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Abstract: Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely
used in the hospital setting. However, the implantation of these devices is often accompanied by
complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main
complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect
them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of
VC inevitably allows skin flora or accidental environmental contaminants to access the underlying
tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous
catheters—BSIs (CVC-BSIs)—mainly occur in intensive care units (ICUs) with a death rate of 12 to
25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-
acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review,
we present a summary of biofilm formation steps. We provide an overview of two main and
important infections in clinical settings linked to medical devices, namely the catheter-asociated
bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and
highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we
draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling
approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the
catheter-related infections.

Keywords: nosocomial infections; biofilms; medical device; pathogens; bloodstream infections;
urinary tract infections

1. Introduction

Every year, millions of catheters are implanted by health services to improve the man-
agement of acute and chronic diseases in adults and pediatric patients [1–3]. Unfortunately,
their use inevitably allows patient’s own flora or accidental environmental contaminants to
access the underlying tissues and cause fatal complications [4–6]. About 60 to 70% of noso-
comial infections (NI) are linked to medical devices [7]. The main complication results from
the ability of microorganisms to adhere to surfaces and form biofilms [8], which protects
them and helps them to persist in the host [9].Indeed, biofilms act as a protection barrier
against antimicrobial agents thereby leading to therapeutic failure and increased mortality
and morbidity rates [3,10,11]. Moreover, in the biofilm, there is a small subpopulation
called persister cells which are characterized by increased tolerance to antimicrobials.Once
the antibiotic is removed, surviving persisters are able to re-grow causing infections [12].
Several studies demonstrated that persister cells are strongly involved in chronic infections
and their recalcitrance in clinical, making the antibiotic treatment innefective and biofilm
eradication impossible [13–16].

In fact, catheter associated bloodstream infections (CA-BSIs) are an important cause of
hospital-acquired infections originating from an intravenous catheter and associated with
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morbidity, mortality, and hospital cost [17]. Central venous catheters (CVCs) are among the
most widely used medical devices in critically ill patients. However, central line-associated
bloodstream infections (CLA-BSIs) are the most common complications which are usually
associated with the use of these CVCs [4], causing an increase in the rate of morbidity and
mortality in health establishments as well as the length and costs of the stay [18]. In fact,
80,000 CVC-associated bloodstream infections (CVC-BSIs) mainly occur in intensive care
units (ICUs) with a death rate of 12 to 25% [19]. Concerning peripheral venous catheters
(PVCs), it has been estimated that 30 to 80% of hospitalized patients have a PVC in place
during their hospitalization [20] and more than a billion PVCs are used each year around
the world [21]. Among the side effects observed when a PVC is used are the following:
phlebitis, partial dislodgement, accidental removal, occlusion, infiltration (fluid moving into
surrounding tissue), and rarely, infections [22,23]. The incidence of bloodstream infections
associated with peripheral venous catheters (PVC-BSIs) is generally low, with a rate of
0.1% of short catheters inserted (0.5 episodes per 1000 days of intravascular catheter) [24],
unlike the incidence of CVC-BSIs which is 2.7 episodes per 1000 days of intravascular
catheter [20]. Moreover, VC can be easily colonized by pathogenic microorganisms which
lead to the formation of biofilms, other potential sources of BSIs [25]. Biofilms formed
on CVCs were first described in 1982, during an epidemic of Staphylococcus epidermidis
BSI [26]. Since that day, several studies have confirmed the involvement of biofilm in the
pathogenesis of CVC-related infections and their importance [27]. Additionally, 81% of
all vascular catheters that were placed in situ for 1–14 days were reported to be colonized
by bacteria in the biofilm [28]. Biofilm colonization of intravenous catheters continues
to affect healthcare settings [29]. Several factors increase the risk of catheter infections
such as patient immunodeficiency, length of prolonged catheterization, catheter material,
anatomical site of catheter insertion, poor hygiene, poor catheter insertion, and handling
methods [30]. It has been reported that the incidence of bacteremia associated with PVCs
is lower than that of bacteremia associated with CVCs. However, the duration of PVC
insertion is 15 times longer than that of CVC insertion; for this, the number of PVC-BSIs is
high due to the high number of patients who have a PVC [20,31].

Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most com-
monly hospital-acquired infections worldwide [32]. These infections represent up to 40%
of nosocomial infections. Also, 70% of UTIs are associated with urinary catheters (UC)
and approximately 20% of hospitalized patients have a UC, especially those in ICUs [33].
Despite the high risk of acquiring infections with multidrug-resistant (MDR) opportunistic
pathogens, most cases of catheter-associated bacteriuria are asymptomatic. However, when
an episode of CA-UTI becomes symptomatic, the resulting sequelae can range from mild
(fever, urethritis, and cystitis) to severe (catheter encrustation, bladder stones, pyelonephri-
tis, endotoxic shock, and bacteremia). Left untreated, these infections can lead to urosepsis
and death [34,35]. Indeed, for each day that a urinary catheter is in situ, there is a 3–8%
incidence of bacteriuria, and in the majority of cases, long-term catheterization results in
continued bacteriuria and symptomatic CA-UTI [36]. For an infection to be classified as
a CA-UTI, a patient must have the following: (i) a urinary catheter implantated for more
than 48 h; (ii) a symptom such as fever, pain, suprapubic tenderness, urinary frequency or
urgency or dysuria; and (iii) urine culture with ≥105 CFU/mL of a bacterial species [37].
However, there is much controversy over the CFU/mL cut-off in samples taken from a
urinary catheter and several authorities consider that a number (greater than or equal to)
≥103 CFU/mL is indicative of a true CA-UTI [38–40]. Moreover, other host factors such as
female gender, older age (i.e., age > 50 years old), diabetes mellitus, faecal incontinence,
immunocompromised status; healthcare factors such as lack of systemic antibiotics, catheter
insertion outside the operating room, prolonging the duration of catheterization, and poor
quality of catheter care [40–42] increase the risk of CA-UTIs. CA-UTI is linked with biofilm
formation along the surface of the catheter [36]. Indeed, the presence of a UC facilitates
bacterial colonization due to the development of a conditioning film of host proteins which
provides bacteria with an ideal substrate for fixation [43].
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In view of all this, there is an urgent need to develop novel strategies to fight medical
device-associated biofilms. Despite several studies having been conducted in this field,
many challenges still remain. This review provides an overview on the medical device-
associated biofilm infections (mainly venous catheter-associated bloodstream infections
and catheter associated-urinary tract infections), the biofilm development process on these
devices, and the most MDR-bacteria implicated in these infections with their virulence
factors. Furthermore, the current review highlights the different prevention strategies and
the most effective approaches using antimicrobial coating and antifouling methods, to
reduce medical device colonization and the incidence of their related infections.

2. Hospital-Acquired Infections

Hospital-acquired infections (HAIs) or nosocomial infections (NI) are defined as in-
fections which were neither present nor incubating during the patient’s hospitalization
and were acquired after 48 h of hospitalization. These infections increase patient morbidity
and mortality, prolong their hospital stays, and represent a massive additional financial
burden for health structures [44]. The severity of infection and its incidence is much
higher in patients in burn units, intensive care units, organ transplant receivers, and with
newborns due to their immunological status [45]. In addition to the problems associated
with nosocomial infections, antibiotic resistance and the emergence of MDR-bacteria is a
serious global problem, due to the uncontrolled administration of drugs [46]. These HAIs
are often the result of the use of invasive procedures such as the location of temporary
indwelling devices (VCs, UCs, endotracheal tubes, and wound drains) or are associated to
the placement of cardiovascular or orthopedic implants during a surgical intervention [47].
They include a wide range of infections such as catheter related infections (CRIs), CA-UTIs,
and ventilator associated pneumonia (VAP) [48]. These infections are generally designed as
“Medical Device-Associated Biofilm Infections” [3]. Several Gram-negative (Escherichia coli,
Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii)
and Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus fae-
calis) bacteria are involved in the onset of NIs [49,50]. Their ability to form a biofilm makes
the treatment of these infections more complicated [51].

In fact, it is well known that biofilms have a significant impact in medicine through
the development of HAIs [52] and it is estimated that bacterial biofilms are involved in
65% of NIs and in more than 80% of chronic infections [53]. Treatment of these infections
requires administration of high dose antibiotics and/or replacement of the device, which
are both ineffective due to the antibiotic resistant strains and the high risk of re-infection on
the new device [51].

3. Biofilm Formation on Medical Devices

Bacteria have always been studied in the laboratory as planktonic microorganisms.
However, most bacteria live in multicellular communities called biofilms [54]. The biofilm
was observed for the first time in the 17th century by Anthony van Leeuwenhoek through
his microscope in his own mouth where he observed aggregated microorganisms on his
teeth and tongue [55]. A biofilm is a highly structured bacterial community attached to
a surface and protected by a self-produced extracellular polymeric matrix [56–58]. This
matrix is mainly composed of proteins, polysaccharides, and extracellular DNA (eDNA).
Furthermore, the biofilm matrix is highly hydrated and contains up to 97% water, mainly
responsible for nutrient transport within the biofilm [53,59]. Bacterial adhesion occurs
on a pre-conditioning film formed on the surface after deposition of organic, inorganic,
and cellular components (e.g., fibronectin, fibrinogen, laminin, collagen, polysaccharides)
found in the environment surrounding the medical device, constituting a base on which
the biofilm will develop [51,57]. The bacteria interact with the components of this sur-
face through appendages, attractive forces, or adhesins [57]. The biofilm formation on
a medical device proceeds as follows: (i)Transport of bacterial cells to the surface—the
bacteria can be transported to the medical device either by diffusion (Brownian motion),
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convective flow or active movement (motile bacteria) [60]. Bacterial transport can also be
induced by chemotaxis due to the presence of diffusible chemical gradients which form
from various chemical stimuli or the degradation of components (eg. aspartate, glucose,
galactose) [60,61]. However, if the surface is unsuitable for bacterial adhesion, the bacteria
return to the planktonic state [11]. (ii) Reversible attachment—this first step of the bacterial
adhesion process to the medical device is the transport of cells to the device [61]. The initial
attraction mainly involves non-specific physical interactions such as Van der Waals attrac-
tive forces, electrostatic forces (attractive or repulsive), hydrophobic interactions, Brownian
motion, and gravitational forces [62]. Furthermore, due to the negative charge of their cell
membrane, bacteria are subjected to repulsive electrostatic and repulsive hydrodynamic
forces when they are near the medical device. In order to overcome these two repulsive
barriers, bacteria typically use cellular appendages, such as flagella or pili [63,64]. This
initial binding of bacteria to the medical device is important to make irreversible adhesion
possible [60]. (iii) Irreversible attachment—this step is characterized by stronger induced
cell–surface interactions and shorter distances which allow adhesins exposed to the cell
surface to form a bond with the biomaterial [65]. Gene expression which encodes for
bacterial surface structures including fimbriae, pili, lipopolysaccharides, and slime will also
begin to strengthen adhesion promoting biofilm formation [65,66]. (iv) Cell proliferation
and formation of microcolonies:—once the bacteria have become attached to the surface of
the medical device and stabilized, the cells will proliferate rapidly and produce intercellular
adhesins to form microcolonies. In this step, the QS “quorum sensing” communication
system is activated when the bacterial density reaches a threshold [11,57,67]. The gene
expression of components required for a biofilm matrix such as polysaccharides, proteins,
eDNA, and lipids is also activated [68]. (v) Device surface colonization—the cells continue
to proliferate and additional surrounding planktonic cells are also incorporated into the
biofilm [69]. (vi) Biofilm maturation—the multilayers continue to form, inducing an in-
crease in thickness, thereby allowing the transition from a two-dimensional arrangement
to a three-dimensional arrangement (mature biofilm) [67] also called “mushroom” struc-
ture [70]. Channels filled with water are formed in the biofilm allowing the transport of
nutrients, signaling molecules, and elimination of waste [53,71]. (viii) Biofilm dispersion—
once the biofilm is mature, the planktonic bacteria detach from the biomaterial due to
hydrolase enzymes then migrate and colonize new surfaces, spreading the infection [11,12].
The main steps are illustrated in Figure 1 below.
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4. Most Common Pathogenic Bacteria Involved in Medical Device-Associated
Biofilm Infections
4.1. Escherichia coli

Escherichia coli is responsible for a wide variety of community and HAIs such as UTIs
and BSIs with increasing antimicrobial resistance rates [72,73]. Indeed, in addition to the
global emergence of resistance to carbapenems, the significant increase in the prevalence
of quinolones-resistant E. coli strains has also been reported in several countries limiting
the treatment choice for these bacterial infections, thereby constituting a real problem for
public health [74,75]. Uropathogenic E. coli (UPEC) is the bacterium mostly involved in
80 to 90% of UTI cases [76,77] and in 40% of hospital acquired UTIs [78]. These strains
have become more resistant to antibiotics with the increasing prevalence of extended-
spectrum β-lactamases (ESBLs) [74,79]. E. coli is one of the bacteria most implicated in
biofilm-related infections, particularly in CA-UTIs [80–84] and CVC-BSIs [85–88]. In fact,
biofilm formation is the major cause of these infections in catheterized patients, making
them hard to eradicate [89,90]. Indeed, their ability to form a biofilm is associated with
the persistence and chronicity of inflammations leading to complicated and/or recurrent
infections [91,92]. E. coli strains have an arsenal of virulence factors which contribute to ad-
hesion, colonization, and persistence allowing the different defense mechanisms of the host
to be overcome [93]. Among them, we distinguish adhesins, fimbriae, toxins, siderophores,
etc. Table 1 summarizes the virulence factors implicated in E. coli pathogenesis and espe-
cially adhesion and biofilm formation. The role of virulence genes of E. coli in its adhesion to
catheter surfaces has been reported in several studies [82,83,89,90,92,94–102]. For example,
Reisner et al. [94] reported that 73% of E. coli strains isolated from catheterized patients
expressed type 1 fimbriae. In a recent study of Zou et al. [90], they showed that biofilm
associated genes such as iron transport systems (ferric citrate) and antigen 43 may be
involved in the pathogenic CA-UTI strains. Another recent study demonstrated that the
knockout of luxS, fimH, and bolA genes decreased EPS matrix production, which is very
important in E. coli biofilm-associated UTIs [83].
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Table 1. Main medical device-associated bacteria and their virulence factors.

