this respect, several studies have found that food handlers can significantly contribute to the transmission of foodborne bacterial pathogens by using improper food-handling practices [42–44]. In particular, Salmonella spp. are commonly detected in street-vended foods due to unsanitary and improper food-handling [23,42]. In our study, we found significant differences in the prevalence of Salmonella spp. regarding the food outlets analyzed. High levels of Salmonella spp. contamination were found in the ready-to-eat cooked artisanal pork sausages sold by the street vendors in the Department of Quindío between 2017 and 2022; however, restaurants and quick-service restaurants also had some samples positive for Salmonella spp. These results could be due to improper handling practices by food handlers or vendors in some food outlets evaluated in this study. Although this study did not analyze the manufacturing process and conditions, the microbiological quality of raw materials, the biosafety practices of handlers, or the handling stages of the artisanal pork sausages, inadequate hygiene conditions and improper handling practices were observed at the moment of sampling, such as not using essential personal protective equipment, displaying raw and cooked sausages in the same places, using the same equipment and utensils meant for raw and cooked sausages, and infrequent washing of utensils. In this respect, the food handler could directly cross-contaminate the artisanal sausages during preparation by allowing raw sausages to come in contact with ready-to-eat cooked sausages or allowing juices to flow from raw to cooked sausages [14], or handlers with poor personal hygiene standards could indirectly contaminate foods by touching cooked sausages without prior washing of hands [14,23,42]. This hypothesis is supported by reports indicating that the prevalence of Salmonella spp. among food handlers in Colombia is notably high [45–47]. For example, a prevalence of up to 25% among meat food handlers has been reported in cities such as Villavicencio, Bucaramanga, Barranquilla, Pasto, and Bogotá D.C. [45-47]. Our results about the prevalence of Salmonella

Pathogens 2025, 14, 31 9 of 12

spp. in cooked artisanal sausages sold by street vendors were surprisingly higher than those previously reported in other developing countries, such as Ghana, where *Salmonella* spp. prevalence in grilled sausages reached up to 18.75% [43,44].

Thermal treatment is one of the more effective food-processing techniques to eliminate foodborne pathogens from food products, including Salmonella spp. [19]. However, some strains of this bacteria are capable of growing at high temperatures and thus may survive the thermal processing of some foods; therefore, Salmonella spp. can be detected in some ready-to-eat foods [19,21,33,44]. In this respect, we found that the thermal treatment by frying, grilling, and smoking on the barbecue could have been effective in eliminating any Salmonella spp. from 47.4% of artisanal sausages, but this bacterium was detected in 52.6% of the ready-to-eat cooked artisanal sausages here analyzed. However, as mentioned before, we did not consider the manufacturing process and conditions to evaluate the microbiological quality of raw artisanal sausages and confirm if the thermal treatment was or was not effective in eliminating Salmonella spp. Despite this, we found significant differences in the distribution of positive and negative samples for Salmonella spp. concerning types of cooking of artisanal sausages, which could suggest that in the Department of Quindío, Salmonella spp. is more likely to be found among smoked sausages. Most of the smoked barbecue sausages analyzed in this study came from street vendors, which would support the hypothesis that the high presence of Salmonella spp. is mainly due to direct or indirect cross-contamination caused by improper handling practices by food handlers. In Colombia, street vendors are considered a public health problem, as they have become a significant risk factor for the health of all consumers due to the poor and limited hygiene and cleanliness conditions in most of the sales stands [48]. Our results show that the prevalence of Salmonella spp. in ready-to-eat smoked barbecue sausages sold by street vendors found in this study was higher than what was previously reported in other cities of Colombia, such as Bogotá, where Salmonella spp. prevalence in several types of ready-to-eat smoked barbecue food ranged from 11.5% to 30% [40,41,48,49].

Finally, when comparing the prevalence values between 2017 and 2022, no significant differences were observed in the distribution of samples positive and negative for *Salmonella* spp. in relation to the year. However, the highest proportions of contaminated sausages were found in 2017 and 2018. When analyzing the prevalence in each municipality, Armenia (in 2021 and 2022) and Salento (in 2022) showed the highest prevalence, while Córdoba had no positive samples for *Salmonella* spp. Throughout the 6 years assessed in this study. Our results on the prevalence from 2017 to 2022 suggest that the poor sanitary conditions in producing artisanal sausages have been a long-standing issue, which may have significantly contributed to the high proportions and prevalence of *Salmonella* spp. detected in the artisanal sausages sold in the Department of Quindío.

