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Abstract: High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics,
enabling the direct recovery of pathogen genomes from clinical and environmental samples. How-
ever, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metage-
nomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and
genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich
pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used.
In this review, we outline the applications of HC in human pathogens—bacteria, fungi, parasites and
viruses—including identification, genomic epidemiology, antimicrobial resistance genotyping, and
evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ulti-
mately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the
utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity
of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain
more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in
this review, which is critical in preparing us for the next pandemic. We also found that while HC is a
popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent,
bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups
and the prospect of combining HC with long-read HTS.
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1. Introduction

In severe clinical infections, time is of the essence, and rapid identification is critical
for patient well-being and formulation of an appropriate treatment plan. Currently, tech-
niques such as qPCR, fluorescent in situ hybridization, DNA microarray hybridization, and
different sequencing strategies (marker genes, metagenomics, and whole-genome sequenc-
ing) are adopted to verify and identify pathogens [1,2]. With the advent of the molecular
revolution, high-throughput sequencing (HTS) transformed the landscape of pathogen
genomics. Indeed, researchers can formulate various sequencing strategies depending on
the targeted outcome, such as investigating pathogen biology, evolution, or identification.

Pathogens can be identified from clinical and environmental samples using metage-
nomic sequencing—deep sequencing to recover pathogen genomic sequences [3,4]. The
information generated from rapid pathogen identification is critical for guiding rapid
response policies [4–7]. For example, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) was first characterised using metagenomic sequencing when unknown cases
of pneumonia began appearing in Wuhan, China (see Section 4. Case Study: SARS-CoV-2).
Nevertheless, recovery of pathogen sequences can be challenging due to the overwhelming
background sequences from the host [8,9]. To circumvent this, enrichment techniques
such as PCR or hybrid-capture target enrichment (subsequently abbreviated as HC) can be
used to recover sequences of interest. An example of the former comprises broad-range
primers in PCR amplification for specific markers such as 16S rRNA in bacteria [10] or an
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internal transcribed spacer in fungi [11]. However, marker-based techniques are limited by
primer specificity, target coverage, length, and variability of the amplification product [12].
Furthermore, the polyphyletic origin of viruses precludes conserved genes across the viral
branch, making it impossible for universal markers to be designed as in the case of bacteria,
fungi, or parasites [13].

As an alternative enrichment technique, HC alleviates some problems encountered in
metagenomic and amplicon-based sequencing. This method involves specific biotinylated
DNA or RNA baits (probes) that hybridise to regions of interest (e.g., coding regions
and ultra-conserved elements). Following the capture process of target sequences, the
unhybridised sequences are washed off, and the remaining fragments are subsequently
enriched. In contrast to PCR with shorter oligonucleotide primers, a HC panel typically
comprise hundreds to thousands of baits (or probes), ranging from 75 nt to 140 nt in length,
designed based on target references (e.g., genomes and transcriptomes). The flexibility
of bait design enables a broader range of regions/taxa to be targeted, and the longer
oligonucleotides reduce binding bias. Ultimately, HC streamlines processes and reduces
noise, leading to more efficient and rapid analyses. Indeed, the versatility of HC has
resulted in a myriad of applications, including but not limited to the following reviews
for phylogenomics [14], pathogen identification [12,15], paleomicrobiology [16,17], and
oncology [18], among others. For example, in one remarkable application of HC, researchers
were able to improve the recovery of ancient human DNA from 1.2% to 59% mapped reads
and subsequently improve the resolution of population genomic analyses [19]. In that vein
of paleobiology, the study of ancient human pathogen genomes is useful in helping our
understanding regarding the evolutionary dynamics of infectious diseases. From samples
ranging between 2500 and 5000 years old, Valtueña et al. [20] were able to trace the spread
of the bubonic plague (Yersinia pestis). They found that the spread closely mirrored patterns
of human movement, providing clues on the epidemiology of the disease and improving
our understanding of Y. pestis evolution. Nevertheless, PCR outperforms HC in several
aspects, such as (1) cost: design and manufacture of baits are significantly more expensive
compared to primers; and (2) time: PCR amplification requires several hours only, in
contrast to HC, which may span several days.

Recently, Gaudin and Desnues [15] reviewed advancements in HC with respect to
human infectious diseases, and Pei et al. [12] more broadly covered targeted sequencing
(amplicon/HC) in clinical settings. However, both reviews were limited in coverage, with
the former being a brief review and the latter focused on two distinct targeted sequencing
methods. We refer readers interested in comparing PCR and HC target enrichment methods
to both reviews. Instead, this review exclusively discusses the application of HC methods
applied to pathogens of interest to humans and provides a comprehensive discussion
on biosurveillance and emerging infectious diseases, a field especially pertinent after the
recent pandemic. Furthermore, we evaluated the applications and future of HC. Our search
strategy was as follows: on Google Scholar, we limited studies to between 2011 and March
2023, with the former year selected based on the earliest study using HC covered in Gaudin
and Desnues [15]. Keywords “hybrid-capture target enrichment” was used in all search
attempts, in conjunction with “human pathogen” and “human infectious disease” tags,
up to the first 10 pages of search results (as of February 2023). Other studies the authors
encountered were also duly included. Finally, to demonstrate the contemporary popularity
and applicability of HC to novel pathogens, we selected SARS-CoV-2 as a case study. A
similar search strategy was adopted, with the addition of the keyword “SARS-CoV-2”.

2. Hybrid-capture target enrichment for Pathogens
2.1. Bacteria
2.1.1. Hybrid Capture versus Amplicon Sequencing in 16S rRNA

Originating billions of years ago with at a conservative estimate of several million
species [21], it is difficult to design a bait set that is able to comprehensively sample across
all bacteria taxa. One approach to this would be to design baits based on conserved genes,
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such as the 16S rRNA—a marker commonly used in bacteria classification and identification.
Traditionally, the 16S rRNA characterization approach was based on the principle that
there were nine hypervariable regions across the gene, and specific, universal primers
were designed to amplify regions of interest for sequencing [22]. However, this approach
suffers from drawbacks such as primer binding biases and short amplicons, which make
it difficult to identify accurate species [23]. With the advent of long-read sequencing, full-
length 16S sequences can be directly recovered from clinical samples, which confers similar
benefits to HC methods (i.e., longer contiguous sequence recovered) [24]. Importantly, 16S
rRNA HC overcomes limitations associated with 16S amplicon sequencing by reducing
primer binding biases, providing better relative abundance and community composition
estimates, and having unparalleled versatility based on a targeted taxonomic group for bait
design [25,26]. While 16S rRNA HC in both studies yielded promising results despite using
only a relatively small number of baits (<40,000), 16S rRNA approaches alone are limited in
two aspects: (1) accurately classifying sequences to species due to low sequence variability,
intragenomic variation between species in some genera, and (2) lack of information on
virulence and antibiotic resistance genes [12,27,28]. Therefore, the applications of 16S
rRNA HC alone might be better used in community analyses for metagenomic studies and
preliminary identification of taxa rather than specific pathogen identification.