Pathogen Virulence Factor Characteristics and Function Reference

E. coli

Type I fimbriae

Encoded by fim operon located on the chromosome of UPEC isolates;
Binding specifically to D-mannose which is found on the glycoproteins of the epithelial cells;
Represents 95% of the virulence factors of E. coli;
A major adhesin in colonization of UCs and biofilm formation during CA-UTIs.

[94,97,98,103–105]

P fimbriae
Pyelonephritis-associated pili (Pap);
The second important adhesin expressed by UPEC and coded by the pap operon;
Binding to di-galactoside moiety present in the urinary tract epithelium.

[100,106,107]

Curli Csg A
Key components of the extracellular biofilm matrix of E. coli in which CsgA is the major subunit of curli;
Bacterial binding with fibronectin, laminin, plasminogen;
Aggregation, adhesion to surfaces, and biofilm development.

[108,109]

PGA (Poly-β-1,6-N-acetyl-D-glucosamine)
Encoded by pgaABCDoperon;
A primary component of the biofilm matrix;
Attachment of E. coli to surfaces and autoagregation of cells.

[82,89]

Ag 43 (Antigen 43 adhesin)
One of the major auto-transporter in E. coli encoded by the gene flu;
Translocation to the outer membrane;
Adhesion and auto-aggregation (cell-to-cell) facilitating the formation of the biofilm.

[89]

Hemolysin F
Encoded by the gene hlyF;
Over-expression of hlyF promotes the biosynthesis of the outer membrane vesicles (OMVs) which
release toxins involved in virulence.

[110,111]

α-hemolysin
Encoded by the gene hlyA;
A pore-forming cytotoxin, responsible for lysis of the cell membrane of hosts (leukocytes, erythrocytes,
and endothelial cells).

[112]

Siderophores Survival and colonization in iron-deficient sites. [78]

CNF-1 (cytotoxic necrotizing factor 1) Responsible for the apoptosis of urothelial cells then increase bacterial entry to the bladder. [89]

LPS (Lipopolysacharide) An endotoxin that induces septic shock caused by over-expression of pro-inflammatory cytokines. [113]

Capsule

Adherence to host cells;
Biofilm formation;
Binding to C4 binding protein (C4BP) and inhibits complement cascade;
Bacterial protection from phagocytosis;
Binding to catioinc antimicrobial agents;
Bacterial protection from macrophage recognition.

[114]
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Table 1. Cont.

Pathogen Virulence Factor Characteristics and Function Reference

Quorum sensing
Main quorum sensing systems: LuxS and SdiA, producers of autoinducer-2 molecules;
Cell-to-cell communication;
Role in bacterial behaviour coordination and regulation of virulence genes.

[115]

K. pneumoniae

Types 1 fimbriae

Encoded by fimAICDFGHK operon;
Adhesion mediation to mannose-containing structures present on host tissue and extracellular matrix;
A major role in biofilm formation on UCs, invasion and colonization of host cells, and persistence in
catheters-associated infections.

[116,117]

Types 3 fimbriae

Encoded by mrkABCD operon;
Adhesion to different structures in kidney, lung tissue, endothelial and bladder epithelial cells;
A major role in biofilm formation on UCs, invasion and colonization of host cells, and persistence in
catheter-associated infections.

PGA (poly-β-1,6-N-acetyl-D-glucosamine)

Encoded by pgaABCD operon;
Cell-cell communication;
Intercellular adhesion;
Adhesion to abiotic surfaces.

[118]

Capsule polysaccharides (magA, k2A
and wcaG)

Resistance to phagocytosis;
Complement-mediated lysis inhibition and opsonization;
Host defense escape.

[119,120]Lipopolysaccharides (wabG, uge, ycfM)

Inhibition of complement pathway;
Inactivation of the seditious response;
Block the effect of peptides via lipid A;
Host defence escape.

Siderophores
(iutA, iroN, entB)

Acquisition of iron from host iron-chelating proteins for survival and growth during infections;
Biofilm formation;
Host defence escape.

Quorum sensing

QS regulator systems: Type 2 quorum sensing luxS;
Cell–cell communication;
Intercellular adhesion and adhesion to abiotic surfaces;
Bacterial behaviour coordination; Regulation of virulence genes.

[118,121]
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Table 1. Cont.

Pathogen Virulence Factor Characteristics and Function Reference

P. mirabilis

MR/P (Mannose resistant Proteus-like fimbriae)

Binding to uroepithelial cells;
Attachment to urinary catheters;
Biofilm formation.

[33,122,123]

PMP (P. mirabilis P-like pili)

PMF (P. mirabilisfimbriae)

ATF (Ambient-temperature fimbriae)

UCA (Uroepithelial cell adhesin)

Flagella
A major role in swarming;
Migration of pathogenic strains to the upper urinary tract, causing pyelonephritis;
Dispersion of biofilm from urinary catheters to the urinary tract.

[33,124,125]

Hemolysin HpmA
Ability to lyse erythrocytes, bladder epithelial cells, and monocytes;
High cytotoxicity towards human renal proximal tubular epithelial cells (HRPTECs);
Dessimination of P. mirabilis into the kidneys and development of pyelonephritis.

[122,126,127]

Proteus toxigenin Pta An autotransporter which promotes autoaggregation of the bacteria.
Mediates lysis of bladder epithelial cells.

ZaPA(zinc metalloproteinases)
Degradation of immunoglobulins IgA and IgG, human β-defensin 1, and other celluar components
(fibronectin, collagen);
Escape immune responses during infection.

LPS (Lipopolysccharides)
Mediation of the induction of proinflammatory cytokine responses;
Induction of apoptosis;
Septic shock.

Iron acquisition system Production of iron carriers to take iron from the host and use it for its survival during urinary infections.

Urease (a nickel-dependent metalloenzyme)

Degradation of urea into carbon dioxide and ammonia, increasing the urine pH up to 8.2;
Formation of crystals, struvite (ammonium and magnesium phosphate)
and apatite (calcium phosphate);
Causing the obstruction of urinary catheters;
Causing pyelonephritis and increasing the risk of sepsis.

[128,129]

Quorum sensing

QS system regulator: luxS/luxR system; Autoinducer-1 molecules controlled by the luxR genes and
autoinducer-2 molecules controlled by the luxS genes;
Role in swarmingcoordination;
Regulation of biofilm formation and virulence genes expression.

[125]
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Table 1. Cont.

Pathogen Virulence Factor Characteristics and Function Reference

P. aeruginosa

Flagella
Type IV pili

Important role swimming, twitching, and swarming motility;
Adhesion to host epithelial cells;
Attachment to surfaces and biofilm formation.

[130]

LPS (Lipopolysccharides)

Antibiotic tolerance, tissue damage, and biofilm formation;
The complement system induction;
Activation of inflammatory cytokines TNF-α and IL-1β;
Induction of immune responses via Toll-like receptor 4 (TLR4) and cystic fibrosis transmembrane
conductance regulator (CFTR);
Induction of phagocytosis;
Neutrophil activation for neutrophil extracellular trap (NET) releasing which contain pathogens.

[131,132]

Exopolysaccharides (alginate, PEL and PSL)

Crucial role in initial attachment to surface;
Biofilm formation, its stability and maintenance;
Bacterial protection from phagocytosis and opsonization,
Biofilm maturation, and prevention of antibiotic diffusion.

[133]

OMVs (Outer membrane vesicles)

Expression of 26 OMPs of which the porin OprF is the most abundant;
Transport of molecules (e.g.,toluene, siderophores, nitrates, and nitrites);
Bacterial adhesion and biofilm formation;
Implication in drug resistance;
Protection from macrophage clearance during chronic infections;
Remove of competing bacteria from the environment during infections.

[134,135]

Siderophores (Pyoverdine and Pyochelin) Iron chelation from transferrin and lactoferrin needed during growth and virulence.

[131,136]
Elastase A [LasA] and B [LasB] Degradation of elastin;

Host tissues damage.

Protease IV
Degradation ofcomplement components, immunoglobulins, and surfactant protein;
Raising of bacterial infection via fibrinogen, lactoferrin, transferrin degradation;
Host tissues damage.
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Table 1. Cont.

Pathogen Virulence Factor Characteristics and Function Reference

toxins (Pyocyanin; T3SS effectors [ExoS, ExoT,
ExoU and ExoY]; Exolysin [ExlA]; Exotoxin A
[PEA]; Lipase A [LipA] and Leukocidin)

Pyocyanin: induction of oxidative stress for the host to avoid bacterial elimination;
T3SS effectors: inhibition of phagocytosis and bacterial elimination, disruption of the host actin
cytoskeleton, and apoptosis induction;
ExlA: induction of membrane permeabilization and cell death through its cytolysin activity;
PEA: inhibition of host protein synthesis by ADP ribosylation activity and stimulatation of
programmed cell death;
Lipase A: degradation of lipid dipalmitoylphosphatidylcholine (lung surfactant) and drug resistance
mediation by interacting with alginate;
Leukocidin: leukocytes swelling by increased permeability of their membrane.

Quorum sensing
MainQSsystems: Las, Rhl, Pqs and Iqs;
Regulationof biofilm formation and other virulence factors;
Coordination of bacterial behaviour and persistance during infection.

[137,138]

A. baumannii

Csu (Chaperone-usher pili) Encoded by csuA/BABCDE operon; Involved in the initial ahesion onto abiotic surfaces but not
biotic surfaces. [139,140]

OmpA (Outer membrane protein A)
A β-barrel porin, one of the most abundant porins in the outer membrane of A. baumannii.
Role in the virulence of A. baumannii, including interaction with the host, cytotoxicity, apoptosis, and
biofilm formation.

[139,141–143]

Bap (Biofilm-associated protein)
Formation of water channels;
Maitainingthe structure and integrety of biofilm;
Biofilm formation on abiotic and biotic surfaces.

[139,144]

PNAG (Poly-N-acetyl β-1-6 glucosamine)

Major component of the A. baumannii biofilm matrix and encoded by the pgaABCD operon;
Role in the integrity of the biofilm;
Tolerance to desiccation stress;
Incredible persistence in natural environments and care facilities.

[144,145]
Type V secretion systems

Transport exoproteins;
Transport mobile genetic elements;
Role in bacterial competition;
Biofilm formation on abiotic and biotic surfaces.

Phospholipases C and D Hydrolytic activity towards phosphatidylcholine;
Hemolytic activity against erythrocytes.

Capsule
A protection barrier.
Resistance to some antibiotics.
Regulation of the K locus genes for exopolysaccharides production, important for biofilm formation.
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Table 1. Cont.

Pathogen Virulence Factor Characteristics and Function Reference

Iron-chelator proteins Uptake of iron from host environnement in iron deficiency conditions. [140]

Quorum sensing Two-component regulatory system: AbaI/AbaR system
Regulation of several virulence factors such as biofilm formation and motility. [139]

S. aureus

PIA (Intracellular adhesion polysaccharide) or
PNAG (o poly-N-acetyl β-1-6 glucosamine).

Encoded by the icaADBC operon;
Important in cell-to-cell adhesion, adhesion to surfaces, biofilm formation;
Antimicrobial resistance;
Immune evasion;
Bacterial protection from phagocytosis.

[146–148]

FnBPA and FnBPB
(Fibronectin-binding proteins)

Categorised as “microbial surface component recognising adhesive matrix molecules (MSCRAMM)”;
Implication in binding host matrix components (fibronectin, fibrinogen, collagen, elastin, laminin);
Initial cell attachment and/or biofilm formation;
Implication in colonization;
Immune evasion.

[146,149,150]

ClfA and ClfB (Clumping factors)

Can (Collagen adhesin)

EbpS (Elastin binding protein)

Fib (Fibrinogen binding protein)

Eno (Laminin-binding protein)

SdrC, SdrD, SdrE (Serine aspartate repeat
proteins C, D, and E)

Atl (Autolysin) Primary attachment through non-specific hydrophobic interactions with uncoated surfaces;
Bindin to host extracellular matrix proteins and involvment in cell separation during cell division. [151,152]

Bap (Biofilm-associated protein) Contributionin initial adhesion to abiotic surfaces;
Induction of strong intercellular adhesion. [153,154]

Quorum sensing
Global regulatory systems [accessory gene regulator (agr), staphylococcal accessory element (sae), the
staphylococcal accessory regulator A (sarA)];
Regulation of the expression of virulence factor secretion and biofilm formation.

[155]

S. epidermidis

PIA (Intracellular adhesion polysaccharide) Adhesion and biofilm accumulation. [156]

AtlE (Autolysin E) Attachment to plastic surfaces.

[157]Bap homolog protein Bhp Adherence to a polystyrene surface, intercellular adhesion, and biofilm formation.

Ssp-1,Ssp-2 (Staphylococcal surface
proteins 1 and 2)

Cell-to-cell adhesion;
Biofilm formation.
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Table 1. Cont.

Pathogen Virulence Factor Characteristics and Function Reference

Serine-aspartate repeat protein G (SdrG/Fbe)
binding to fibrinogen

Adhesion to the host proteins (fibrinogen, collagen, fibronectin);
Adhesion to abiotic surfaces.

[158]SdrF (Serine-aspartate repeat protein F)
binding to collagen

Extracellular matrix-binding protein (Embp)

Phenol-soluble modulins (PSMα, PSMδ,
PSMε, δ-toxin [PSMγ], and PSMβ

[PSMβ1, PSMβ2])

Acquisition of the characteristic three-dimensional structure-like mushrooms;
Role in biofilmdispersion. [157,159]

Homolog of the SspB

Role in the degradation/dispersion of the biofilm. [157]
Homolog of SspA V8

Metalloprotease SepA

Nucleases

Quorum sensing Two key systems: the agr and the sar regulators;
Expression/repression of virulence genes in a coordinated manner during infection. [160]

En. faecalis

Esp (Enterococcal surface protein) Primary adhesion in UTIs;
Colonization of the urinary tract.

[161,162]Asa1 (Aggregation substance) Adhesion to host cells and bacterial aggregation.

Collagen binding protein (Ace) Adhesion to extracellular matrix and type 1 collagen.

EfaA(En. faecalis endocarditis antigen A) Adhesion to biotic and abiotic surfaces.