Estimates of the prevalence of *Salmonella* spp. in ready-to-eat cooked artisanal pork sausages sold in the Department of Quindío were included in this study, considering the municipality, the year of selling, food outlets, and types of cooking, but the sanitary and safety conditions for producing and handling these products, such as the quality of the raw materials during production, transport, storing, and manufacturing practices for sausages, were not considered, which is a limitation. Nevertheless, it is important to highlight that this is the first study conducted with this objective, and strikingly high prevalence values of *Salmonella* spp. were detected in this region of Colombia. Considering that current Colombian legislation establishes the sanitary and safety requirements for edible meat products for human consumption and given the serious consequences that infection with these bacteria can have on human health, this study aims to raise awareness of the need to enhance and implement new strategies for the surveillance and control of *Salmonella* spp. in producing and commercializing artisanal pork sausages.

Pathogens 2025, 14, 31 10 of 12

5. Conclusions

Our estimates of Salmonella spp. prevalence from 2017 to 2022 confirm that readyto-eat fried, grilled, and smoked barbecue artisanal pork sausages produced and sold in restaurants, quick-service restaurants, and street vendors in the municipalities of the Department of Quindío are frequently contaminated with these bacteria. The results suggest that the conditions for producing and commercializing these meat products in the department do not comply with the minimum sanitary and safety requirements established by Colombian legislation for edible meat products intended for human consumption. Since pork sausages sold nationwide are produced in artisanal settings, it is essential to replicate this type of study in other departments of Colombia. Our results highlight the urgent need to enhance and design new strategies for the surveillance and control of Salmonella spp. in food production and commercialization at both the departmental and national levels, considering the risk this pathogen poses to human health, particularly for high-risk groups such as children, adults, and immunocompromised individuals. The high prevalence of Salmonella spp. in artisanal sausages sold by street vendors in the Department of Quindío confirms this public health problem because they have become a significant risk factor for the health of all consumers due to the poor and limited hygiene and cleanliness conditions in most of the sales stands.

Author Contributions: Conceptualization, I.D.O.-I.; methodology, E.J.-B.; validation, E.J.-B.; formal analysis, E.J.-B., L.J.F.-E. and I.D.O.-I.; investigation, E.J.-B. and I.D.O.-I.; resources, E.J.-B.; data curation, L.J.F.-E.; writing—original draft preparation, I.D.O.-I.; writing—review and editing, I.D.O.-I.; visualization, I.D.O.-I.; supervision, I.D.O.-I.; project administration, E.J.-B.; funding acquisition, E.J.-B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Laboratorio de Salud Pública Departamental, Secretaría de Salud Departamental del Quindío, Gobernación del Quindío (grant number: Proyecto 118-2021 Fortalecimiento de las Actividades de Vigilancia y Control). Also, this research has been funded by the General Directorate for Research of Universidad Santiago de Cali under the call for proposals No. 01-2025.

Data Availability Statement: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Acknowledgments: The authors thank Clara Inés Martínez, leader in charge of the group of technicians in the Food Area of the Department of Quindío for the Year 2021, and assistants in the Health Area of the Public Health Laboratory of Quindío for the Year 2021 for their technical support in the sample collection.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- World Health Organization (WHO). Salmonella (Non-Typhoidal). Available online: https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (accessed on 28 December 2023).
- 2. Elnekave, E.; Hong, S.L.; Lim, S.; Johnson, T.J.; Perez, A.; Alvarez, J. Comparing serotyping with whole-genome sequencing for subtyping of non-typhoidal salmonella enterica: A large-scale analysis of 37 serotypes with a public health impact in the USA. *Microb. Genom.* 2020, 6, e000425. [CrossRef] [PubMed]
- 3. Gong, B.; Li, H.; Feng, Y.; Zeng, S.; Zhuo, Z.; Luo, J.; Chen, X.; Li, X. Prevalence, Serotype Distribution and Antimicrobial Resistance of Non-Typhoidal Salmonella in Hospitalized Patients in Conghua District of Guangzhou, China. *Front. Cell. Infect. Microbiol.* 2022, 12, 805384. [CrossRef] [PubMed]
- 4. Xu, H.; Zhang, W.; Zhang, K.; Zhang, Y.; Wang, Z.; Zhang, W.; Li, Y.; Li, Q. Characterization of Salmonella serotypes prevalent in asymptomatic people and patients. *BMC Infect. Dis.* **2021**, *21*, 1–9. [CrossRef]
- Centers for Disease Control and Prevention (CDC). Salmonella and Food. Available online: https://stacks.cdc.gov/view/cdc/12 8715 (accessed on 29 December 2023).