2.1.2. Antimicrobial Resistance

Treatment of bacterial infections is inextricably linked to antimicrobial resistance
(AMR). In 2019 alone, an estimated 4.95 million deaths were attributed partially to bacterial
AMR [29]. Concerningly, the evolution of AMR outpaces the rate of antibiotic discovery, ex-
acerbating the global crisis of AMR pathogen infections [30]. Information on AMR markers
facilitates judicious use of antibiotics, monitoring and surveillance efforts of drug-resistant
taxa, and sheds light on AMR mechanisms [31,32]. Researchers have designed HC panels
solely targeting AMR genes [33–36] or in conjunction with pathogen identification [37]. Us-
ing both cultured multidrug-resistant bacteria and human stool samples, Guitor et al.’s [35]
AMR-specific panel was able to increase sequence recovery by several fold, which per-
formed better than earlier panels with a higher percentage (average = 50.69%) of on-target
reads (median = 15.8% in [33]; average = 30.26% in [34]). Similarly, Ferreira et al.’s [36] panel
of baits for AMR markers outclassed metagenomic sequencing, increasing from 1.5% to
61% on-target reads. Recently, researchers combined long-read sequencing with HC (target-
enriched long-read sequencing: TELSeq) to characterise AMR genes from metagenomic
samples (human faeces, cow faeces, and soil) [38], using the panel designed in [33]. With
the long, contiguous sequences recovered, they were able to further our understanding
of AMR evolution by identifying a number of AMR genes proximal to mobile genetic
elements, which increases the propensity for transfer of AMR genes between pathogens
via horizontal gene transfer (see also [39]). Understanding the evolutionary dynamics of
AMR may help researchers combat the growing crisis of antibiotic resistance and guide
treatment in the future [40].

2.1.3. Genome Characterisation of Fastidious Bacteria Using Hybrid Capture

Metagenomics and HC can be applied to fastidious or difficult-to-culture bacteria for
genome assembly from clinical or environmental samples and subsequent downstream
applications (e.g., vaccine development), bypassing the need for culture. Treponema pal-
lidum, the causative agent of syphilis, was impervious to long-term in vitro cultivation
until recent breakthroughs [41]. To recover T. pallidum genomes directly from clinical
samples, Pinto et al. [42] developed 19,094 baits covering ~1.1 Mb of six publicly avail-
able genomes. Interestingly, they found that patient-derived samples shared a single trait
unique to clinical strains and not reference strains: a single nucleotide polymorphism in
mrcA, which potentially codes for a penicillin-binding protein, thereby decreasing their
susceptibility to certain classes of antibiotics. Two other fastidious pathogens of interest,
Bacillus anthracis and Mycoplasma amphoriforme, were targeted using baits designed using
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only core chromosomal genomes as references, excluding accessory nucleic materials [43].
DNA extracts from animal carcasses and nasopharyngeal swabs/aspirates from clinical
samples were used for B. anthracis and M. amphoriforme, respectively, for empirical val-
idation. Post-enrichment, a sizable fraction of the genomes in breadth and depth were
recovered, enabling robust genotyping. In the clinical setting, fastidious infectious agents
cannot be cultured readily, but HC can help enrich the pathogen sequences for downstream
genomic analyses (e.g., genotyping, virulence, and AMR).

2.1.4. Broad Spectrum Bacteria Bait Panels

In an attempt to produce an almost universal bait set for capturing pathogenic bacteria
sequences, Allicock et al. [37] used the coding sequences of 307 species of pathogenic
bacteria in humans, along with known antimicrobial resistance genes and virulence factors
(n = 1,007,426 genes post-clustering at 96%) for bait design. Due to the scale of the design,
over 4 million oligonucleotide baits (average length = 75 nt) were designed, a set that
would be astronomically expensive to produce. The ambitious panel designed was targeted
at providing a potential diagnosis for bacterial pathogens for which standard tests are
unable to provide a resolution, and despite the taxonomic breadth targeted, tests on mock
communities demonstrate an enrichment efficacy of up to 1000-fold. In an application of
BacCapSeq to clinical samples, researchers enriched bacteria nucleic acids to determine
pathogens responsible for neuroinfectious diseases in 34 patients from New York [44].
Importantly, while they found bacteria pathogens in four out of six patients, none of the
pathogens were suspected to be the causative agent by clinicians based on the symptoms
presented, and some species recovered could be commensals instead (e.g., Herbaspirillum).
Therefore, the authors advised prudence when interpreting the accuracy of HTS data,
which are best used in conjunction with clinical evidence.

More recently, an algorithm for more efficient bait design based on clustering con-
served gene families in an evolutionary framework was introduced and implemented in
HUBDesign [45]. This economical approach resulted in only 26,870 baits, covering 2.09% of
all nucleotides at an average depth of coverage of 3.64× in sepsis bacterial pathogens
(1926 bacteria genomes, 81 species). For comparison, the authors postulated that some
2 million baits would be required to cover 2% at a depth of 5×, given a naïve approach to
bait design. Designing suitable baits spanning deep evolutionary time is challenging, but
new advancements in bait design and sequencing platforms will likely result in a variety of
panels. While clinical applications of HC in bacteria pathogen identification remain limited,
improvements in algorithms and the usefulness of HC will likely result in more panels
being made available in the future. Eventually, with more clinical testing and verification
to refine and improve techniques, HC can complement or potentially provide alternative
clinical diagnoses. While HTS metagenomics remains a promising avenue for pathogen
identification, which can be enhanced using HC, it remains an auxiliary tool for clinicians
to tap into (see [46]).