Epa (Enterococcal polysaccharide antigen) Colonization, translocation through epithelial cells, bacterial adhesion, biofilm formation,
and antibiotic resistance. [163]

Ebp A,B,C (Endocarditis and
Biofilm-Associated Pili) Important in initial attachment, biofilm formation, and endocarditis. [164,165]

CylA (Cytolysin A) Killing other bacteria (especially Gram-negative bacteria) and eukaryotic cells (red blood cells);
Biofilm formation.

[162,165,166]
Hyl (Hyaluronidase) Degradation of hyaluronic acid to permeabilize host tissues;

Induction of autoimmune diseases.
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Table 1. Cont.

Pathogen Virulence Factor Characteristics and Function Reference

GelE (Gelatinase)

Degradation of the collagen adhesion protein (Ace) which contributes in colonization
and biofilm formation;
Degradation of gelatin, collagen, fibrin, fibrinogen, hemoglobin, and complement components
(C3, C3a, C5a);
Cell lysis.

SprE (Serine protease) Degradation of casein;
Release of eDNA.

Quorum sensing

Regulator system: the Fsr (fecal streptococci regulator) quorum-sensing system, encoded by fsrA, fsrB and
fsrC genes;
Regulation of communication through peptide pheromones cpd, cob, and ccf;
Control of biofilm formation via regulation of gelatinase production.

[167]
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4.2. Klebsiella pneumoniae

Klebsiella pneumoniae is considered to be one of the most important opportunistic
pathogens responsible for NIs including sepsis, soft tissue infections, pneumonia [168],
and UTIs, which are the most common worldwide [169]. K. pneumoniae is implicated in
6–17% of opportunistic UTI cases mainly linked to bacterial adhesion in the inner and outer
surfaces of the urinary catheter [170,171]. Moreover, it is the second pathogen involved
in BSIs, after E. coli [172]. The prevalence of NIs due to K. pneumoniae has been reported
to be approximately 10% worldwide [173]. Several studies revealed the implication of
K. pneumoniae in HAIs, especially in catheter-related infections (CRIs) [18,85,172,174–179].
Since this bacterium is commensal in humans, gastrointestinal colonization represents the
major source of transmission and the development of infections towards other sites [180].
The global antibiotic resistance rate of K. pneumoniae is approximately 70% with mortality
rates ranging from 40% to 70% [181] and the emergence and spread of MDR-strains of
K. pneumoniae have becomea real global problem [182]. In fact, this bacterium is able to
acquire resistance genes such as ESBLs or carbapenemases (resistance to cephalosporins
or third-generation carbapenems), limiting treatment options for infections [168], causing
serious or even fatal infections, while also increasing the length of hospitalization and the
costs of processing [183]. Moreover, carbapenem-resistant K. pneumoniae are the major cause
of BSIs with high rates of mortality and morbidity in the world [179]. Another group of K.
pneumoniae strains called “hypervirulent”, able to express acquired virulence factors, has
also emerged causing serious community-acquired infections [184]. Many K. pneumoniae
isolates are able to form biofilms, resulting in increased impermeability to antibiotics
causing treatment failure [185]. For this, the World Health Organization (WHO) classifies
this bacterium among the high priority species and encourages the development of new
antimicrobial molecules in order to counter its antibiotic resistance [169]. K. pneumoniae has
several virulence factors, including types 1 and 3 fimbriae, capsule polysaccharides, LPS,
quorum-sensing, and PGA [118] used to escape host immune defenses, biofilm formation,
and to persist during infection [186].The adhesins of K. pneumoniae allow the establishment
of strong biofilms [116,187–194].An in vitro study reported the improvement of biofilm
formation on UCs by the presence of types 1 and 3 fimbriae in a bladder model [116]. In
a recent study, the results showed that 87.5%, 46.4%, and 53.6% of strains harbored fimH,
mrkA, and mrkD fimbrial genes, respectively [193]. Other genes have been reported to
be involved in biofilm formation [119,187,191,194–197]. The main virulence factors of K.
pneumoniae are summarized in Table 1.

4.3. Proteus mirabilis

Proteus mirabilis is an opportunistic pathogen that causes infections in immunocompro-
mised individuals but also NIs, including wound infections, blood infections, and mainly
UTIs [50]. It is recognized as the main cause of CA-UTIs, and in the USA, 3% of all HAIs
and 44% of CA-UTIs are linked to this bacterium [126]. In fact, P. mirabilis is considered
the third most common cause of UTIs and the second most common cause of CA-UTIs in
long-term catheterized patients [198]. Furthermore, UTIs, particularly CA-UTIs, caused
by P. mirabilis generate serious complications such as the formation of bladder and kidney
stones, permanent kidney damage, or even bacteremia/sepsis which can be fatal for pa-
tients [199]. In addition, trauma to the urethra and bladder mucosa may also occur during
catheter removal [124]. All these complications are due to the capacity of P. mirabilis to
form crystalline biofilms, leading to an obstruction [126]. P. mirabilis was reported as a
common agent causing UTIs and CA-UTIs in several studies [122,126,198,200–203]. This
commensally bacterium colonizing the perianal area of patients, easily penetrates into the
bladder after implantation of the catheter, and thus adheres to it [204]. In addition, in recent
years, P. mirabilis strains have become increasingly resistant to drugs, especially, the isolates
producing ESBLs, leading to therapeutic failure, thereby constituting a worldwide problem
for public health [123,205–207].
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Proteus mirabilis has a panel of virulence factors (Table 1); however, its pathogenic-
ity is exacerbated by biofilm formation, making the infection worse [208]. In fact, this
uropathogen has been shown to have a great ability to form biofilm and is involved in the
encrustation and blockage of UCs—a common complication in patients with long-term
indwelling urinary catheterization—and is a major cause of morbidity and mortality in CA-
UTIs [124,129]. Numerous adhesins, including MR/PM fimbriae, MR/KH, PM fimbriae, ure-
throepithelial adhesin (UCA), and ambient-temperature fimbriae (ATF) have been associated
to P. mirabilis adhesion onto UCs and biofilm formation during CA-UTIs [126,203,209–211].

4.4. Pseudomonas aeruginosa

Pseudomonas aeruginosa is one of the six bacterial pathogens of the ESKAPE group
(Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, P. aerug-
inosa, and Enterobacter species) known for their high antibiotic resistance and increased
virulence, which pose big challenges to treatment worldwide [136,212,213]. In fact, the
resistance of this pathogen to many antibiotics, particularly resistance to carbapenems,
constitutes a serious threat to global public health and increases morbidity and mortality
rates, particularly in ICUs [137,214]. This is why the WHO designated this MDR-bacterium
as one of the priority antibiotic-resistant pathogens for which new antibiotics are urgently
needed [136]. P. aeruginosa is one of the most opportunistic pathogens causing fatal acute
or chronic infections in immunocompromised hosts. Indeed, it is one of the most common
pathogens found in hospitals and is responsible for more than 50% of NIs [213]. The most
HAIs caused by P. aeruginosa are VAP, UTIs, CA-BSIs, burn wound infections, skin and
soft tissue infections, surgical site infections, and ocular infections [131,215]. Moreover, P.
aeruginosa has the ability to form biofilms during infections causing increased resistance to
antibiotics and the persistence of NIs, which are considered fatal for patients [216]. It is esti-
mated that P. aeruginosa is responsible for 28% of device-related infections [217]. A rate of
11.5% of P. aeruginosa strains was recovered from UCs and all of them were MDR [217]. The
implication of P. aeruginosa in CA-UTIs [218–221] and in CL-BSIs [85,87,88,175,222] has been
widely reported. Importantly, a recent international study on infections in ICU-patients
demonstrated that P. aeruginosa was responsible for 23% of all infections acquired in ICUs,
with the respiratory source being its main site [223]. These bacteria have an impressive
arsenal of virulence factors which contributes to their pathogenesis (Table 1). Flagella and
pili are virulence factors involved in motility as well as bacterial adhesion, which is the
starting point of infections [214,224–227]. Also, the EPS Psl and Pel, major components
of the biofilm matrix of P. aeruginosa, significantly contribute in bacterial adhesion to the
catheter surface, cell–cell aggregation, and stability of the biofilm structure [217]. Several
reports showed the importance of these EPS [219,228,229].

4.5. Acinetobacter baumannii

Acinetobacter baumannii is a nosocomial pathogen that is responsible for a large number
of infections in humans, including endocarditis, UTIs, meningitis, pneumonia (in mechani-
cally ventilated patients), and sepsis [141]. The incidence rate of A. baumannii infections is
estimated to be approximately one million cases per year in the world, with high mortality
rates, especially in critically ill patients [230]. The high prevalence of MDR-A. baumannii
has become a serious situation in a hospital setting. One of the major factors responsible
for the chronicity and persistence of infections and resistance to antibiotics of A. baumannii
is its ability to colonize and form a biofilm on biotic and abiotic surfaces (e.g., vascular
catheters, cerebrospinal fluid shunts, or Foleys catheter) [231,232]. In addition to MDR-A.
baumannii, extremely-drug resistant (XDR) and pan-drug resistant (PDR) isolates have
also been reported worldwide [230]. Most A. baumannii infections occur in ICU-patients
and account for up to 20% of ICU-infections worldwide [141,233], with an increase in
mortality rates (30% to 75%) [234]. Moreover, their ability to acquire resistance to antibiotics
and persistence in the environment are the main factors contributing to their survival in
the hospital environment [235]. CRIs associated with MDR-A. baumannii biofilms have
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been widely reported [236–243]. A. baumannii possess several adhesins (Table 1), which
contribute to biofilm formation and bacterial colonization on medical devices [230]. Several
reports have shown the presence of ompA (detection from 81 to 100%), csuE (detection from
80 to 100%), and bap (detection from 43 to 91.4%) in clinical A. baumannii strains producing
strong biofilms [232,244–248]. In a recent study, Kasperski et al. [249] reported that 72% of
strong biofilm producer A. baumannii strains harbored four genes associated with biofilm
formation (bap, bfmS, csuE, and ompA), showing their implication in bacterial adhesion
on surfaces.

4.6. Staphylococcus aureus

Staphylococcus aureus is a clinical pathogen that causes infections in both humans and
animals, ranging from mild infections to severe invasive life-threatening infections [250].
This organism is also the main agent involved in NIs due to its incredible ability to ad-
here to the surface of medical devices and form a biofilm, which often leads to chronic
infections such as osteomyelitis, endocarditis, CF, catheters infections, prostheses infec-
tions, and other medical device-associated infections [251–253]. S. aureus is one of the major
pathogens responsible for nosocomial blood infections with an incidence estimated between
10–30 cases/100,000 persons/year and associated with mortality rates ranging between 15
and 40% [254]. In addition to this, the global emergence of methicillin-resistant S. aureus
(MRSA) is a major public health concern given its high virulence and therefore, treatment
failure is unavoidable [155], increasing mortality and morbidity in patients [251]. It is impor-
tant to note that the mecA gene is the genetic determinant of methicillin resistance in MRSA,
which is located on the mobile genetic element called staphylococcal cassette chromosome
mec (SCCmec) [255]. It has a remarkable arsenal of virulence factors (Table 1) including tox-
ins, proteases, nucleases, but also many proteins anchored in the cell wall which important
factors are allowing it to adhere to tissues, to surfaces, to form a biofilm, and to escape the
host’s immune defense [256,257]. It has been reported that the mortality rates associated
with MRSA bacteremia were higher than those associated with methicillin-sensitive S.
aureus (MSSA) bacteremia [258]. CR-BSIs due to S. aureus are considered to be the most
fearful of infections. Indeed, Mandolfo et al. [259] identified 113 CR-BSIs caused by MRSA
(47.5%) and MSSA (52.5%) in hemodialysis patients. In the study of Bonnal et al. [260], 56%
of S. aureus in PVC-BSIs and 34% of S. aureus in CVC-BSIs were identified. Recently, Pinto
et al. [261] identified S. aureus as the main causative agent of CR-BSIs with a rate of 24.1%.
Other studies [85,175,222,258,262–266] also reported implication of S. aureus in CR-BSIs. S.
aureus, especially MRSA, also constitutes a serious problematic pathogen in CA-UTIs [267].
In fact, S. aureus can colonize the urinary tract via urinary catheterization causing ascending
UTIs. The presence of MRSA complicates the situation, extending the length of hospital
stay [268]. This pathogen causes approximately 0.2–4% of UTIs and is more often found in
patients in long-term care and with long-term catheters [269]. Several studies have shown
the implication of S. aureus in CA-UTIs [267,270,271].

Various reports showed the implication of virulence genes in S. aureus healthcare
infections including CRIs. The major factor in staphylococcal biofilm formation is the
polysaccharide intercellular adhesin (PIA) or poly-N-acetyl β-1-6 glucosamine (PNAG),
encoded by the icaADBC operon [272–274]. This polysaccharide plays an important role
in colonization, biofilm formation and biofilm-related infections, antimicrobial resistance,
immune evasion, and phagocytosis [146]. Several studies reported a positive correlation
between the presence of icaAD genes and the ability of Staphylococcus strains to produce
a biofilm [275–277]. However, Pinto et al. [261] showed no relationship between the pres-
ence/absence of the ica operon and biofilm formation on CVCs. Another recent study
showed that 4/6 S. aureus strains, that did not carry ica genes, were strong biofilm produc-
ers [278]. This indicates that other genes may be involved in biofilm formation. Indeed, S.
aureus contains also a range of proteins categorised as “microbial surface component recog-
nising adhesive matrix molecules (MSCRAMM)” [146,149] such as fibronectin-binding
proteins (FnBPA and FnBPB), clumping factors (ClfA and ClfB), collagen adhesin (Can),
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elastin binding protein (EbpS), fibrinogen binding protein (Fib), laminin-binding protein
(Eno), and serine aspartate repeat proteins C, D, and E (SdrC, SdrD, SdrE) [279,280], which
have been implicated in binding host matrix components (fibronectin, fibrinogen, collagen)
to initiate cell attachment and/or biofilm formation [150]. The association between the
MSCRAMMs adhesins ClfA/B, FnbA/B, and Cna with bacteremia and catheter-related
bacteremia has also been reported [281,282]. Similarly, Walker et al. [267] reported that the
clumping factor ClfB, interacting with fibrinogen, facilitates colonization of the UC and
bladder leading to infection in mice and humans in a CA-UTI model.The expression of
these virulence factors and biofilm formation are regulated by global regulatory systems
such as accessory gene regulator (agr), staphylococcal accessory element (sae), and also by
staphylococcal accessory regulator A (sarA) [155]. Pérez-Montarelo et al. [283] reported
that more than half of MRSA-related bloodstream isolates belong to the accessory gene
regulator (agr) group II.