Pathogens 2025, 14, 31 11 of 12

6. Centers for Disease Control and Prevention (CDC). CDC Yellow Book 2024: Health Information for International Travel; Oxford University Press: New York, NY, USA, 2023.

- 7. Instituto Nacional de Salud (INS). *Vigilancia por Laboratorio de Salmonella spp.*; Dirección Redes en Salud Publica: Bogotá, D.C., Colombia, 2019.
- 8. World Health Organization (WHO). Multi-Country Outbreak of Salmonella Typhimurium Linked to Chocolate Products—Europe and the United States of America. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON369 (accessed on 10 February 2024).
- 9. Centers for Disease Control and Prevention (CDC). Reports of Selected Salmonella Outbreak Investigations. Available online: https://www.cdc.gov/salmonella/outbreaks.html (accessed on 18 February 2024).
- 10. Hagedoorn, N.N.; Murthy, S.; Birkhold, M.; Marchello, C.S.; Crump, J.A. Prevalence and distribution of non-typhoidal Salmonella enterica serogroups and serovars isolated from normally sterile sites: A global systematic review. *Epidemiol. Infect.* **2024**, *152*, 4–11. [CrossRef]
- 11. Uche, I.V.; MacLennan, C.A.; Saul, A. A Systematic Review of the Incidence, Risk Factors and Case Fatality Rates of Invasive Nontyphoidal Salmonella (iNTS) Disease in Africa (1966 to 2014). *PLoS Negl. Trop. Dis.* **2017**, *11*, e0005118. [CrossRef]
- 12. Flórez, N.Y.; Arévalo, S.A.; Rodríguez, E.C.; Guerrero, J.; Valverde, K.P.; Díaz, P.L.; Montaño, L.A.; Gartner, D.M.; Duarte, C.; Moreno, J.E. Brote de Salmonella enterica subsp. enterica serovar Give asociado con enfermedad transmitida por alimentos en Vichada, Colombia, 2015. *Biomédica* 2021, 41, 41–51. [CrossRef]
- 13. Antunes, P.; Mourão, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. *Clin. Microbiol. Infect.* **2016**, 22, 110–121. [CrossRef]
- 14. Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, food safety and food handling practices. Foods 2021, 10, 907. [CrossRef]
- 15. Centers for Disease Control and Prevention (CDC). Salmonella Outbreak Linked to Charcuterie Meats. Available online: https://www.cdc.gov/salmonella/outbreaks/meats-01-24/index.html (accessed on 15 September 2024).
- 16. Podolak, R.; Enache, E.; Stone, W.; Black, D.G.; Elliott, P.H. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. *J. Food Prot.* **2010**, 73, 1919–1936. [CrossRef]
- 17. Helmuth, I.G.; Espenhain, L.; Ethelberg, S.; Jensen, T.; Kjeldgaard, J.; Litrup, E.; Schjørring, S.; Müller, L. An outbreak of monophasic Salmonella Typhimurium associated with raw pork sausage and other pork products, Denmark 2018–19. *Epidemiol. Infect.* 2019, 147, e315. [CrossRef]