2.2. Viruses

Viruses are popular targets for HC, with a sizable increase in the number of studies in
recent years (Figure 1, Table S1). Indeed, the number of studies employing HC in viruses
more than doubles that of the closest contender (bacteria), albeit the spike since 2020 is
partly due to HC studies in SARS-CoV-2. Furthermore, beyond pathogen identification
and transcriptome characterisation, the potential of HC in human pathogen biology is
only limited by the imagination of the researcher. For example, a recent study extended
the application by combining spatial transcriptomics of both host (human) and pathogen
(SARS-CoV-2) from formalin-fixed, paraffin-embedded (FFPE) samples [47]. The colocaliza-
tion analyses were able to determine differential gene expression of genes, such as those
involved in the immune response by the host and entry factors by the pathogen. The suc-
cess of this experiment paved the way for future investigations in spatial transcriptomics
for different pathogens, guiding us to a better understanding of host–pathogen interactions.
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2.2.1. Oncoviruses

Oncogenic viruses are among the most popular targets for HC, for good reason. A
recent study estimated that the projected cost of cancer between 2020 and 2050 stood at
over USD 25 trillion dollars [48], with over 12% of cases attributed to just seven oncogenic
viruses: Merkel cell polyomavirus (MCPyV), Epstein–Barr virus (EBV), hepatitis B (HBV)
and C (HCV) viruses, human papillomaviruses (HPV), Kaposi’s sarcoma herpesvirus
(HHV-8), and human T-cell lymphotropic virus 1 (HTLV-1) [49]. Interestingly, all of the
viruses have been investigated using HC techniques: understanding the transmission chain
and mechanisms of viral oncogenesis is critical for developing therapeutic strategies for
cancer [50–52].

In an early experiment targeting viruses using HC, Duncavage et al. [53] created
in-house biotinylated baits derived from PCR amplification across the genome of MCPyV
for HC. From FFPE samples with degraded DNA, they were able to enrich for viral nucleic
acids between 28,000- and 107,000-fold, gathering clues into MCPyV insertion sites and
implications on Merkel cell carcinoma. In the same year, Depledge et al. [54] took a more
conventional approach, designing baits for three herpesviruses: Varicella–Zoster (VZV),
EBV, and HHV-8, of which the latter two have been linked to oncogenesis [55]. Full genome
consensus sequences across multiple viruses were generated from a single clinical sample,
suggesting co-infections. The same panel was also used to determine the genetic diversity of
EBV from primary nasopharyngeal carcinoma (NPC) biopsy samples using HC [56], based
on the assembly of eight new EBV genomes. Relatedly, Xu et al. [57] used a commercial kit
(MyGenostics Virus Genome Capture System) on tumour samples to identify breakpoints
at which EBV integrates into tumour cells, elucidating tumorigenesis in EBV-associated
cancers. The recovery and assembly of pathogen genomes from clinical samples can
contribute to future studies developing therapeutics for EBV-related cancers [58–60].

There is a growing body of evidence linking human cytomegaloviruses (HCMV) to
oncogenesis, and genomics will be a powerful avenue for future endeavours in treatment
and therapeutic approaches [61–63]. Immunocompromised hosts are more susceptible to
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HCMV, making it an important pathogen for clinicians to consider [64]. Reconstructing
the phylogeny and population structure of HCMV recovered from patients across different
demographics using a custom panel of baits (15 whole and 44 partial HCMV genomes),
researchers in London found high recombination rates across the genome, except at loci
under positive selection related to immune evasion [65], which could potentially explain
the high prevalence of HCMV [66,67]. Furthermore, a separate HC study found that
the dominant HCMV strain was observed to switch in individuals with multiple-strain
infections during their lifetime, which might be implicated in HCMV pathogenesis, and
single-strain infections were significantly more common in congenitally infected patients
as compared to transplant recipients [68,69]. Using the same panel, analyses of breast
milk from women with HIV women found multiple HCMV strains [70], corroborating
previous evidence that the establishment of HCMV infection is likely limited by strain in
transmission between mother and child [71,72].

Hepatitis is a deadly disease, and in chronic cases, HBV and HCV have been linked
to cancers such as non-Hodgkin lymphoma and liver cancer [73,74]. While treatments
are available, albeit being underdiagnosed and untreated [75], drug-resistance hampers
treatment, which may be elucidated via genotyping. In a panel designed for HCV HC
(titled ve-SEQ), baits were added incrementally, referencing 482 genomes to baits from
an initial 4-genotype panel [76]. Genotyping of 29 clinical samples revealed possible
drug resistance in some strains detected, which corresponded with reduced drug efficacy:
Boceprevir and Telaprevir treatment did not suppress HCV due to mutations in the NS3
gene in two patients. Usually, the detection of resistance-associated variants (RAVs) in
HCV is identified using PCR methods, but divergent genotypes and mixed infections
may mask accurate characterisation, which can be easily bypassed using HC [77]. Indeed,
by designing variable baits, HC is able to circumvent problems associated with primer
specificity given the high genetic diversity in HCV and genotype drug resistance mutations,
which optimises treatment and reduces costs from futile drug prescription, making it an
invaluable tool for clinicians [77,78]. Interestingly, a recent study leveraged HC to recover
HBV reads from Ludwig van Beethoven’s hair samples, which possibly caused liver disease
in the famed composer [79]. Post-HC, the authors were able to recover slightly less than
100 unique HBV reads (compared to four from metagenomic sequencing only) from the
hair of Beethoven, which was sufficient to establish the lineage of HBV infected to be nested
within the HBV subgenotype D2.

Human papillomaviruses can be classified as either low-risk, manifesting as genital
warts, or high-risk types, potentially resulting in HPV-associated oncogenesis [80,81]. Using
191 HPV reference genomes representing five genera, 23,941 baits (120 nt) were used to
capture HPV nucleic acids from laboratory cell lines, achieving an average of 184,483-fold
enrichment [82]. In a follow-up study, the reproducibility and sensitivity of their assay
were tested with known copy numbers of HPV types in two cell lines: SiHa and HeLa [83].
Not only does the HC method have comparable sensitivity to PCR-based methods, but
biases introduced via consensus primers in multi-type infections were not observed, and
no significant enrichment was observed for any HPV type tested. With more than 400 types
of HPV catalogued [84], accurate typing enables researchers to better understand the risks
of HPV infections, develop and update vaccines when necessary, based on longitudinal
and/or cohort studies [85,86], and fine-scale resolution can be achieved using HC.