4.7. Staphylococcus epidermidis

Staphylococcus epidermidis is one of the most ubiquitous opportunistic pathogens [284]
that causes serious infections in immunocompromised patients, especially those associated
with the presence of invasive medical devices (e.g., VC and artificial heart valves) [156].
However, this bacterium rarely causes CA-UTIs and rarely pyelonephritis (without an in-
dwelling urinary device) [285]. It is estimated that 30% of CA-BSIs are due to S. epidermidis
strains [286]. S. epidermidis isolates were implicated in several CA-BSIs. A recent report
revealed that this species was the most causative agent in CA-BSIs (13.3%) in the emer-
gency department [287]. A prospective observational study conducted by Pinto et al. [261]
showed that S. epidermidis was the most etiological agent of CR-BSI. A similar retrospec-
tive study on CA-BSI in coronavirus disease 2019 ICU showed also the prevalence of S.
epidermidis [288]. Other prevalence rates have been also reported: 31.37% [289], 31% [290],
28% [291], 18.1% [292], 12.33% [286], 8.3% [293], and 7.7% [261]. The European Center
for Disease Prevention and Control reported that S. epidermidis caused 23.6% of CA-BSI
cases in ICUs [261]. It has also been reported that children are very susceptible to infection
associated-methicillin-resistant S. epidermidis strains in perinatal units [294]. In addition,
in recent years, the situation has become complicated with the capacity of S. epidermidis
strains to form biofilms on medical devices and their increased resistance to antibiotics,
mainly methillin resistance, leading to significantly high mortality and morbidity rates and
medical costs [295,296]. It has been reported that more than 70% of S. epidermidis strains are
resistant to methicillin, which is encoded by mecA gene, making the treatment of infections
ineffective but above all that this resistance to methicillin can be quickly disseminated to
other Gram-positive strains via horizontal gene transfer [297]. S. epidermidis strains produce
a variety of virulence factors contributing to their pathogenicity (Table 1). However, unlike
S. aureus, S. epidermidis isolates are weakly virulent, do not produce aggressive toxins, and
are commonly non-hemolytic [159]. The main virulence factor is its ability to adhere to the
surface of medical devices and form a biofilm [298,299]. During accumulation, S. epidermidis
produces a major component of the biofilm matrix which is PIA [156]. As for S. aureus,
PIA, encoded by ica opeon, is an essential factor in S. epidermidis biofilms allowing their
adhesion to surfaces [300]. Cherifi et al. [301] found that the ica operon was significantly
more present in CR-BSI isolates than in commensal isolates. However, François et al. [274]
reviewed that the expression of ica operon is not essential in the colonization of a surface,
and the presence of other virulence genes such as atlE, fbe, and embp are involved in catheter-
related infections linked to S. epidermidis biofilms [286] The pathogenesis of S. epidermidis is
regulated by two key systems, the agr and the sar regulators, which allow the expression
or repression of the virulence genes in a coordinated manner during infection [160]. An
early study showed that the agr QS system played an important role in the long-term
development of S. epidermidis biofilm during medical device-associated infections [302].
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4.8. Enterococcus spp.

Enterococci are Gram-positive, non-motile, lactic acid-producing bacteria widely
found in the gut microbiota of humans and animals [303]. Enterococci are facultative
anaerobes that tolerate a variety of environmental conditions such as extreme pH, salinity,
and a wide temperature range (10 to >45 ◦C) [163]. Enterococci are tenacious microor-
ganisms characterized by increased tolerance to desiccation and starvation, making them
resistant to environmental stresses [304]. The emergence of Enterococcus strains as HAIs
agents [305] can be explained by the following: (i) these bacteria are intrinsically resistant to
several classes of antibiotics (cephalosporins, macrolides, clindamycin, and trimethoprim–
sulfamethoxazole) and they acquired resistance to ampicillin, ciprofloxacin, high-level
aminoglycosides, and vancomycin [306], causing a serious problem for the treatment of
these infections given the limited choice of available antibiotics (linezolid, daptomycin,
quinupristin/dalfopristin, and vancomycin) [307]; (ii) they have an impressive capacity to
acquire new resistance genes due to the plasticity of their genome [308].

Enterococcus spp., particulary En. faecalis and En. faecium, are the most opportunis-
tic pathogens causing several infections, including medical device-associated infections,
UTIs, wound infections, and BSIs [308]. En. faecalis is responsible for 80 to 90% of cases
of Enterococci-associated NIs, followed by En. faecium (5 to 10% of infections) [309,310].
Putta et al. [311] revealed that En. faecalis was the most causative agent of CA-UTIs in
ICU-patients. In another study, 13.11% of En. faecium was isolated from CA-UTIs [312].
Different rates were obtained in other studies: 91% [313], 29% [84], 22.9% [314], 19% [315],
and 7.1% [316]. The presence of these pathogens in CL-BSIs was also reported [317,318].
En. faecalis was the 5th most frequently isolated bacteria from CA-UTIs and the 3rd from
CLA-BSIs, unlike En. faecium, which was the 11th and 5th in CA-UTIs and CLA-BSIs,
respectively [303]. However, in recent years, the prevalence of infections due to En. faecium
has increased, overtaking the prevalence of En. Faecalis, and this is due to the emergence of
antibiotic resistance, especially vancomycin-resistant En. faecium (VREfm), which is respon-
sible for the most vancomycin-resistant Enterococcus (VRE) infections in the world [319–321],
thus leading the WHO to include VREfm in the list of high priority pathogens [321].Of note,
glycopeptides resistance in Enterococci is attributed to the acquisition of different clusters
of genes (e.g., vanA, vanB, vanD, vanE, vanG, and vanL) which confer resistance [322,323].
In addition to antibiotic resistance, the ability of Enterococcus strains to form biofilms is one
of the primary factors involved in their virulence and pathogenicity notably on medical
devices [324,325]. Several investigations have been conducted on Enterococci virulence
factors involved in biofilm formation. Soares et al. [326] found that En. faecalis possessed
esp, gelE, and asa1 genes. Kafil and Mobarez [327] reported the presence of esp, ebpA, and
ebpB genes found in high biofilm producers. Similar results were found in the study of
Khalil et al. [325]. It has been reported also that the endocarditis and biofilm-associated
(Ebp) pilus is involved in biofilm formation on UC leading to CA-UTI [327,328]. However,
in presence of urine, Ebp is not capable to initiate En. faecalis adhesion on UC. This fact
was explained by the release of fibrinogen covering the catheter following an inflammatory
response caused by the catheter itself [327]. In another study, the analysis of mutations
affecting two proteases, secreted by En. faecalis (GelE, SprE), revealed that loss of both
factors resulted in decreased CA-UTI and defective biofilm establishment in a murine
CA-UTI model, whereas the loss of either had no effect. They revealed also that the high
expression of these proteases depends on the fsr QS system [329]. Another study reported
the importance of Ace and Esp adhesins in the bacterial attachment on the catheter surface,
and biofilm accumulation [330].Given that En. faecalis is the most identified species in
biofilm-associated infections [331,332], the virulence factors cited in Table 1 only concern
this bacterial species.
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5. Pathogenesis of Venous Catheter Contamination and Catheter-Associated
Bloodstream Infections (CA-BSIs)

After insertion of a VC, the surface of the device is immediately covered by a condi-
tioning film composed of organic molecules such as fibronectin and fibrinogen, collagen,
elastin, and laminin [27,333]. There are several pathways involved in catheter contamina-
tion: colonization of the surface of the catheter tip by skin microorganisms originating from
health care worker’s hands, contaminated disinfectant, which migrates to the insertion site
in the skin pathway of the catheter and along the catheter surface (extraluminal) which
is the most common route of infection for short-term catheters (inserted for ≤14 days),
colonization of the inner surface of the catheter by contaminated infusion product and
catheter hub (intraluminal), and finally, by hematogenous seeding (rare route) [17,334]. In
contact with blood, microorganisms interact with fibrin to produce an adherent biofilm
which will promote bacterial colonization and the spread of these microorganisms [334].

Colonization and biofilm formation on the catheter surface occurs 24 h after device
insertion [335]. These pioneer bacteria allow the attachment of other pathogens by provid-
ing more diverse adhesion sites. After multiplication, the bacteria produce an extracellular
matrix which maintains the biofilm, leading to irreversible adhesion to the surface of the
catheter [27]. Once the biofilm is mature, bacteria can disperse, cause catheter associated
bloodstream infections (CA-BSIs), and colonize other sites in the body [336].The formation
of fibrin sheaths is also observed. Once the catheter is implanted, the fibrinogen, albumin,
lipoproteins and coagulation factors, released due to the lesion of the blood vessels, begin
to deposit on the surface of the catheter within 24 h forming a fibrin sheath which covers
the surface of the catheter within days or even weeks. This fibrin sheath is responsible
for the late stage catheter dysfunction, which usually occurs about three months after the
catheter placement [333,337].

6. Pathogenesis of Urinary Catheter Colonization and Catheter-Associated Urinary Tract
Infections (CA-UTIs)

Transurethral ascension of microorganisms is the most common mechanism for the de-
velopment of UTIs, which explains the increased risk of infection after catheterization [338].
Bacteria can colonize UCs either by the endoluminal route which involves exogenous flora
originating from colonization of the collecting sac or from a breach of the closed system
during manipulations of the urinary catheter, or by the exoluminal route which involves
the endogenous flora of the urinary meatus and occurs early during catheter placement or
later following colonization of the urinary meatus by the digestive flora [6]. After insertion
of the catheter, the bacteria overcome first the electrostatic repulsion observed between
bacterial cell and catheter surface to allow intimate interactions to occur, then adhere to a
conditioning film of urine components and host proteins, such as Tamm–Horsfall protein,
magnesium and calcium ions, which form along the catheter surface. It is also reported
that the urinary catheter elicits an inflammatory response resulting in the release of the
host protein fibrinogen into the lumen of the bladder which will cover the surface of the
catheter [330].Pathogens such as S. aureus and Enterococcus faecalis possess adhesins such
as the fibronectin-binding protein A (FnBPA) and the endocarditis and biofilm-associated
pilus (EbpA), respectively, which bind to the host fibrinogen in order to disrupt blood
clotting, initiate biofilm formation, as well as immune evasion [339,340]. Once irreversibly
fixed to the surface of the catheter via adhesins and pili, bacteria begin to change their
phenotype, producing exopolysaccharides which protect them and form a biofilm [106,341].
The presence of biofilms promotes the appearance of epithelial lesions due to the proteases
and bacterial toxins produced. The uropathogenic bacteria can then ascend to the kidneys,
attaching again to the renal epithelium, causing kidney infections. Left untreated, these
infections can progress to bacteremia by crossing the tubular epithelial cell barrier into the
bloodstream [341].
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7. Prevention of CA-BSIs
7.1. Education, Training and Surveillance

The lack of knowledge and skills is one of the main obstacles to medical practice.
Indeed, compliance with guidelines for the use of intravascular catheters is very important
in order to decrease the incidence of CA-BSIs and their associated health costs. Educating
healthcare personnel regarding techniques for using intravascular catheters, the proce-
dures for inserting and maintaining intravascular catheters, periodically assessing their
knowledge and ensuring appropriate levels of nursing staff in intensive care units are a
first line of prevention [342,343]. In addition, another effective measure to reduce CA-BSIs
is to avoid unnecessary catheterization of patients as well as the rapid removal of venous
catheters which are no longer necessary, particularly long-term catheters [344].

7.2. Aseptic Techniques

Hand hygiene before handling catheters, disinfecting catheter sites, catheter hubs or
injection ports with an appropriate agent before accessing the catheter are essential for
the prevention of CA-BSIs [345]. The use of 2% chlorhexidine–alcohol as an antiseptic
agent before insertion of a VC and during dressing changes is recommended to prevent
the development of CA-BSIs. The incidence of CA-BSIs was shown to be five times lower
using 2% chlorhexidine–alcohol solution, compared to 5% polyvidone iodine–alcohol [346].
The catheter tip is also a major source of contamination. For this, its disinfection with
appropriate antiseptic or antimicrobial ointments is recommended. Use of a povidone–
iodine antiseptic ointment or bacitracin/gramicidin/polymyxin ointment at the exit site
after catheter insertion is recommended [335]. The use of sterile gloves, a sterile long-
sleeved gown, mask, and large sterile sheath sheet during insertion of a CVC are essential
for the prevention of CA-BSIs. A checklist should also be used to improve adherence to
procedures at the time of insertion [347]. After insertion of the catheter, the risk of infection
should decrease with the use of aseptic techniques. However, insertion and maintenance of
VCs by inexperienced personnel could increase the risk of catheter colonization and the
development of infection. Having an experienced infusion therapy team in place to insert
and maintain catheters decreases CA-BSI levels up to eight times [27].

7.3. Catheter Insertion Site

The catheter insertion site is an important parameter whose choice should be based
on both the benefits and risks of the procedure (infection, thrombosis, and mechanical
complications). The subclavian site is the ideal insertion site for CVCs, which helps reduce
infectious complications [347]. This is probably explained by the fact that the subclavian
route has the longest subcutaneous distance between the skin and the entrance to the
vessel [348]. In addition, according to previous studies, subclavian catheterization was
associated with a lower risk of infectious and thrombotic complications than femoral and
jugular catheterization [349–351].

7.4. Catheter Lock Solutions

Another approach that shows promise for the prevention of CA-BSIs is antimicrobial
lock therapy. It involves instilling a highly concentrated antimicrobial solution into the
lumen of the catheter when not in use [352,353] to remove the blood so that the occlusion
and bacterial growth are minimized [5] and also preventing biofilm formation [354]. This
technique is useful especially in cases of uncomplicated long-term CA-BSIs caused by
pathogens [47]. A variety of antimicrobial agents can be used such as heparin (anti-
occlusion) [355,356], vancomycin, gentamicin (antibiotics) [357,358], citrate, ethanol, and
taurolidine (antimicrobials) [357,359–361]. Antibiotics are generally used for therapeutic
measures once a CA-BSI has been diagnosed, while heparin, citrate, ethanol, and taurolidine
are used prophylactically [5]. Furthermore, Kumar et al. [362] demonstrated that using
S-nitroso-N-acetyl-l-cysteine ethyl ester (SNACET)is very effective; this is able to generate
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nitric oxide with antimicrobial properties as a catheter locking solution. Indeed, a significant
reduction of 99% in the adhesion of S. aureus and E. coli on catheters was observed.