- 18. Mamber, S.W.; Mohr, T.; Barlow, K.; Bronstein, P.A.; Leathers, C.; Clinch, N. Occurrence of Salmonella in ready-to-eat meat and poultry product samples from U.S. Department of Agriculture–regulated producing establishments. II. Salmonella in ready-to-eat pork barbecue products, from 2005 to 2012. *J. Food Prot.* **2018**, *81*, 1737–1742. [CrossRef] [PubMed]
- 19. Jarvis, N.A.; O'Bryan, C.A.; Dawoud, T.M.; Park, S.H.; Kwon, Y.M.; Crandall, P.G.; Ricke, S.C. An overview of Salmonella thermal destruction during food processing and preparation. *Food Control* **2016**, *68*, 280–290. [CrossRef]
- 20. Mattick, K.L.; Bailey, R.A.; Jørgensen, F.; Humphrey, T.J. The prevalence and number of Salmonella in sausages and their destruction by frying, grilling or barbecuing. *J. Appl. Microbiol.* **2002**, *93*, 541–547. [CrossRef] [PubMed]
- Almashhadany, D.A. Occurrence and antimicrobial susceptibility of salmonella isolates from grilled chicken meat sold at retail outlets in Erbil city, Kurdistan region, Iraq. Ital. J. Food Saf. 2019, 8, 115–119. [CrossRef]
- 22. Mrema, N.; Mpuchane, S.; Gashe, B.A. Prevalence of Salmonella in raw minced meat, raw fresh sausages and raw burger patties from retail outlets in Gaborone, Botswana. *Food Control* **2006**, *17*, 207–212. [CrossRef]
- 23. Islam, S.; Tanjia, N.; Mitra, A.K.; Hossain, A.; Jasika, M.T.; Suhi, S.S.; Hossain, S.J. Inadequate food safety knowledge and hygiene practices among street food vendors in Dhaka, Bangladesh. Sci. Rep. 2024, 14, 17349. [CrossRef]
- 24. Mürmann, L.; Corbellini, L.G.; Collor, A.Á.; Cardoso, M. Quantitative risk assessment for human salmonellosis through the consumption of Pork Sausage in Porto Alegre, Brazil. *J. Food Prot.* **2011**, 74, 553–558. [CrossRef]
- 25. Giovannini, A.; Prencipe, V.; Conte, A.; Marino, L.; Petrini, A.; Pomilio, F.; Rizzi, V.; Migliorati, G. Quantitative risk assessment of *Salmonella* spp. infection for the consumer of pork products in an Italian region. *Food Control* **2004**, *15*, 139–144. [CrossRef]
- 26. Ministerio de la Protección Social. *Resolución Número 4287 de 2007*; Ministerio de la Protección Social: Bogotá, D.C., Colombia, 2007; p. 43.
- 27. Ministerio de Agricultura y Desarrollo Rural; Ministerio de Salud y Protección Social. *Resolución Número* 2690 de 2015; Ministerio de la Protección Social: Bogotá, D.C., Colombia, 2015; p. 4.
- 28. Ministerio de Salud y Protección Social. *Resolución Número* 2674 de 2013; Ministerio de la Protección Social: Bogotá, D.C., Colombia, 2013; p. 41.
- 29. Durango, J.; Arrieta, G.; Mattar, S. Presencia de *Salmonella* spp. en un área del Caribe colombiano: Un riesgo para la salud pública. *Biomédica* **2014**, 24, 89. [CrossRef]
- 30. Redondo-Solano, M.; Valenzuela-Martínez, C.; Cordero-Calderón, V.; Araya-Morice, A. Calidad microbiológica de embutidos crudos: Estudio del caso en Latinoamérica. *Arch. Latinoam. Nutr.* **2023**, *73*, 201–213. [CrossRef]