2.2.2. Human Immunodeficiency Virus

The human immunodeficiency virus (HIV) infects millions around the world; in 2019
alone, almost 700,000 fatalities were due to HIV-related illness [87]. Furthermore, HIV takes
the pole position in terms of funding—from 2000 to 2017, about 40% (USD 42.1 billion) of
funding for research into infectious diseases by G20 countries was allocated to HIV/AIDS
alone [88]. Correspondingly, we found a number of HC studies pertaining to HIV research
alone, in contrast to other viruses (e.g., HCMV and HHV-8) (Table S1).
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Currently, reducing HIV mortality has made giant strides since the implementation
of antiretroviral therapy, but the elimination of the integrated virus in its latent stage
remains elusive [89]. To investigate HIV integration sites in host cells, a small panel
comprising 52 baits to capture a 72 bp region in the U3 region was designed across 573 long
terminal repeat sequences post-clustering (500-fold enrichment) [90]. When tested on cell
models (ACH-2, J-Lat, Bcl-2 transduced primary CD4+ HIV latency, and central memory
primary CD4+ T cells HIV latency models), differences in integration sites were found,
especially when compared to in vivo samples. Further identification of in vivo integration
site diversity using HC unlocks potential drug targets for the complete treatment of HIV
(see also [91]). For example, HC was conducted on a disease-free HIV seropositive woman
to investigate integration sites and reveal clues to her resistance to HIV without therapeutic
intervention [92]. Based on the results, the authors suggested that her gut microbiota
might be involved in the degradation of HIV genomes on integration via hyperactivating
APOBEC3 enzymes, which may be an avenue for HIV treatment in the future.

Determining integration sites in retroviruses is critical for developing therapeutic
measures to combat infectious diseases. To determine integration sites for two retrovirus
genomes—HIV-1 (161 baits) and HTLV-1 (148 baits)—baits were designed using a single
reference for each [93]. However, given the high genomic variability of HIV types and
subtypes, a more comprehensive bait panel was generated using genome alignments from
HIV-1 and HIV-2 as references to recover sequences from clinical samples for genomic
surveillance [94]. Indeed, up to 50 new HIV strains were characterised from clinical
samples collected from Africa (five countries) and Thailand, contributing to surveillance
and epidemiological studies. Separately, samples from the Democratic Republic of Congo
were enriched using the same baits, leading to the formal establishment of subtype L in
HIV-1 [95]. The different studies on the genetically variable HIV highlighted the versatility
of HC in bait design—tailored panels can be designed depending on the research question.
Identification of new strains of HIV through continuous surveillance efforts using HC
methods aids in our understanding of the epidemiology of HIV, which could help in the
mitigation and control of infections, particularly in regions rife with infections yet have
limited access to resources [96].

2.2.3. Unravelling Discrepancies in Genomes between Clinical and Cultured Samples
in Herpesviruses

Traditionally, enrichment of pathogen sequences can be achieved via culturing. How-
ever, viral sequence discrepancies between passaged and clinical samples have been
recorded. For example, RNA viruses are subject to exhibit high rates of mutations due
to RNA-dependent RNA polymerases (RdRp), leading to single-nucleotide variants and
insertions and deletions (indels), exemplified in influenza A (H3N2) [97,98], poliovirus,
and dengue viruses (DENV) [99]. Nevertheless, DNA viruses are not exempt from this
phenomenon, as observed in some herpesviruses. For example, using a novel panel de-
signed on a single reference, a sizable deletion in one of the open reading frames (ORF)
of the laboratory strain VZV32 (ORF 12: 2158 bp deletion) was found after propagating
in fibroblast cells, despite being considered to be one of the most genetically stable her-
pesviruses [100]. Primarily, ORF12 is involved in Akt phosphorylation and the cell cycle;
subsequent deletion in ORF12 could suggest that the proteins from ORF12 and ORF13
might have different roles in normal and cancerous cells [101].

Herpes simplex virus type 2 (HSV-2), a sexually transmitted pathogen, infects ap-
proximately 500 million people globally, whereas its counterpart, HSV type 1 (HSV-1), is
much more prevalent in the general population, infecting some 3.5 billion people, but is
usually transmitted via oral-to-oral contact instead [102]. Given that HSV-1 and HSV-2
genomes share only approximately 50% homology [103], a panel of baits designed exclu-
sively for HSV-2 could only recover ~30% of HSV-1 genomes, which prompted a strategy
to design baits for HSV-1 and HSV-2 separately [104]. Using a single HSV-1 and HSV-2
genome, the design comprised 1258 and 1285 baits (120 nt), respectively, each. Testing of
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the baits on both clinical and cultured samples revealed a lack of any significant difference
in genome recovered. Therefore, culture-based techniques were recommended as viable
options for enrichment and subsequent sequencing and genome recovery for HSV-1 and
HSV-2 (see [105]). Regardless of genomic stability, we caution that regardless of DNA
or RNA viruses, all herpesviruses cultured over multiple passages and time are likely
subject to selection pressures [106]. Therefore, the decision on the method for genome
recovery—HC or culture—has to be carefully considered and up to the discretion of the
researcher and/or clinician.

2.2.4. Broad-Range Viral Bait Panels and Clinical Metagenomics

Diagnosing infectious diseases using molecular techniques is routine—a physician
conducts a differential diagnosis, orders a test (e.g., qPCR), and the results will either
confirm or invalidate their hypothesis. However, in cases whereby the standard panel of
tests fails to determine the causative agent of disease, clinical metagenomics (CM)—deep
sequencing of a sample to recover pathogen sequences—may help to identify potential tar-
gets [3,46,107]. In a landmark study, infection by Leptospira was confirmed in a patient with
meningitis by deep sequencing of a cerebrospinal fluid (CSF) sample [108] (see also [109]).
However, due to overwhelming background noise from the host, enrichment of pathogen
nucleic acids might be required, which can be achieved using HC. Furthermore, HC might
be able to recover targets that qPCR was unable to: Mielonen et al. [110] were able to
expand the repertoire of viruses targeted from FFPE samples to 38 using HC [111], beyond
the 11 tested with qPCR. Beyond corroborating qPCR results, other viruses (i.e., MCPyV,
BK polyomavirus (BKPyV), and JC polyomavirus (JCV)) were detected, and a false negative
result for human betaherpesvirus 7 (HHV-7) was also corrected. Nevertheless, the more
sensitive method of PCR has outperformed HC, such as if broad-range viral baits with
lower sensitivity to certain taxa are used, which reduces capture and recovery [112].