7.5. Dressing

To prevent complications for patients, a dressing is often placed where the integrity
of the skin is compromised. Several materials are used as dressing for VCs [362,363]. A
gauze dressing is often used when blood seeps from the catheter insertion site. However,
their use increases the risk of bacterial contamination and infection [347,364]. Transparent
semi-permeable dressings are widely used and allow continuous observation of the skin
insertion site and reduce the risk of extrinsic colonization. They should be changed imme-
diately if they become wet, loose, or soiled [347]. The risk of CA-BSI increases more than
3-fold after rupture of the second dressing and more than 12-fold if the final dressing is
ruptured [365,366]. The chlorhexidine-impregnated dressing, an innovative strategy, shows
promising results in the prevention of infections linked to CVCs, with a reduction in colo-
nization (6.5% versus 13.2%) [367] and infection (1.51/1000 versus 5.87/1000 catheter-days)
compared to traditional dressings [368]. Moreover, Puig-Asensio et al. [369] reported that
chlorhexidine dressings reduced the risk of CA-BSIs in patients with short-term CVCs, in-
cluding those with an onco-hematological disease. There is also other evidence that shows
that dressings impregnated with chlorhexidine may reduce the risk of CVC-BSI, compared
to standard polyurethane dressings, and other types of non-impregnated dressings (gauze
and tape dressing) [369–373]. A recent study conducted by Hou et al. [374] found that the
chlorhexidine gluconate gel dressings used more effectively reduced the risk of CVC-BSI in
patients unlike the chlorhexidine gluconate sponge dressings.

7.6. Antimicrobial Agents Release

Several strategies using coating or impregnating catheters with antibiotics/antimicrobials,
peptides, metals, nitric oxide, or other compounds have been developed to prevent
biofilm formation and constitute a promising alternative to reduce infection rates and
CA-BSIs [375,376]. The use of antimicrobial agents as a coating is the most popular ap-
proach due to their ability to target microorganisms in different ways [377]. Inhibition
of bacterial adhesion on catheter surfaces could be prevented by releasing the antimicro-
bial agent [378]. This approach aims to attach the antimicrobial agent to the catheters by
adsorption, which will diffuse after exposure to body fluids [379]. This approach allows
the release of high doses of the antimicrobial agent without exceeding the toxic threshold,
reducing the development of resistance. However, the drawback with this technique is that
the release is uncontrolled and lacks long-term properties [380,381].

Catheters coated with chlorhexidine–silver sulfadiazine, minocycline–rifampicin and
miconazole and rifampin are the most commonly studied and are associated with a de-
creased prevalence of catheter colonization and CA-BSIs [382–385]. In fact, it has been
reported that these impregnated catheters had the potential to reduce the risk of coloniza-
tion of these devices and the incidence rates of CA-BSIs per 1000 catheter days [5]. Among
catheters based on antimicrobial agent release which have been approved and commercial-
ized, there is ARROWg+ard® (chlorhexidine and silver sulfadiazine coating), Spectrum®

(minocycline and rifampin coating) and Chlorag+ard® (chlorhexidine coating) [5]. Other
agents are able to reduce bacterial colonization on venous catheter surfaces. Table 2 summa-
rizes most research studies which tested the antimicrobial agent coating/imprenated and
surface modifications approaches for the prevention of bacterial colonization and CA-BSI.
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Table 2. The effectiveness of different antimicrobial agent coating and surface modification approaches.

Strategy Agent Used Approach Used for Coating VC Microorganism Reference

Release killing
Antirhumatic

Auranofin Auranofin-coated polyurethane catheter. MRSA [386]

Release killing Auranofin Auranofin-coated polyurethane catheter. S. aureus [387]

Release killing Guanidine derivated

poly(hexamethylene biguanide)
hydrochloride–sodium stearate (PHMB–SS)

Coating developed using electrostatic interaction
based on polyelectrolyte.

E. coli
S. aureus [388]

Antimicrobial peptides

Contact killing ε-Poly-
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Pathogens 2024, 13, 393 23 of 52

Table 2. Cont.

Strategy Agent Used Approach Used for Coating VC Microorganism Reference

Quaternary ammonium compounds

Contact killing Quaternary ammonium thiol compound (Q8-SH)
Grafting a quaternary ammonium thiol compound (Q8-SH) to

a thermoplastic polyurethane containing allyl ether
(allyl-TPU) side-chain functionality.

E. coli
P. aeruginosa

S. aureus
[395]

Graphene derivated

Contact killing Graphene oxide
Immobilization of oxidized graphene nanoplatelets

(GNP-M5ox) on the surface of silicone rubber by dip and
spray coating.

S. epidermidis [396]

Other compounds

Contact killing poly(dimethylsiloxane) (PDMS) Hydrophobic hyperbranched coating resin was covalently
attached to PDMS.

E. coli
P. mirabilis
S. aureus

S. epidermidis

[397]

Hydrophilic polymer

Surface modification Poly(ethylene glycol) PEG Microcrystalline sulfamethoxazole (SMZ) and trimethoprim
(TMP) were immobilized with PEG.

E. coli
S. aureus [398]

Surface modification Fluoropolymer

A commercially polyurethane PICC catheter was modified by
a three-step lamination process, with thin fluoropolymer

layers to yield fluoropolymer–polyurethane–fluoropolymer
composite structure before applying the liquid

perfluorocarbon (LP)

S. aureus
S. epidermidis [337]

Hydrophobic polymer

Surface modification Polytetrafluroethylene (PTFE) SiO2 nanosphere was coated on PTFE catheter. E. coli
S. aureus [399]
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7.7. Contact Kill Systems

Contact destruction of bacteria relies on the use of antimicrobials grafted onto the sur-
face of catheters to form a lethal barrier for these pathogens [5]. Indeed, these antimicrobial
molecules are mainly cationic or enzymes that bind covalently to the surface of the catheter
via hydrophobic polymer chains, and kill these bacteria on contact via membrane interac-
tions.Additionally, this strategy exhibits longer antimicrobial activity and low toxicity [379]
and does not output biocides in body fluids [397]. Several compounds such as quaternary
ammonium compounds, peptides, graphene derivated (Table 2) have been evaluated as
promising contact killing agents. However, the major concern with this strategy is that the
bioactive surface can be inactivated when coated with proteins from body fluids [379]. For
that, further research studies are needed to improve the strategy.

7.8. Antifouling Approaches

Surface modifications, such as hydrophilic polymeric surface coatings, work also by
reducing microbial adhesion to the catheter surface, thereby minimizing infection [375].
Indeed, surface hydration is an important parameter of antifouling coatings due to the
water layer formed on the surface of the polymer, which acts as a barrier preventing
bacterial adhesion and proteins adsorption [376].The most hydrophilic polymers used in
the antifouling approach are poly(ethylene glycol) (PEG) (most commonly used), poly-2-
hydroxyethyl methacrylate, poly(2-hydroxypropyl acrylamide), dextran, and zwitterionic
polymers [400]. The immobilization of zwitterionic compounds or PEG provides promising
results for CR-BSI prevention [398,401]. A recent technology which is the fluoro-passivation
of catheters has emerged as an effective approach which consists of coating the catheter
with fluoropolymer to increase its biocompatibility and reduce infection [337]. Among the
coated catheters commercialized are the AngioDynamics BioFlo PICC catheter (endexo)
and the CerebroFlo extraventricular drain catheter (endexo) [337]. Furthermore, another
prevention way is the use of materials characterized by low energy, such as hydrophobic
polymers (PTFE) [5].A few studies on surface modifications of venous catheters are cited in
Table 2. Figure 2 illustrates the main prevention strategies of CA-BSIs.
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8. Prevention of CA-UTIs

CA-UTI is one of the most common device-related infections in which preventive mea-
sures should be taken [402]. These precautions to prevent the transmission of MDR-bacteria
must be scrupulously observed in catheterized patients and also limit the uncontrolled use
of antibiotics [403].

8.1. Avoidance of Urinary Catheter Use

The main CA-UTI prevention strategy is to avoid or reduce the use of catheters. Over-
all, UCs are overused and placed for inappropriate indications in 21–50% of catheterized
patients [403]. Accepted indications for the use of a catheter are considered the first step in
limiting their uses. Among these limitations are the following: urological surgery, moni-
toring of urine flow in seriously ill patients, management of acute urinary retention and
urinary obstruction, or for end-of-life care to improve patient comfort [404]. Limiting the
duration of catheterization is also very important. Indeed, when a catheter is placed, it
must be removed quickly once it is no longer needed [404]. Healthcare providers should be
aware of the existence of the UC. Therefore, catheter remainder interventions that include a
verbal/written reminder, a sticker reminder on the patient’s chart or an electronic reminder
that indicates that a urinary catheter is still in place is a good prevention strategy. Another
type of intervention called a “stop order” that requires the clinician (nurse or doctor) to
remove the catheter after a period of catheterization or a condition has occurred, unless
the catheter remains clinically appropriate, can be followed also in case the reminders are
ignored [405]. Institutional policies should also reduce the use of peri-operative catheters
by encouraging early removal of post-operative catheters and monitoring bladder volume
using ultrasound bladder scanners [404].

8.2. Alternatives to Indwelling UC

Studies have shown decreased UTIs or deaths in patients who used condom catheters.
In addition, this type of catheter seems to be less painful and more comfortable than in-
dwelling catheters. Therefore, condom catheters may be an alternative for patients with
retained or obstructed bladder. It has also been reported that the use of intermittent catheter-
ization may be beneficial in long-term catheterized patients with neurogenic bladder or
after hip surgery has reduced the risk of bacteriuria thereby minimizing the need for an
indwelling catheter [403].

8.3. Education and Training

Health care personnel and others who handle urinary catheters should be trained
in the procedures for inserting, maintaining, and removing urinary catheters. Education
should also be offered on catheter associated urinary tract infections, complications of
urinary catheterization, and alternatives to indwelling catheters [406].

8.4. Aseptic Techniques for Insertion and Maintenance of UCs

When indwelling catheterization is required, aseptic catheter insertion and mainte-
nance are recommended to prevent CA-UTIs. For this, UCs must be placed by a qualified
healthcare professional [403]. Among these recommendations are the following: hand
washing with soap and water should be carried out immediately before and after handling
a urinary catheter; the surface of the urethral meatus must also be clean before insertion of
the urinary catheter; the catheter must be attached to the patient’s thigh to avoid lesions of
the urethral meatus; in case of any skin irritation, the catheter should be changed imme-
diately; sterile and closed urine drainage should be used to reduce the risk of infections;
finally, irrigation of the bladder with normal saline or a solution containing antibiotics is
not recommended, except in cases of obstruction [407].
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8.5. Antimicrobial Coatings

Although improved hygiene procedures, replacement of UCs, and the use of prophy-
lactic antibiotics have helped to reduce the incidence of CA-UTIs, it has not been avoided
sufficiently. One of the most promising approaches is the use of antimicrobial coatings
on UC surfaces to prevent CA-UTIs but more specifically to prevent adhesion, biofilm
formation and encrustation of catheters [32,408–411]. Such strategies reduce the viability
of pathogens by inhibiting the metabolic pathways necessary for their survival such as
inhibiting the synthesis of nucleic acids and proteins involved in cell wall synthesis [410].
However, the development of these devices with antimicrobial surfaces must meet cer-
tain requirements, including easy and reproducible production, resistance to mechanical
stresses, biocompatible and non-toxic, antimicrobial efficacy for a long time, and finally
avoiding the development of resistance [411]. Among the antimicrobial agents used for UC
coating are the following: metal (silver, nanoparticles), antibiotics, nitric oxide, antimicro-
bial peptides, bacteriophages [410]. Table 3 summarizes most research studies which tested
the antimicrobial agent coating for the prevention of bacterial colonization and CA-UTIs.
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Table 3. The effectiveness of different antimicrobial agent coating and surface modifications approaches used in CA-UTIs prevention.

Strategy Composite Used Approach Used for Coating VC Tested
Microorganism Reference

Release killing
Metal

Silver (Ag) Silver–polytetrafluoroethylene (Ag-PTFE) nanocomposite
coated UCs.

E. coli
P. mirabilis [409]

Release killing copper ions (Cu)
Copper ions (Cu) and a polyphenol tannic acid (TA) were
coated on urinary catheters (TA-Cu coated urinary catheters)
using using one-step coordination method.

E. coli
P. mirabilis
S. aureus

[412]

Release killing
Nanoparticles

Silver (Ag-NPs) Silver nanoparticles–polydopamine (AgNPs-PDA) coated
catheters were designed. E. coli [413]

Release killing Copper oxide (CuO-NPs) Zn-doped CuO-NPs were coated on urinary catheters by
sonochemical method.

E. coli
P. mirabilis
S. aureus

[414]

Release killing Zinc oxide (ZnO NPs)
Zinc oxide nanoparticles (ZnO NPs) were decorated with
amylase (biofilm matrix-degrading enzyme)
by sonochemical method.

E. coli
S. aureus [415]

Release killing
Antibiotics

Chlorhexidine Chlorhexidine-loaded poly(ε-caprolactone) nanospheres
(CHX-NS) spray-adhered on urinary catheters.

E. coli
S. aureus [416]

Release killing Chlorhexidine
Triclosan Chlorhexidine/Triclosan impregnated on silicone catheters.

E. coli
K. pneumoniae
P. mirabilis
E. feacalis

[417]

Release killing Sparfloxacin Sparfloxacin-coated latex catheters using two
immobilization methods.

E. coli
S. aureus [418]

Antimicrobial peptides

Contact killing E6 (RRWRIVVIRVRRC) A cysteine labeled peptide E6-coated polyurethane catheter was
designed by covalent immobilization.

P. aeruginosa
S. aureus [419]

Contact killing Chain201D (KWIVWRWRFKR)
(from crowberry endophytes)

Chain201D coated on silicone surface model was designed by
covalent immobilization.