Pathogens 2025, 14, 31 12 of 12

31. *ISO 6579-1:2017*; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017.

- 32. Chapter 5: Salmonella. In *Bacteriological Analytical Manual (BAM)*; Food and Drug Administration (FDA): Silver Spring, MD, USA, 2024.
- 33. Yang, S.; Pei, X.; Wang, G.; Yan, L.; Hu, J.; Li, Y.; Li, N.; Yang, D. Prevalence of food-borne pathogens in ready-to-eat meat products in seven different Chinese regions. *Food Control* **2016**, *65*, 92–98. [CrossRef]
- 34. Castrica, M.; Andoni, E.; Intraina, I.; Curone, G.; Copelotti, E.; Massacci, F.R.; Terio, V.; Colombo, S.; Balzaretti, C.M. Prevalence of listeria monocytogenes and salmonella spp. In different ready to eat foods from large retailers and canteens over a 2-year period in northern italy. *Int. J. Environ. Res. Public Health* **2021**, *18*, 10568. [CrossRef] [PubMed]
- 35. Cabedo, L.; Picart i Barrot, L.; Teixidó i Canelles, A. Prevalence of Listeria monocytogenes and Salmonella in ready-to-eat food in Catalonia, Spain. *J. Food Prot.* **2008**, *71*, 855–859. [CrossRef] [PubMed]
- 36. Mürmann, L.; dos Santos, M.C.; Cardoso, M. Prevalence, genetic characterization and antimicrobial resistance of Salmonella isolated from fresh pork sausages in Porto Alegre, Brazil. *Food Control* **2009**, *20*, 191–195. [CrossRef]
- 37. Salgado-Mancha, J.; Jaramillo-Arango, C.J.; Nuñez-Espinosa, J.F.; Mora-Medina, P. Salmonella sp en tres tipos de chorizos, como peligro dentro de un sistema de análisis de riesgos e identificación de puntos críticos de control (HACCP), en una empacadora de la Ciudad de México. *Vet. México* 1999, 30, 157–164.
- 38. Instituto Nacional de Vigilancia de Medicamentos y Alimentos (Invima) Vigilancia por Laboratorio de Patógenos Bacterianos Asociados a Enfermedad Transmitida por Alimentos-ETA, 2017–2022; Ministerio de Salud y Protección Social: Neiva, Huila, 2022.
- 39. Carrascal, A.; Arrieta, G.; Máttar, S. Estudio preliminar de la calidad microbiológica de los alimentos en la Costa Atlántica colombiana. *Inf. Quinc. Epidemiol. Nac.* **2002**, *7*, 163–169.
- 40. Yánez, E.; Máttar, S.; Durango, A. Determinación de Salmonella spp. por PCR en tiempo real y método convencional en canales de bovinos y en alimentos de la vía pública de Montería, Córdoba. *Asoc. Colomb. Infectol.* **2008**, *12*, 246–254.
- 41. Bayona, M. Evaluación microbiológica de alimentos adquiridos en la vía pública en un sector del norte de Bogotá. *Rev. UDCA Actual. Divulg. Científica* **2009**, *12*, 9–17. [CrossRef]
- 42. Rane, S. Street Vended Food in Developing World: Hazard Analyses. Indian J. Microbiol. 2011, 51, 100–106. [CrossRef]
- 43. Aduah, M.; Adzitey, F.; Amoako, D.G.; Abia, A.L.K.; Ekli, R.; Teye, G.A.; Shariff, A.H.M.; Huda, N. Not all street food is bad: Low prevalence of antibiotic-resistant salmonella enterica in ready-to-eat (rte) meats in Ghana is associated with good vendors' knowledge of meat safety. *Foods* **2021**, *10*, 1011. [CrossRef]
- 44. Nkekesi, B.; Amenya, P.; Aboagye, G.; Kortei, N.K. Street-vended grilled beef sausages as potential vehicles of bacterial and fungal pathogens: An exploratory survey in Ho, the capital city of the Volta Region of Ghana. *Food Sci. Nutr.* **2023**, *11*, 7013–7025. [CrossRef] [PubMed]
- 45. Corrales Ramírez, L.C.; Angel Peña, V.; Caicedo Velásquez, D.K. Identificación de Salmonella y Escherichia coli en manos y guantes de manipuladores en planta de sacrificio y faenado de un municipio de Cundinamarca. *Nova—Publicación Científica EN Cienc. Biomédicas* 2008, 6, 20–26. [CrossRef]
- 46. Bayona, M. Prevalencia de Salmonella y enteroparásitos en alimentos y manipuladores de alimentos de ventas ambulantes y restaurantes en un sector del norte de Bogotá, Colombia. *Rev. UDCA Actual. Divulg. Científica* 2012, 15, 267–274. [CrossRef]
- 47. Astrid Carolina, F.; Carmen, R.; Paola, G.; Nirley, V.; Catalina, E. Factores relacionados con enfermedades transmitidas por alimentos en restaurantes de cinco ciudades de Colombia, 2007. *Infectio* 2008, 12, 255–266.
- 48. Campuzano, S.; Mejía Flórez, D.; Madero Ibarra, C.; Pabón Sánchez, P. Determinación de la calidad microbiológica y sanitaria de alimentos preparados vendidos en la vía pública de la ciudad de Bogotá DC. *Rev. Nov.* **2015**, *13*, 81–92. [CrossRef]
- 49. Méndez, I.A.; Badillo, C.A.; Ortiz Parra, G.; Faccini, Á.A. Caracterización microbiológica de Salmonella en alimentos de venta callejera en un sector universitario de Bogotá, Colombia. *Méd. UIS* **2010**, *24*, 9–23.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.