Viruses are among the most genetically diverse clades, and their polyphyletic origin
precludes conserved markers from being targeted. Therefore, an early panel, Virocap, used
337 viral species genomes as a reference for bait design [113]. The Virocap panel comprised
approximately 2 million baits and was applied to a study detecting gastrointestinal (GI)
viruses in transplant recipients for hematopoietic stem cells, specifically to differentiate
between graft-versus-host disease or GI disease caused by viral pathogens [114]. Common
culprits such as norovirus (see also [115]) and adenovirus positive in PCR diagnostics
were also positive using HC, but a diversity of clinically relevant viruses, especially in
those without any positive PCR result for common GI disease viral pathogens, were also
captured, once again highlighting the need for judicious interpretation of results is required
when using CM as a possible avenue for diagnosis.

The advent of more efficient design algorithms resulted in a markedly smaller number
of baits, in that of panels titled ViroFind [116] and VALL [117]. ViroFind was designed
based on 535 viruses that infect humans or cause zoonosis (165,433 baits) and was used to
characterise populations of viruses in five patients diagnosed with progressive multifocal
leukoencephalopathy (PML) to be compared against 18 people with no known neurological
disease. Enriching from clinical samples with PML (33- to 127-fold), they found complex
populations of JCV with high genetic divergences and specific mutations in the viral capsid
protein VP1 gene linked to tissue tropism, thereby increasing the fitness of the virus. VALL,
designed across 356 species of human pathogenic viruses for complete genome recovery,
was implemented in a cohort of subjects (n = 25) with meningitis and encephalitis to aug-
ment metagenomic sequencing to capture the diversity of pathogens present. Notably, the
pitfalls of relying solely on clinical metagenomics alone were highlighted in this study.
While one subject with possible EBV infection (based on symptoms presented) had corre-
sponding EBV reads recovered despite a negative PCR result, other subjects with the same
HTS and PCR results did not have symptoms concordant with EBV infection, making it
difficult to determine the contribution of EBV to their condition [118].
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VirCapSeq-VERT was first introduced in 2015 as a panel comprising millions of baits
designed using 342,438 coding sequences from viruses known to infect vertebrates as a
reference [119]. Subsequently, it was updated and validated from clinical plasma and nasal
samples [120]. To date, VirCapSeq-VERT has been tested in clinical metagenomic studies
for respiratory diseases [120–123], neuroinfectious diseases [44,124], and autoimmune dis-
eases [112]. VirCapSeq-VERT is a useful exploratory tool for identifying potential infectious
agents when standard tests have failed to produce a conclusive diagnosis. To identify po-
tential causative pathogens from febrile patients in Tanzania with unknown causes, plasma
samples collected were tested using VirCapSeq-VERT [125]. However, recovery of multiple
pathogens, such as DENV, West Nile virus (WNV), and human pegivirus (HPgV), stymied
the team, preventing a conclusive diagnosis. Interestingly, in one sample, EBV sequences
(n = 3) were recovered post-HC, which was corroborated using qPCR with a low CT value,
but no reads were recovered using unbiased sequencing. The recovery of sequences from
multiple pathogens could indicate co-infections, but we echo the authors’ sentiment that
HTS alone might not be indicative of a causal link, as results may be confounded by factors
such as commensals or contamination (see [46,126]). Similarly, in cases of meningoencephali-
tis, the application of VirCapSeq-VERT managed to identify potential pathogens of interest,
including unexpected ones [124], but results remained inconclusive and even failed to
detect or identify alternative pathogens (i.e., HPgV) to those confirmed by clinical testing
(i.e., VCV, JCV, and HSV-2) [44], albeit in a small sample size (n = 8). Finally, while the
comprehensive viral research panel by Twist Bioscience, which targets over 3000+ viruses
and is similar in principle to VirCapSeq-VERT, was used successfully for the detection
of viruses implicated in patients suffering from meningoencephalitis, the negative PCR
tests gave researchers pause. As a result, they, too, recommended careful interpretation of
results by physicians under the advice of virologists and bioinformaticians [127].

Overall, CM hold great promise as a tool for pathogen identification, particularly
for novel or indeterminate sources of infection. However, there are many challenges to
overcome for it to be a proper diagnostic tool [4,46,107,126]. Currently, HC may complement
CM by enriching for potential pathogens of interest; given the flexibility of bait design,
multiple sets for different diseases can be designed to improve capture efficacy and reduce
costs in the future. Furthermore, improvements to current baits and the availability of
commercial options can complement the use cases of HC from complex samples. Critically,
judicious curation of data and proper bioinformatic methods need to be implemented
(e.g., removing host reads, accounting for cross-contamination of samples using negative
controls, and accounting for commensals during interpretation of results). Interpretations
should be aligned with the clinical presentation of the patients, reviewed by a physician.
Until more research has been conducted across larger cohorts, with standardization of
analytical techniques and interpretation of results corroborated by empirical samples,
prudence in using CM with HC as a diagnostic tool should be exercised.

2.3. Parasites
2.3.1. Malaria

Plasmodium spp. is a parasitic alveolate that causes malaria, with only five out of over
200 species known to infect humans [128]. Between 1955 and 1969, the World Health Organ-
isation (WHO) launched the Global Malaria Eradication Programme (GMEP), and efforts at
the eradication of this disease have continued to receive significant attention [129]. Despite
the global movement, malaria continues to take an extreme toll on mankind, infecting mil-
lions around the world [130,131]. Among the five species that are known to infect humans,
two are of particular interest: P. falciparum and P. vivax. In the early studies of employing
HC, shearing of gDNA from cultured samples was used as baits for HC of the two parasite
sequences [132–134]. Testing of the baits from the aforementioned studies demonstrated
positive results, with an enrichment of up to 40-fold observed [132]. Interestingly, it was ob-
served that AT-rich non-coding regions were less represented compared to GC-rich regions,
a phenomenon particularly relevant to the AT-rich genome in P. falciparum (80.6%) [133].



Pathogens 2024, 13, 275 10 of 30

More research is required into unbalanced nucleotide composition genomes, such as those
being AT- or GC-rich. More recently, HC baits were designed based on P. vivax genomes
to enrich for transcripts in order to characterise the transcriptomes of hypnozoites [135],
laying the foundation for transcriptome characterization across the life cycle of the parasite,
contributing towards the identification of potential drug and vaccine targets.

2.3.2. Neglected Tropical Diseases (NTD)

Schistosomiasis is one of the top five neglected tropical diseases (NTD), posing a
heavy burden on society, and global change wrought by anthropogenic activities is likely
to exacerbate the risks and burdens of parasite infections in the near future [136,137].
Currently, baits are designed to primarily target exons in either Schistosoma haematobium
or S. masoni, which is useful for identifying loci involved in drug resistance, candidate
vaccines, and population genomics [138–141]. For example, the baits designed by Le Clec’h
et al. [141] were used to determine an ancient introgression event of the invadolysin gene
from S. bovis into S. haematobium, a gene of interest involved in infectious pathology within
the host [142,143]. While they were unable to determine the functionality of the S. bovis
invadolysin allele in S. haematobium, they recommended that future analyses be conducted
on this gene. Genomic tools can elucidate epidemiology, control the spread of infection,
identify pathogens, and contribute towards eliminating schistosomiasis, which can be
augmented by HC [74].