E. coli
S. aureus [420]
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Table 3. Cont.

Strategy Composite Used Approach Used for Coating VC Tested
Microorganism Reference

Contact killing Cys Lasio-III
Cys Lasio-III was immobilized on a commercial silicone catheter
via a combination of AGE brush and PEG based
chemical coupling.

E. coli
P. aeruginosa
S. aureus
En. faecalis

[421]

Nitric oxide

Release killing Nitrix oxide (NO) NO-impregnated catheters were designed. E. coli [422]

Bacteriophages

Contact killing

The anti-Pseudomonas phage cocktail: ΦPaer4, ΦPaer14,
M4, 109, ΦE2005-A, and ΦE2005-C
The anti-Proteus phage cocktail: ΦPmir1, ΦPmir32,
ΦPmir34, and ΦPmir37

Hydrogel-coated catheters were pretreated with phages. P. mirabilis
P. aeruginosa [423]

Contact killing The phage cocktail (podovirus vB_PmiP_5460 and
myovirus vB_PmiM_5461) Urinary catheters treated with phage cocktail were performed. P. mirabilis [33]

Hydrophilic polymer

Surface modification Poly(N,N-dimethylacrylamide) (PDMAA) The poly(N,N-dimethylacrylamide) (PDMAA) hydrogel coated
on polyurethane ureteral stents. E. coli [424]

Surface modification Poly(N,N-dimethylacrylamide) (PDMAA) The hydrogel coating layer was formed using UV-crosslinking
and swell-peeling methods. S. aureus [425]

Surface modification Polydopamine/poly(N,N-dimethylacrylamide) Polydopamine/poly(N,N-dimethylacrylamide)-coated silicone
catheters (PDA/uhPDMA) using dip coating approach. P. aeruginosa [426]

Surface modification Polyethylene glycol PEG Silver-polyethylene glycol (mPEG-DOPA3) coated urinary
catheters by cross-linking approach. E.coli [427]

Surface modification Sulfobetaine methacrylate (SBMA) Sulfobetaine methacrylate (SBMA) was grafted on silicone
catheters using enzymatic approach.

P. aeruginosa
S. aureus [428]

Surface modification Polytetrafluoroethylene PTFE

Silver-
polytetrafluoroethylene
(Ag-PTFE) nanocomposite grafted catheters were developed via
a facile wet chemistry method.

E. coli
S. aureus [429]
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Table 3. Cont.

Strategy Composite Used Approach Used for Coating VC Tested
Microorganism Reference

Enzymes

Surface modification Acylase
The immobilization of the enzyme on urinary catheters was
done by layer-by-layer
deposition technique.

P. aeruginosa [430]

Surface modification α-chymotrypsin (α-CT) α-chymotrypsin (α-CT) covalently immobilized on low-density
polyethylene surfaces (LDPE-α-CT). E. coli [431]

Surface modification Glycoside hydrolases (Ghs)
PslGh modified surfaces using amine functionalization
(APTMS) and glutaraldehyde (GDA)7
Linking.

P. aeruginosa [432]

Surface modification Cellobiose deshydrogenase (CDH) CDH was covalently grafted onto plasma-activated urinary
polydimethylsiloxane (PDMS) catheter surfaces. S. aureus [433]
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Metals or composite nanoparticles represent suitable alternatives for CA-UTI pre-
vention and biofilm-related infections [434]. Several studies [409,435–439] have reported
that UCs coated with thin-films of silver alloy could reduce bacterial adhesion but also
the incidence of asymptomatic bacteriuria and CA-UTI. Other metals have been tested as
coatings such as copper (Cu) [412].

Recently, novel advance, namely nanoparticles, constitutes a promising approach in
biomedical devices [47]. Several studies reported the efficiency of a silver nanoparticle
coating method in colonization prevention of several pathogens such as E. coli, P. mirabilis,
P. aeruginosa, Stapholococcus spp., and Enterococcus spp. [413,429,440–443]. Throughout the
years, other nanoparticles have been studied as coating, including green–silver nanopar-
ticles [444,445], gold nanoparticles [446], copper nanoparticles [447] and zinc-doped(Zn)
copper oxide (CuO) nanoparticles [414,448].

Antibiotics have been extensively studied over the years and despite the emergence
of MDR-pathogenic bacteria, several studies have shown the effectiveness of many an-
tibiotics on infections caused by Gram-negative and Gram-positive bacteria [449]. More-
over, antibiotics are often used for CA-UTI treatment [378]. However, due to their high
cost and conflicting results between in vitro studies and clinical trials, their use is ques-
tionable [377].Antibiotics that have been commonly studied are such as nitrofurazone.
Nitrofurazone-coated UCs was tested against several pathogen biofilms (E. coli, P. aerug-
inosa, S. epidermidis, En. faecalis) with promising results [450–452]. However, their car-
cinogenic potential in animal models induced their removed from the market and prohi-
bition by the FDA [410]. Other antibiotics such as gentamicin [453], chlorhexidine [454],
ciprofloxacin [455], norfloxacin [456], triclosan [457], and sparfloxacin [418] have been
tested as a coating agent. Although giving promising results, the antibiotic-based approach
favors the apparition of bacterial resistance for long-term catheters (e.g., triclosan), leading
to more serious infections [434,458].

For that, the antimicrobial peptides (AMPs) are considered as the most promising
strategies to conventional antibiotics [420].AMPs are host defense peptides widely used
in the treatment of biofilms associated with several clinical pathogens and kill them by
membrane permeabilization [459,460]. Recently, these peptides (e.g., RK1, RK2, CWR11,
Bmap-28, E6, Chain 201D) were tested as coating agents for UCs to prevent biofilm forma-
tion and CA-UTIs [419,461–463].

In other studies, nitric oxide (NO), a natural gas molecule, with a short half-life, has
been demonstrated as being able to protect the host against several pathogens [464]. Its
mechanism of action is that it binds covalently to DNA, proteins, and lipids to inhibit or
kill the pathogen [377]. The approach based on NO appears to be a promising alternative
to combat bacterial infections and the formation of biofilms [465,466].

Bacteriphages have also been suggested as a new strategy to combat bacterial biofilms.
They specifically infect bacteria and disrupt their metabolism to self-replicate and then, kill
them [128,467]. In addition to their specificity and self replication as advantages, they are
able to degrade biofilm matrix and prevent resistance development, while the treatment is
improved when phages cocktail is used [378,410,468]. Phage therapy has been used to treat
wide bacterial infections with little or no side effects constituting a promising technology in
clinical application [469]. Until now, several phage-based coating UCs have been developed
and tested for uropathogens including E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa, and
Staphylococcus spp. [468,470–473].

8.6. Antifouling Approaches

Antifouling approaches can also prevent bacterial adhesion on UCs and biofilm for-
mation by repelling them without harming them [377]. The principle of these strategies is
the acquisition of anti-adhesive properties by physicochemical modifications of catheter
surfaces in order to prevent bacterial adhesion in addition to a good antibacterial activity
and low toxicity [376,434]. Moreover, this approach provides the advantage of low risk of
drug resistance emergence [474]. Additionally, the hydration layer increases patient com-
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fort due to low friction during UC placement [434]. There are wide antifouling approaches,
especially hydrogels which are the most popular due to their hydrophilic structure which
reduces bacterial growth [475]. Poly(tetrafluoroethylene) (PTFE), poly(ethylene glycol)
(PEG), polyzwitterion, and enzyme coating were also studied [377] to prevent the develop-
ment of biofilms on UC surfaces and CA-UTI prevention. These polymers repel foulants
due to the formation of a hydration layer on the surface [449]. Among the hydrophilic
coatings, some of them have been already commercialized including HydroPlus™ from
Boston Scientific, AQ® from Cook Urological, heparin-based coating Endo-Sof™ Radiance™
from Cook Urological, and SL-6 from Applied Medical [434].

Hydrogels are hydrophilic polymers widely studied as coatings due to their excellent
hydropilicity, high hydration, and porous structures [476]. Several studies reported the
efficiency of this approach [477–479]. However, it was reported that this approach caused
the encrustation of catheters which is contradictory to other results [480]. Further studies
are needed to provide more information about long-term prevention of CA-UTIs and
biofilm formation and validate their effectiveness.

Another polymer used for coating is poly(tetrafluoroethylene) (PTFE), called also
teflon which is characterized by high non-stick properties and resistance to bacterial ad-
hesion, making it an excellent option for biofilm prevention [378,409]. The teflon-coated
catheters are commercially available from Bard Medical [377]. Various early studies have
been also conducted for the same purpose [429,481,482].

Similary, polyethylene glycol (PEG) possesses nonimmunogenic, nonantigenic, and
protein repellent properties thus appearing to be a good antifouling agent [377].

Polyzwitterions that contain both cationic and anionic ions constitute also promising
antifouling agents for the coating of UCs due to their superhydrophilicity [483]. Re-
searchers designed different polyzwitterion silicone catheter surfaces and studied their
effectiveness including sulfobetaine methacrylate (SBMA) [428], copolymer-coated Ti6Al4V
(Ti6Al4V@DMA-MPC) [484], polysulfobetaine (PSB) [485], poly(sulfobetaine methacrylate)
(pSBMA), and poly(carboxybetaine methacrylate) (pCBMA) [486].

In the recent past, the effectiveness of the enzymes was evaluated toward bacterial
adhesion [377]. Furthermore, the enzymes are natural, safe, and non-toxic to other than
their target cells which is an advantage. They were recently studied in the UC-coatings
field [449,487]. Among the enzymes already tested are the following: acylase, cellobiase
dehydrogenase, α-chymotrypsin, and glycoside hydrolases [377]. Table 3 summarizes
most of the studies showing the effectiveness of different antifouling approaches. Figure 3
illustrates the main prevention strategies of CA-UTIs.
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9. Conclusions

Medical device-associated biofilm infections, mainly catheter associated bloodstream
infections and catheter associated urinary tract infections, which are the most common
infections in healthcare, constitute a real problem in hospitals. In addition to the global
emergence of multidrug resistance, the biofilm formation on these devices, especially
the presence of persistent cells, makes these infections worse, causing the recalcitrance
of infections and therapeutic failure, thereby increasing the rate of morbidity, mortality,
healthcare cost, and length of hospitalization.

However, the risk of these infections could be reduced by respecting the prevention
guidelines, including educating healthcare personnel, hygiene, limiting use, choice of
catheter insertion site, and the antimicrobial lock therapy. In recent years, novel and
effective advanced strategies have been developed as contact kill systems—antimicrobial-
coated catheters with metals, nanoparticles, phages, antibiotics, antimicrobial peptides
and other compounds—and have helped to reduce bacterial adhesion, biofilm formation,
catheter encrustation, cytotoxicity, and complications for patients. Antifouling approaches
also constitute promising alternatives to prevent medical device associated infections.
Despite all the in vitro and in vivo studies that have been conducted in this area, no ideal
strategy has been found until now due to the divergence of the results obtained. Further,
additional research studies, notably clinical trials, are still needed to develop biocompatible
strategies and fully validate their efficiency in order to prevent and fight medical device-
associated biofilm infections, especially for long-term catheters.
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published version of the manuscript.
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192. Ochońska, D.; Ścibik, Ł.; Brzychczy-Włoch, M. Biofilm formation of clinical Klebsiella pneumoniae strains isolated from tracheostomy
tubes and their association with antimicrobial resistance, virulence and genetic diversity. Pathogens 2021, 10, 1345. [CrossRef]

193. Makhrmash, J.H.; Al-Aidy, S.R.; Qaddoori, B.H. Investigation of biofilm virulence genes prevalence in Klebsiella pneumoniae
isolated from the urinary tract infections. Arch. Razi Inst. 2022, 77, 1421–1427. [CrossRef]

194. Li, Y.; Ni, M. Regulation of biofilm formation in Klebsiella pneumoniae. Front. Microbiol. 2023, 14, 1238482. [CrossRef] [PubMed]
195. El Fertas-Aissani, R.; Messai, Y.; Alouache, S.; Bakour, R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella

pneumoniae strains isolated from different clinical specimens. Pathol. Biol. 2013, 61, 209–216. [CrossRef]
196. Chen, K.M.; Chiang, M.K.; Wang, M.; Ho, H.C.; Lu, M.C.; Lai, Y.C. The role of pgaC in Klebsiella pneumoniae virulence and biofilm

formation. Microb. Pathog. 2014, 77, 89–99. [CrossRef] [PubMed]
197. Mirzaie, A.; Ranjbar, R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae

strains recovered from clinical samples. AMB Express 2021, 11, 122. [CrossRef]
198. Hafiz, T.A.; Alghamdi, G.S.; Alkudmani, Z.S.; Alyami, A.S.; AlMazyed, A.; Alhumaidan, O.S.; Mubaraki, M.A.; Alotaibi, F.E.

Multidrug-resistant Proteus mirabilis infections and clinical outcome at tertiary hospital in Riyadh, Saudi Arabia. Infect. Drug.
Resist. 2024, 17, 571–581. [CrossRef]

199. Armbruster, C.E.; Smith, S.N.; Johnson, A.O.; DeOrnellas, V.; Eaton, K.A.; Yep, A.; Mody, L.; Wu, W.; Mobley, H.L.T. The
Pathogenic potential of Proteus mirabilis is enhanced by other uropathogens during polymicrobial urinary tract infection. Infect.
Immun. 2017, 85, e00808-16. [CrossRef]

200. Al-Bassam, W.W.; Al-Kazaz, A.K. The isolation and characterization of Proteus mirabilis from different clinical samples. J. Biotechnol.
Res. Cen. 2013, 7, 24–30. [CrossRef]

201. Jabur, M.H.; AL-Saedi, E.A.; Trad, J.K. Isolation of Proteus mirabilis and Proteus vulgaris from different clinical sources and study of
some virulence factors. J. Bab. Univ. Pure Applied. Sci. 2013, 21, 43–48.

202. Schaffer, J.N.; Pearson, M.M. Proteus mirabilis and urinary tract infections. Microbiol. Spectr. 2015, 3. [CrossRef]
203. Armbruster, C.E.; Forsyth-DeOrnellas, V.; Johnson, A.O.; Smith, S.N.; Zhao, L.; Wu, W.; Mobley, H.L.T. Genome-wide transposon

mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of
polymicrobial infection on fitness requirements. PLoS Pathog. 2017, 13, e1006434. [CrossRef]

204. Fusco, A.; Coretti, L.; Savio, V.; Buommino, E.; Lembo, F.; Donnarumma, G. Biofilm formation and immunomodulatory activity of
Proteus mirabilis clinically isolated strains. Int. J. Mol. Sci. 2017, 18, 414. [CrossRef] [PubMed]

205. Shelenkov, A.; Petrova, L.; Fomina, V.; Zamyatin, M.; Mikhaylova, Y.; Akimkin, V. Multidrug-resistant Proteus mirabilis strain with
cointegrate plasmid. Microorganisms 2020, 8, 1775. [CrossRef] [PubMed]

206. de Oliveira, D.W.; Lopes Barboza, M.G.; Faustino, G.; Yamanaka Inagaki, W.T.; Sanches, M.S.; Takayama Kobayashi, R.K.;
Vespero, E.C.; Dejato Rocha, S.P. Virulence, resistance and clonality of Proteus mirabilis isolated from patients with community-
acquired urinary tract infection (CA-UTI) in Brazil. Microb. Pathog. 2021, 152, 104642. [CrossRef] [PubMed]

207. Hao, X.; Cen, X.; He, M.; Wen, Y.; Zhang, H. Isolation, biological and whole genome characteristics of a Proteus mirabilis
bacteriophage strain. BMC Microbiol. 2023, 23, 215. [CrossRef] [PubMed]

208. Sun, Y.; Wen, S.; Zhao, L.; Xia, Q.; Pan, Y.; Liu, H.; Wei, C.; Chen, H.; Ge, J.; Wang, H. Association among biofilm formation,
virulence gene expression, and antibiotic resistance in Proteus mirabilis isolates from diarrhetic animals in Northeast China. BMC
Vet. Res. 2020, 16, 176. [CrossRef] [PubMed]

209. Scavone, P.; Iribarnegaray, V.; Caetano, A.L.; Schlapp, G.; Härtel, S.; Zunino, P. Fimbriae have distinguishable roles in Proteus
mirabilis biofilm formation. Pathog. Dis. 2016, 74, ftw033. [CrossRef]

210. Li, Y.; Yin, M.; Fang, C.; Fu, Y.; Dai, X.; Zeng, W.; Zhang, L. Genetic analysis of resistance and virulence characteristics of clinical
multidrug-resistant Proteus mirabilis isolates. Front. Cell. Infect. Microbiol. 2023, 13, 1229194. [CrossRef] [PubMed]

211. Talebi, A.; Momtaz, H.; Tajbakhsh, E. Frequency distribution of virulence factors and antibiotic resistance genes in uropathogenic
Proteus species isolated from clinical samples. Lett. Appl. Microbiol. 2023, 76, ovac043. [CrossRef]

212. Ciofu, O.; Tolker-Nielsen, T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents- how P. aeruginosa
can escape antibiotics. Front. Microbiol. 2019, 10, 913. [CrossRef]

213. Tuon, F.F.; Dantas, L.R.; Suss, P.H.; Tasca Ribeiro, V.S. Pathogenesis of the Pseudomonas aeruginosa biofilm: A review. Pathogens
2022, 11, 300. [CrossRef]

214. Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative
therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [CrossRef] [PubMed]

215. Litwin, A.; Rojek, S.; Gozdzik, W.; Duszynska, W. Pseudomonas aeruginosa device associated—Healthcare associated infections and
its multidrug resistance at intensive care unit of University Hospital: Polish, 8.5-year, prospective, single-centre study. BMC Infect.
Dis. 2021, 21, 180. [CrossRef] [PubMed]

216. Edward, E.A.; El Shehawy, M.R.; Abouelfetouh, A.; Aboulmagd, E. Prevalence of different virulence factors and their association
with antimicrobial resistance among Pseudomonas aeruginosa clinical isolates from Egypt. BMC Microbiol. 2023, 23, 161. [CrossRef]
[PubMed]

https://doi.org/10.3389/fmicb.2020.591679
https://www.ncbi.nlm.nih.gov/pubmed/33381089
https://doi.org/10.3390/pathogens10101345
https://doi.org/10.22092/ARI.2022.357626.2076
https://doi.org/10.3389/fmicb.2023.1238482
https://www.ncbi.nlm.nih.gov/pubmed/37744914
https://doi.org/10.1016/j.patbio.2012.10.004
https://doi.org/10.1016/j.micpath.2014.11.005
https://www.ncbi.nlm.nih.gov/pubmed/25450884
https://doi.org/10.1186/s13568-021-01282-w
https://doi.org/10.2147/IDR.S448335
https://doi.org/10.1128/IAI.00808-16
https://doi.org/10.24126/jobrc.2013.7.2.261
https://doi.org/10.1128/microbiolspec.UTI-0017-2013
https://doi.org/10.1371/journal.ppat.1006434
https://doi.org/10.3390/ijms18020414
https://www.ncbi.nlm.nih.gov/pubmed/28212280
https://doi.org/10.3390/microorganisms8111775
https://www.ncbi.nlm.nih.gov/pubmed/33198099
https://doi.org/10.1016/j.micpath.2020.104642
https://www.ncbi.nlm.nih.gov/pubmed/33246088
https://doi.org/10.1186/s12866-023-02960-4
https://www.ncbi.nlm.nih.gov/pubmed/37553593
https://doi.org/10.1186/s12917-020-02372-w
https://www.ncbi.nlm.nih.gov/pubmed/32503535
https://doi.org/10.1093/femspd/ftw033
https://doi.org/10.3389/fcimb.2023.1229194
https://www.ncbi.nlm.nih.gov/pubmed/37637463
https://doi.org/10.1093/lambio/ovac043
https://doi.org/10.3389/fmicb.2019.00913
https://doi.org/10.3390/pathogens11030300
https://doi.org/10.1016/j.biotechadv.2018.11.013
https://www.ncbi.nlm.nih.gov/pubmed/30500353
https://doi.org/10.1186/s12879-021-05883-5
https://www.ncbi.nlm.nih.gov/pubmed/33593280
https://doi.org/10.1186/s12866-023-02897-8
https://www.ncbi.nlm.nih.gov/pubmed/37270502


Pathogens 2024, 13, 393 41 of 52

217. Asker, D.; Awad, T.S.; Raju, D.; Sanchez, H.; Lacdao, I.; Gilbert, S.; Sivarajah, P.; Andes, D.R.; Sheppard, D.C.; Howell, P.L.; et al.
Preventing Pseudomonas aeruginosa biofilms on indwelling catheters by surface-bound enzymes. ACS Appl. Bio. Mater. 2021, 4,
8248–8258. [CrossRef] [PubMed]

218. Asmare, Z.; Awoke, T.; Genet, C.; Admas, A.; Melese, A.; Mulu, W. Incidence of catheter-associated urinary tract infections by
Gram-negative bacilli and their ESBL and carbapenemase production in specialized hospitals of Bahir Dar, northwest Ethiopia.
Antimicrob. Resist. Infect. Control. 2024, 13, 10. [CrossRef]

219. Cole, S.J.; Records, A.R.; Orr, M.W.; Linden, S.B.; Lee, V.T. Catheter-associated urinary tract infection by Pseudomonas aeruginosa is
mediated by exopolysaccharide-independent biofilms. Infect. Immun. 2014, 82, 2048–2058. [CrossRef] [PubMed]

220. Awoke, N.; Kassa, T.; Teshager, L. Magnitude of biofilm formation and antimicrobial resistance pattern of bacteria isolated from
urinary catheterized inpatients of jimma university medical center, Southwest Ethiopia. Int. J. Microbiol. 2019, 2019, 5729568.
[CrossRef] [PubMed]

221. Karkee, P.; Dhital, D.; Madhup, S.K.; Sherchan, J.B. Catheter associated urinary tract infection: Prevalence, microbiological profile
and antibiogram at a tertiary care hospital. Ann. Clin. Chem. Lab. Med. 2017, 3, 3–10. [CrossRef]

222. Kaur, M.; Gupta, V.; Gombar, S.; Chander, J.; Sahoo, T. Incidence, risk factors, microbiology of venous catheter associated
bloodstream infections--a prospective study from a tertiary care hospital. Indian J. Med. Microbiol. 2015, 33, 248–254. [CrossRef]

223. Vincent, J.L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.;
Aditianingsih, D.; et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 2020, 323,
1478–1487. [CrossRef]

224. Jain, R.; Behrens, A.J.; Kaever, V.; Kazmierczak, B.I. Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic
di-GMP concentrations. J. Bacteriol. 2012, 194, 4285–4294. [CrossRef] [PubMed]

225. Olejnickova, K.; Hola, V.; Ruzicka, F. Catheter-related infections caused by Pseudomonas aeruginosa: Virulence factors involved and
their relationships. Pathog. Dis. 2014, 72, 87–94. [CrossRef] [PubMed]

226. Qi, L.; Christopher, G.F. Role of flagella, type IV pili, biosurfactants, and extracellular polymeric substance polysaccharides on the
formation of pellicles by Pseudomonas aeruginosa. Langmuir 2019, 35, 5294–5304. [CrossRef] [PubMed]

227. de Sousa, T.; Hébraud, M.; Alves, O.; Costa, E.; Maltez, L.; Pereira, J.E.; Martins, Â.; Igrejas, G.; Poeta, P. Study of antimicrobial
resistance, biofilm formation, and motility of Pseudomonas aeruginosa derived from urine samples. Microorganisms 2023, 11, 1345.
[CrossRef] [PubMed]

228. Colvin, K.M.; Irie, Y.; Tart, C.S.; Urbano, R.; Whitney, J.C.; Ryder, C.; Howell, P.L.; Wozniak, D.J.; Parsek, M.R. The Pel and Psl
polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 2012, 14,
1913–1928. [CrossRef] [PubMed]

229. Mishra, M.; Byrd, M.S.; Sergeant, S.; Azad, A.K.; Parsek, M.R.; McPhail, L.; Schlesinger, L.S.; Wozniak, D.J. Pseudomonas aeruginosa
Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization.
Cell. Microbiol. 2012, 14, 95–106. [CrossRef] [PubMed]

230. Cavallo, I.; Oliva, A.; Pages, R.; Sivori, F.; Truglio, M.; Fabrizio, G.; Pasqua, M.; Pimpinelli, F.; Di Domenico, E.G. Acinetobacter
baumannii in the critically ill: Complex infections get complicated. Front. Microbiol. 2023, 14, 1196774. [CrossRef] [PubMed]

231. Yang, C.H.; Su, P.W.; Moi, S.H.; Chuang, L.Y. Biofilm formation in Acinetobacter Baumannii: Genotype-phenotype correlation.
Molecules 2019, 24, 1849. [CrossRef] [PubMed]

232. Zeighami, H.; Valadkhani, F.; Shapouri, R.; Samadi, E.; Haghi, F. Virulence characteristics of multidrug resistant biofilm forming
Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis. 2019, 19, 629. [CrossRef] [PubMed]

233. Ceparano, M.; Baccolini, V.; Migliara, G.; Isonne, C.; Renzi, E.; Tufi, D.; De Vito, C.; De Giusti, M.; Trancassini, M.;
Alessandri, F.; et al. Acinetobacter baumannii Isolates from COVID-19 patients in a hospital intensive care unit: Molecular typing
and risk factors. Microorganisms 2022, 10, 722. [CrossRef]

234. Elbehiry, A.; Marzouk, E.; Moussa, I.; Mushayt, Y.; Algarni, A.A.; Alrashed, O.A.; Alghamdi, K.S.; Almutairi, N.A.;
Anagreyyah, S.A.; Alzahrani, A.; et al. The Prevalence of Multidrug-Resistant Acinetobacter baumannii and Its Vaccination Status
among Healthcare Providers. Vaccines 2023, 11, 1171. [CrossRef] [PubMed]

235. Whiteway, C.; Breine, A.; Philippe, C.; Van der Henst, C. Acinetobacter baumannii. Trends Microbiol. 2022, 30, 199–200. [CrossRef]
[PubMed]

236. Pour, N.K.; Dusane, D.H.; Dhakephalkar, P.K.; Zamin, F.R.; Zinjarde, S.S.; Chopade, B.A. Biofilm formation by Acinetobacter
baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol. Med. Microbiol. 2011, 62, 328–338.
[CrossRef] [PubMed]

237. Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787.
[CrossRef] [PubMed]

238. Greene, C.; Vadlamudi, G.; Newton, D.; Foxman, B.; Xi, C. The influence of biofilm formation and multidrug resistance on
environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am. J. Infect. Control. 2016, 44, e65–e71.
[CrossRef]

239. Blot, K.; Hammami, N.; Blot, S.; Vogelaers, D.; Lambert, M.-L. Seasonal variation of hospital-acquired bloodstream infections: A
national cohort study. Infect. Control Hosp. Epidemiol. 2021, 12, 205–211. [CrossRef] [PubMed]

240. Kim, S.Y.; Cho, S.I.; Bang, J.H. Risk factors associated with bloodstream infection among patients colonized by multidrug-resistant
Acinetobacter baumannii: A 7-year observational study in a general hospital. Am. J. Infect. Control. 2020, 48, 581–583. [CrossRef]

https://doi.org/10.1021/acsabm.1c00794
https://www.ncbi.nlm.nih.gov/pubmed/35005941
https://doi.org/10.1186/s13756-024-01368-7
https://doi.org/10.1128/IAI.01652-14
https://www.ncbi.nlm.nih.gov/pubmed/24595142
https://doi.org/10.1155/2019/5729568
https://www.ncbi.nlm.nih.gov/pubmed/30881456
https://doi.org/10.3126/acclm.v3i2.19675
https://doi.org/10.4103/0255-0857.153572
https://doi.org/10.1001/jama.2020.2717
https://doi.org/10.1128/JB.00803-12
https://www.ncbi.nlm.nih.gov/pubmed/22685276
https://doi.org/10.1111/2049-632X.12188
https://www.ncbi.nlm.nih.gov/pubmed/24842562
https://doi.org/10.1021/acs.langmuir.9b00271
https://www.ncbi.nlm.nih.gov/pubmed/30883129
https://doi.org/10.3390/microorganisms11051345
https://www.ncbi.nlm.nih.gov/pubmed/37317319
https://doi.org/10.1111/j.1462-2920.2011.02657.x
https://www.ncbi.nlm.nih.gov/pubmed/22176658
https://doi.org/10.1111/j.1462-5822.2011.01704.x
https://www.ncbi.nlm.nih.gov/pubmed/21951860
https://doi.org/10.3389/fmicb.2023.1196774
https://www.ncbi.nlm.nih.gov/pubmed/37425994
https://doi.org/10.3390/molecules24101849
https://www.ncbi.nlm.nih.gov/pubmed/31091746
https://doi.org/10.1186/s12879-019-4272-0
https://www.ncbi.nlm.nih.gov/pubmed/31315572
https://doi.org/10.3390/microorganisms10040722
https://doi.org/10.3390/vaccines11071171
https://www.ncbi.nlm.nih.gov/pubmed/37514987
https://doi.org/10.1016/j.tim.2021.11.008
https://www.ncbi.nlm.nih.gov/pubmed/34836792
https://doi.org/10.1111/j.1574-695X.2011.00818.x
https://www.ncbi.nlm.nih.gov/pubmed/21569125
https://doi.org/10.12998/wjcc.v2.i12.787
https://www.ncbi.nlm.nih.gov/pubmed/25516853
https://doi.org/10.1016/j.ajic.2015.12.012
https://doi.org/10.1017/ice.2021.85
https://www.ncbi.nlm.nih.gov/pubmed/33975668
https://doi.org/10.1016/j.ajic.2019.07.025