Another NTD, leishmaniasis, affects millions across the world, causing tens of thou-
sands of fatalities annually, but remains poorly studied [144–146]. Sequencing of Leish-
mania is complicated: they have either a flagellated (promastigote) or aflagellated form
(amistagote) [147]. Genomes have been sequenced in both stages [148–152], and differences
exist in genome architecture: aneuploidy in amastigotes cultivated from Syrian golden
hamsters was lower compared to in vitro promastigotes [153]. Similarly, clinical samples of
L. donovani also exhibited lower levels of aneuploidy, exemplified by sequencing genomes
directly from leishmaniasis specimens in India via HC, using 218,904 (120 nt) baits span-
ning 26 Mbp of the 32 Mbp genome [152]. Multiple instances of polyclonal infections were
identified, which is also characteristic of counterpart parasite Plasmodium [154]. Given the
difference between in vitro and in vivo results, it might be advisable to obtain data directly
from clinical samples instead for Leishmania, for both genomic and transcriptomic data, to
better understand the in vivo response of the pathogen and thereby develop strategies to
counter Leishmania infections.

2.3.3. Hybrid Capture and the Future of Neglected Tropical Diseases

Genomic studies of parasites have accelerated efforts in the management of parasitic
infections through identifying potential targets for vaccine development [148,155,156],
characterisation of drug-resistant loci [157,158], and elucidating evolutionary patterns
and population genomics [159,160]. However, HC in parasites remains scarce, likely due
to the lack of funding within the field, even for malaria, which ranks among the most
well-known parasitic diseases [161]. Currently, many parasitic diseases are classified as
“neglected tropical diseases (NTD)” by the World Health Organization (WHO), such as
dracunculiasis, echinococcosis, and schistosomiasis. Unfortunately, NTDs are largely
neglected because of economic and social imbalances—they disproportionately affect
those with lower socioeconomic status [162,163]. Parasitic infections are emblematic of
developing countries, stemming from limited access to clean water, food contamination,
and other unhygienic practices, among other reasons [164–166]. While the need to tackle
NTDs has been increasingly recognised, new challenges such as drug-resistant phenotypes,
lack of vaccine candidates, and the lack of research funds threaten the efficacy of efforts
underway [167,168]. While it is beyond the scope of this review to discuss the economic
challenges that NTDs face, we highlight an article by Mohan et al. [146] that specifically
extolls the economic benefits of vaccine development in leishmaniasis to manufacturers.
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From this review, we found only 10 studies to date on parasitic pathogens in humans
using HC (Figure 1), which are limited to a handful of diseases. With millions of new
infections annually, it is imperative for the global public health movement to invest more
resources into combating parasitic infections, especially with rapid urbanization and in-
creasing incidences of parasitic infections on a global scale [169]. The space of HC in the
realm of parasites remains largely unexplored, and the impact of research into this field
may have far and wide-reaching benefits to mankind. For example, genome sequencing of
cultivated Trypanosoma cruzi identified loci correlated with drug-resistance [170]; HC can
reduce costs associated with whole-genome/transcriptome sequencing from cultured sam-
ples, thereby alleviating the economic burden on researchers working on NTDs. Eventually,
an improved understanding of NTDs can help efforts in management and subsequent
eradication, which is especially important for developing countries with populations of
lower socioeconomic status.

2.4. Fungi

The number of studies employing HC in human fungal pathogens is extremely limited:
we were only able to find three studies, all related to Candida spp. transcriptomics for gene
expression analyses (Figure 1; Table S1). In the earliest study, researchers targeted the
transcriptome of C. albicans using 55,342 baits designed across 6,094 open reading frames
(ORFs). Testing on both in vitro and in vivo (Mus musculus and Galleria mellonella) samples
obtained up to a 1,600-fold increase [171]. A similar strategy was adopted for C. glabrata,
except two sets of baits were designed: one comprising 49,789 baits designed across
4995 ORFs (cell wall adhesins excluded), and another with 49,964 baits across 5134 ORFs
(cell wall adhesins included) [172]. The baits were able to enrich fungal transcripts recovery
between 750- and 970-fold; subsequent gene expression analyses of urinary tract infections
in mice led to the identification of four new virulence genes that could be potential targets
for treatment. Finally, Hovhannisyan et al. [173] embarked on an ambitious strategy,
designing baits for four phylogenetically diverse Candida species (C. albicans, C. glabrata,
C. parapsilosis, and C. tropicalis). Capitalising on the previous two studies, they extended
bait design beyond ORFs only and included annotated features from non-coding regions.
Furthermore, the experiment was conducted on spiked human vaginal swabs instead of
murine or insect models, with a 1.4- to 17-fold enrichment, and they demonstrated that
genotyping of captured sequences allows for the identification of strain and potentially
antifungal susceptibility profiling.

To the best of our knowledge, no study has attempted to recover fungal sequences
from clinical samples using HC. This could be due to the difficulty in bait design for
fungal pathogens—fungi have relatively large genomes [174], which would be costly for
bait design in contrast to their bacterial and viral counterparts with considerably smaller
genomes in general. Furthermore, of the 607 fungi infecting humans as retrieved from a
curated list, only 353 have genome sequences available [175]. While it might be sufficient
for a comprehensive HC panel to be deisgned, distant clades might fare poorly post-HC.
There is a need for more genomes to be sequenced and assembled, but we recognize that
it is a costly and difficult undertaking.With over a million deaths per year being fungal-
related [176], more attention should be paid to the knowledge, treatment, and control of
fungal pathogens [177,178], which can be augmented by judicious bait design and HC
techniques (see also Section 5.1 Bait Design).