Pathogens 2024, 13, 393 42 of 52

241. Di Domenico, E.G.; Marchesi, F.; Cavallo, I.; Toma, L.; Sivori, F.; Papa, E.; Spadea, A.; Cafarella, G.; Terrenato, I.; Prignano, G.
The impact of bacterial biofilms on end-organ disease and mortality in patients with hematologic malignancies developing a
bloodstream infection. Microbiol. Spectr. 2021, 9, e0055021. [CrossRef] [PubMed]

242. Asaad, A.M.; Ansari, S.; Ajlan, S.E.; Awad, S.M. Epidemiology of biofilm producing Acinetobacter baumannii nosocomial isolates
from a tertiary care hospital in Egypt: A cross-sectional study. Infect. Drug. Resist. 2021, 14, 709–717. [CrossRef]

243. Opoku-Asare, B.; Boima, V.; Ganu, V.J.; Aboagye, E.; Asafu-Adjaye, O.; Asare, A.A.; Kyeremateng, I.; Kwakyi, E.; Agyei, A.;
Sampane-Donkor, E.; et al. Catheter-related bloodstream infections among patients on maintenance haemodialysis: A cross-
sectional study at a tertiary hospital in Ghana. BMC Infect. Dis. 2023, 23, 664. [CrossRef]

244. Azizi, O.; Shahcheraghi, F.; Salimizand, H.; Modarresi, F.; Shakibaie, M.R.; Mansouri, S.H.; Ramazanzadeh, R.; Badmasti, F.;
Nikbin, V. Molecular Analysis and Expression of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii. Rep.
Biochem. Mol. Biol. 2016, 5, 62–72. [PubMed]

245. Thummeepak, R.; Kongthai, P.; Leungtongkam, U.; Sitthisak, S. Distribution of virulence genes involved in biofilm formation in
multi-drug resistant Acinetobacter baumannii clinical isolates. Int. Microbiol. 2016, 19, 121–129. [CrossRef] [PubMed]

246. Ghasemi, E.; Ghalavand, Z.; Goudarzi, H.; Yeganeh, F.; Hashemi, A.; Dabiri, H.; Mirsamadi, E.S.; Foroumand, M. Phenotypic and
genotypic investigation of biofilm formation in clinical and environmental isolates of Acinetobacter baumannii. Arch. Clin. Infect.
Dis. 2018, 13, 12914. [CrossRef]

247. Khoshnood, S.; Savari, M.; Abbasi Montazeri, E.; Farajzadeh Sheikh, A. Survey on genetic diversity, biofilm formation, and
detection of colistin resistance genes in clinical isolates of Acinetobacter baumannii. Infect. Drug. Resist. 2020, 13, 1547–1558.
[CrossRef]

248. Li, Z.; Ding, Z.; Liu, Y.; Jin, X.; Xie, J.; Li, T.; Zeng, Z.; Wang, Z.; Liu, J. Phenotypic and genotypic characteristics of biofilm
formation in clinical isolates of Acinetobacter baumannii. Infect. Drug. Resist. 2021, 14, 2613–2624. [CrossRef]

249. Kasperski, T.; Romaniszyn, D.; Jachowicz-Matczak, E.; Pomorska-Wesołowska, M.; Wójkowska-Mach, J.; Chmielarczyk, A.
Extensive drug resistance of strong biofilm-producing Acinetobacter baumannii strains isolated from infections and colonization
hospitalized patients in Southern Poland. Pathogens 2023, 12, 975. [CrossRef]

250. Reddy, P.N.; Srirama, K.; Dirisala, V.R. An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus
aureus. Infect. Dis. 2017, 10, 1179916117703999.

251. Kong, C.; Chee, C.F.; Richter, K.; Thomas, N.; Abd Rahman, N.; Nathan, S. Suppression of Staphylococcus aureus biofilm formation
and virulence by a benzimidazole derivative, UM-C162. Sci. Rep. 2018, 8, 2758. [CrossRef]

252. Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococ-
cus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [CrossRef] [PubMed]

253. Graf, A.C.; Leonard, A.; Schäuble, M.; Rieckmann, L.M.; Hoyer, J.; Maass, S.; Lalk, M.; Becher, D.; Pané-Farré, J.; Riedel, K.
Virulence factors produced by Staphylococcus aureus biofilms have a moonlighting function contributing to biofilm integrity. Mol.
Cell. Proteomics 2019, 18, 1036–1053. [CrossRef]

254. Kimmig, A.; Hagel, S.; Weis, S.; Bahrs, C.; Löffler, B.; Pletz, M.W. Management of Staphylococcus aureus bloodstream infections.
Front. Med. 2021, 7, 616524. [CrossRef] [PubMed]

255. Romero, L.C.; de Souza da Cunha, M.L.R. Insights into the epidemiology of community-associated methicillin-resistant Staphylo-
coccus aureus in special populations and at the community-healthcare interface. Braz. J. Infect. Dis. 2021, 25, 101636. [CrossRef]
[PubMed]

256. Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Hook, M. Adhesion, invasion and evasion: The many functions of the surface proteins
of Staphylococcus aureus. Nat. Rev. Microbiol. 2014, 12, 49–62. [CrossRef] [PubMed]

257. Pietrocola, G.; Nobile, G.; Rindi, S.; Speziale, P. Staphylococcus aureus manipulates innate immunity through own and host-
expressed proteases. Front. Cell. Infect. Microbiol. 2017, 7, 166. [CrossRef] [PubMed]

258. Ishikawa, K.; Furukawa, K. Staphylococcus aureus bacteremia due to central venous catheter infection: A clinical comparison of
infections caused by methicillin-resistant and methicillin-susceptible strains. Cureus 2021, 13, e16607. [CrossRef] [PubMed]

259. Mandolfo, S.; Anesi, A.; Maggio, M.; Rognoni, V.; Galli, F.; Forneris, G. High success rate in salvage of catheter-related bloodstream
infections due to Staphylococcus aureus, on behalf of project group of Italian society of nephrology. J. Vasc. Access 2020, 21, 336–341.
[CrossRef] [PubMed]

260. Bonnal, C.; Birgand, G.; Lolom, I.; Diamantis, S.; Dumortier, C.; L’Heriteau, F.; Armand-Lefevre, L.; Lucet, J.C. Staphylococcus
aureus healthcare associated bacteraemia: An indicator of catheter related infections. Med. Mel. Infect. 2015, 45, 84–88. [CrossRef]
[PubMed]

261. Pinto, M.; Borges, V.; Nascimento, M.; Martins, F.; Pessanha, M.A.; Faria, I.; Rodrigues, J.; Matias, R.; Gomes, J.P.; Jordao, L.
Insights on catheter-related bloodstream infections: A prospective observational study on the catheter colonization and multidrug
resistance. J. Hosp. Infect. 2022, 123, 43–51. [CrossRef]

262. Cuervo, G.; Camoez, M.; Shaw, E.; Dominguez, M.Á.; Gasch, O.; Padilla, B.; Pintado, V.; Almirante, B.; Molina, J.;
López-Medrano, F. Methicillin-resistant Staphylococcus aureus (MRSA) catheter-related bacteraemia in haemodialysis patients.
BMC Infect. Dis. 2015, 15, 484. [CrossRef]

263. Hogan, S.; Zapotoczna, M.; Stevens, N.T.; Humphreys, H.; O’Gara, J.P.; O’Neill, E. Eradication of Staphylococcus aureus
catheter-related biofilm infections using ML:8 and citrox. Antimicrob. Agents Chemother. 2016, 60, 5968–5975. [CrossRef]

https://doi.org/10.1128/Spectrum.00550-21
https://www.ncbi.nlm.nih.gov/pubmed/34406812
https://doi.org/10.2147/IDR.S261939
https://doi.org/10.1186/s12879-023-08581-6
https://www.ncbi.nlm.nih.gov/pubmed/28070537
https://doi.org/10.2436/20.1501.01.270
https://www.ncbi.nlm.nih.gov/pubmed/27845499
https://doi.org/10.5812/archcid.12914
https://doi.org/10.2147/IDR.S253440
https://doi.org/10.2147/IDR.S310081
https://doi.org/10.3390/pathogens12080975
https://doi.org/10.1038/s41598-018-21141-2
https://doi.org/10.1038/nrdp.2018.33
https://www.ncbi.nlm.nih.gov/pubmed/29849094
https://doi.org/10.1074/mcp.RA118.001120
https://doi.org/10.3389/fmed.2020.616524
https://www.ncbi.nlm.nih.gov/pubmed/33748151
https://doi.org/10.1016/j.bjid.2021.101636
https://www.ncbi.nlm.nih.gov/pubmed/34672988
https://doi.org/10.1038/nrmicro3161
https://www.ncbi.nlm.nih.gov/pubmed/24336184
https://doi.org/10.3389/fcimb.2017.00166
https://www.ncbi.nlm.nih.gov/pubmed/28529927
https://doi.org/10.7759/cureus.16607
https://www.ncbi.nlm.nih.gov/pubmed/34336531
https://doi.org/10.1177/1129729819875323
https://www.ncbi.nlm.nih.gov/pubmed/31512986
https://doi.org/10.1016/j.medmal.2015.01.002
https://www.ncbi.nlm.nih.gov/pubmed/25676476
https://doi.org/10.1016/j.jhin.2022.01.025
https://doi.org/10.1186/s12879-015-1227-y
https://doi.org/10.1128/AAC.00910-16


Pathogens 2024, 13, 393 43 of 52

264. Bolormaa, E.; Kang, C.; Choe, Y.J.; Heo, J.S.; Cho, H. Epidemiology of catheter-related bloodstream infections in neonatal intensive
care units: A rapid systematic literature review. Korean J. Health. Assoc. Infect. Control Prev. 2023, 28, 113–125. [CrossRef]

265. Weldetensae, M.K.; Weledegebriel, M.G.; Nigusse, A.T.; Berhe, E.; Gebrearegay, H. Catheter-related blood stream infections and
associated factors among hemodialysis patients in a tertiary care hospital. Infect. Drug. Resist. 2023, 16, 3145–3156. [CrossRef]
[PubMed]

266. Mazuel, M.; Moulier, V.; Bourrel, A.S.; Guillier, C.; Tazi, A.; Jarreau, P.H.; Chollat, C. Systematic culture of central catheters and
infections related to catheters in a neonatal intensive care unit: An observational study. Sci. Rep. 2024, 14, 8647. [CrossRef]
[PubMed]

267. Walker, J.N.; Flores-Mireles, A.L.; Pinkner, C.L.; Schreiber, H.L.; Joens, M.S.; Park, A.M.; Potretzke, A.M.; Bauman, T.M.;
Pinkner, J.S.; Fitzpatrick, J.A.J.; et al. Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the
urinary tract. Proc. Natl. Acad. Sci. USA 2017, 114, E8721–E8730. [CrossRef] [PubMed]

268. Alshomrani, M.K.; Alharbi, A.A.; Alshehri, A.A.; Arshad, M.; Dolgum, S. Isolation of Staphylococcus aureus urinary tract infections
at a community-based healthcare center in Riyadh. Cureus 2023, 15, e35140. [CrossRef]

269. Mason, C.Y.; Sobti, A.; Goodman, A.L. Staphylococcus aureus bacteriuria: Implications and management. JAC Antimicrob. Resist.
2023, 5, dlac123. [CrossRef] [PubMed]

270. Maharjan, G.; Khadka, P.; Siddhi Shilpakar, G.; Chapagain, G.; Dhungana, G.R. Catheter-Associated Urinary Tract Infection and
Obstinate Biofilm Producers. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 7624857. [CrossRef]

271. Bagali, S.; Mantur, P.G. Bacteriological profile of catheter associated urinary tract infection and its antimicrobial susceptibility
pattern in a Tertiary Care Hospital. Int. J. Health Clin. Res. 2021, 4, 268–271.

272. Seng, R.; Kitti, T.; Thummeepak, R.; Kongtha, P.; Leungtongkam, U.; Wannalerdsakun, S. Biofilm formation of methicillin-resistant
coagulase negative staphylococci (MR-CoNS) isolated from community and hospital environments. PLoS ONE 2017, 12, e184172.
[CrossRef]

273. Foster, C.E.; Kok, M.; Flores, A.R.; Minard, C.G.; Luna, R.A.; Lamberth, L.B.; Kaplan, S.L.; Hulten, K.G. Adhesin genes and
biofilm formation among pediatric Staphylococcus aureus isolates from implant-associated infections. PLoS ONE 2020, 15, e0235115.
[CrossRef]

274. François, P.; Schrenzel, J.; Götz, F. Biology and Regulation of Staphylococcal Biofilm. Int. J. Mol. Sci. 2023, 24, 5218. [CrossRef]
275. Mirzaee, M.; Najar-Peerayeh, S.H.; Behmanesh, M.; Forouzandeh, M.M.; Ghasemian, A.M. Detection of intercellular adhesion

(ica) gene and biofilm formation Staphylococcus aureus isolates from clinical blood cultures. J. Med. Bacteriol. 2014, 3, 1–7.
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