3. Biosurveillance and Emerging Viral Infectious Diseases

More than half of human pathogens stem from zoonotic sources; zoonoses were thrown
into the spotlight because of the COVID-19 pandemic [179,180]. In the last decade alone,
the emergence and re-emergence of viral infections were reported globally [181–183], and
future epidemics are inevitable [184,185]. Climate change, biodiversity loss, and population
mobility today are likely to exacerbate the effects of zoonoses [185,186]. Technological
advances in genomics have transformed the playing field, allowing for surveillance and
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early detection in real-time [184,187–189], which can be augmented using HC. Coupled
with lessons learned from the recent pandemic (e.g., global collaborations and surveillance
for pathogens that might result in a pandemic), the destructive force of the next deadly
global pathogen can be mitigated considerably [190]. Furthermore, by identifying and
studying pathogens with pandemic potentials via a representative taxon (e.g., SARS-CoV-1
as a model to understand SARS-CoV-2), responses to the pathogen can be implemented
rapidly and effectively (e.g., healthcare, vaccine development).

3.1. Arthropod-Borne Viruses
3.1.1. Mosquito-Borne Viruses

Mosquito-borne diseases (MBD) are a bane to public healthcare around the world,
costing billions of dollars each year [191]. Biosurveillance and genomic epidemiology are
crucial in shedding light on the biology, diversity, and transmission of MBD, which can be
achieved using HC. Conducting environmental surveillance of mosquitoes from the United
States using VALL for human pathogens, researchers were able to detect two pathogens of
interest: WNV and Culex flavivirus (CxFV) [117]. Whether West Nile infection is an emerg-
ing or neglected disease is up for contention [192], but experts agree that monitoring of
WNV is critical in management and control strategies [193,194], which can be implemented
using HC.

Using Aedes mosquitoes as a vector to infect primates, Zika virus (ZIKV) infections
typically present mild symptoms, although some neurological conditions such as microen-
cephaly and meningoencephalitis have been associated with infections. Due to the rapid
spread of ZIKV in the Americas, extensive research has been conducted into the genomic
epidemiology of the virus. Shortly after the beginning of the ZIKV epidemic in 2015, Nac-
cache et al. [195] used HC to recover genomes from patients in Brazil and found evidence
for a Bahia-specific lineage that has been circulating since 2014. Subsequently, to reconstruct
the introduction and transmission chains of ZIKV in Miami, Grubaugh et al. [196] designed
their own baits (866 baits, 80 nt) for the enrichment and assembly of ZIKV genomes not
only from patients but also from A. aegypti mosquitoes for biosurveillance. Using genomic
data, the authors were able to trace introductions to Miami from the Caribbean multiple
times and further ascertain that local transmission has occurred. Moving to the south,
Thézé et al. [197] embarked on a similar study in Central America and Mexico (CAM),
using baits designed across 44 ZIKV genomes to supplement sequences obtained from
metagenomic sequencing. They found that despite multiple introductions of ZIKV into
CAM, only one lineage introduced became established (clade B sensu [197]), which likely
occurred in Honduras in the summer of 2014. The seasonal change coincided with optimal
conditions for the proliferation of its mosquito vector, accentuating the correlation between
environmental conditions and MBD. Subsequently, this lineage was able to disperse into
Guatemala, southern Mexico, and Nicaragua before being detected in November 2015. The
introduction of this lineage likely occurred in Brazil, which was the origin of the intro-
duction of ZIKV into the Americas. Detailed genomic epidemiology is especially useful
for the management of diseases, as targeted approaches to controlling either the vector
populations or cross-border movement can be implemented if necessary [198].

On a finer geographical scale, researchers were able to recover almost complete
genomes from patients infected with ZIKV in Singapore in the 2016 outbreak, using baits
designed to target three MBD viruses (ZIKV, DENV, and chikungunya virus (CHIKV))
from their novel algorithm, Baitmaker [199]. With the vector Aedes mosquitoes being en-
demic and common in Singapore, cases of ZIKV are not unheard of, albeit limited, in the
island city-state. The state’s National Environmental Agency (NEA) continually surveys
mosquitoes and wastewater in areas with active cases and proceeds with necessary vector
control measures when there is reason to suspect an active viral population that has the
potential to become a hotspot for infections. The combination of HC and environmental
surveillance can guide early intervention measures, which aids in controlling the spread of
diseases, thereby safeguarding public health interests.
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3.1.2. Tick-Borne Viruses

Pathogens are also commonly transmitted via other arthropod vectors, such as ticks. Tick-
borne disease (TBD) comprises a diversity of pathogens—bacteria, viruses, and parasites—and
is an emerging problem [200–202]. To detect TBD pathogens in the USA, researchers de-
signed a panel of baits (TBDCapSeq) targeting 11 prevalent targets: nine bacteria and
two virus species [203]. Testing of the baits directly on field-collected ticks, complete
genomes for Powassan virus (POWV) from two ticks were recovered, highlighting the capa-
bility of HC in biosurveillance and monitoring of pathogen reservoirs. Crucially, POWV is
a re-emerging TBD that causes meningoencephalitis, making it a model target for HC and
biosurveillance [204]. Subsequently, TBDCapSeq was updated by adding one bacterium
(Francisella tularensis) and two viruses (Colorado tick fever virus (CTFV) and Bourbon virus
(BRBV)) [205]. Currently, TBD is typically not routinely included in the standard CSF PCR,
but HC can be used to complement the identification of diseases. For instance, the use of
broad-range VALL on clinical samples corroborated Powassan virus infection in two out
of three serologically confirmed cases [118]. However, as previously discussed, HC and
PCR results may differ and give conflicting results. Therefore, tried and tested diagnostic
techniques must take precedence over CM techniques, and CM remains an auxiliary tool
for diagnosticians to tap into.

3.2. Mammalian Zoonotic Viruses
3.2.1. Lassa and Ebola Viruses

First documented in 1969, Lassa fever is caused by the Lassa virus (LASV), transmitted
by the multimammate rat Mastomys natalensis, and remains a threat in West Africa [206,207].
Illustrating the difficulties of obtaining pathogen nucleic acids from clinical samples, direct
sequencing of clinical and biological samples yielded poor recovery LASV material, despite
extensive depletion of carrier and host RNA, albeit sufficient recovery of Ebola virus (EBOV)
sequences was observed [208]. Therefore, to improve the recovery of LASV, two panels of
baits were designed separately to account for genetic divergences between Nigeria and
Sierra Leone clades. Following enrichment (average of 86-fold), the team successfully
called intra-host single nucleotide variants (iSNVs) for genotyping of LASV from clinical
samples. Empirical testing was also conducted on Lassa fever clinical samples collected
from outbreaks in 2018 in Nigeria, using a broad-range panel VALL [117]. Despite the
taxonomic breadth targeted by VALL, fragments of LASV genomes for 22 out of 23 samples
were recovered. In contrast, metagenomic sequencing without HC recovered sequences
from only a single sample (see [209]).

Before COVID-19, filovirus disease (FVD) was on WHO’s radar as a potential pan-
demic, particularly Ebola virus disease (EVD). Currently, EVD is thought to be an emerging
infectious disease originating from a zoonotic source from a currently unknown animal
reservoir in Central Africa, with bats being the most likely suspect (reviewed in [210]).
Evidence for long-term persistence and eventual sexual transmission of EBOV was found
in a HC study from a semen sample collected 179 days after EVD, albeit no sequences were
recovered from metagenomic sequencing alone [211]. This provided valuable insights into
the infectivity of EBOV over time, aiding in the management and control of the disease. In
sum, it appears that with respect to clinical samples with RNA viruses, due to small genome
sizes and overwhelming interference from host RNA, extensive depletion of background
RNA, coupled with HC, would be a strategic approach to improve recovery of sequences
from pathogens of interest.

3.2.2. Coronaviruses

Since the SARS pandemic in 2003, much attention has been paid to the surveillance
and identification of coronaviruses (CoV). Bats and pangolins are known reservoirs of
CoVs [212,213]. Recent analyses surveyed SARS-CoV-2-related coronaviruses (SC2r-CoVs)
diversity in pangolins via metagenomic sequencing [212,214]. Interrogating the diversity of
SC2r-CoVs from 163 confiscated pangolin individuals smuggled into southwestern China,



Pathogens 2024, 13, 275 14 of 30

Peng et al. [215] designed baits on 50 SARS-CoV-2 genomes (502 baits) for enrichment
of SC2r-CoV sequences. Notably, SC2r-CoVs in pangolins demonstrated high genetic
diversity and could potentially be a source of zoonotic infectious diseases. Alarmingly,
human pathogenic viruses were also directly identified from pangolins using metage-
nomic sequencing [216]. Their mammalian chiropteran counterparts are also notorious
as reservoirs of CoVs, including pathogens such as severe acute respiratory syndrome
coronavirus (SARS-CoV)-like and Middle East respiratory syndrome coronavirus (MERS-
CoV)-like viruses that jumped to humans via intermediate hosts—civets and dromedaries
respectively [217]. Bearing testament to concerns regarding coronaviruses, Lim et al. [218]
designed 4303 baits (120 nt) for alpha- and betacoronaviruses across 90 genomes and was
able to recover and assemble a novel Betacoronavirus BtCoV92 from Cynopterus brachyotis
samples collected in Singapore. Betacoronavirus is the genus to which several deadly coron-
aviruses belong, making it especially pertinent for investigation. Subsequently, the same
methodology on rectal swabs collected for CoV surveillance projects in China discovered
nine new CoV genomes [219]. Similarly, Rousettus bat coronavirus GCCDC1 (RoBat-CoV
GCCDC1) was also detected from samples collected in Singapore [220], using baits de-
signed for filoviruses, respiratory viruses, and other viruses of interest with respect to
biodefence and biosurveillance [221]. RoBat-CoV GCCDC1 is a coronavirus that was previ-
ously identified only from bats in Yúnnan, China, and the presence of Singapore samples
expands the geographic range of the coronavirus, and monitoring can help in tracking bat
coronavirus diversity and distribution.

Out of Asia, Kuchinski et al. [222] designed baits against all bat CoV sequences
(18,365 baits) for recovery of CoVs from bat swabs in the Democratic Republic of the Congo.
An additional 1635 baits were designed from conserved motifs in non-bat CoVs to round
the number of baits up to 20,000. Due to low nucleic acid concentrations, the authors
were only able to recover < 93% of the genomes for five new CoVs solely via HC and
had to augment their data with deep metagenomic sequencing to complete the genome
assembly. Indeed, despite the positive results obtained from HC in general, ultradeep
metagenomic sequencing might still be needed for the recovery of complete genomes due
to the inability of HC baits to capture certain highly variable regions. Finally, researchers
used VirCapSeq-VERT to successfully recover SARS-CoV-2 genomes from both clinical
and environmental samples, supporting the notion that broad-range bait sets are able to
contribute meaningfully to unknown or novel pathogens [123,223–225] (see also Section 4.
Case Study: SARS-CoV-2).

3.2.3. Monkeypox Virus

In the middle of 2022, monkeypox viral infections (mpox) surfaced on the public
health radar right after the waning of COVID-19, only a few months after initial reports of
a rapid rise in mpox infections concentrated in Europe, the WHO declared mpox to be a
Public Health Emergency of International Concern. The potential for mpox as an emerging
infectious disease has been raised several decades ago [226,227]. Monkeypox virus (MPXV)
genomes in wild chimpanzee populations from Côte d’Ivoire using non-invasive sampling
methods were investigated prior to the outbreak and collected over several decades [228].
Specifically, environmental samples (urine, faeces, fruit wedges, and flies) and tissue from
carcasses were collected for the sampling of MPXV using baits designed by Arbour Bio-
sciences for orthopoxviruses. Two lineages of MPXV in Taï National Park chimpanzees
were discovered, and the results were able to trace the epidemiology of MPXV outbreaks in
chimpanzees. Eastward in the Central African Republic (CAR), a panel for MPXV was de-
signed using 10 complete genomes for testing on clinical samples collected from outbreaks
between 2001 and 2018 [229]. Strikingly, molecular dating analyses revealed three distinct
lineages that diverged in periods of political instability and migration, with widespread
poverty. The authors postulated that the demand for bushmeat to alleviate living conditions
facilitated zoonotic transmission of MPXV. Incursions into natural habitats in the region
will only exacerbate the spread of mpox, with more human-wildlife interactions expected.
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Enrichment of MPXV sequences using HC has also been used to investigate outbreaks.
In 2017, mpox reemerged in Nigeria, and baits from VALL were used to enrich MPXV
sequences (from a maximum of 30 reads based on unbiased sequencing to a maximum of
20,000 mapped reads) [209]. Post-enrichment, the researchers were even able to verify the
clade of MPXV (i.e., clade IIb), which was congruous with previous reports. Over in the
West, baits were designed using MPXV 2022/MA001 strain to investigate contemporary
outbreaks of mpox infections in the USA by enriching MPXV sequences from clinical
samples [230]. Recovering identical genomes between people, researchers were able to
trace ongoing community transmissions, but the low genetic diversity of MPXV hampered
contact tracing efforts via whole-genome sequencing. The diversity of panels used to test
for MPXV highlights the flexibility of HC for different purposes, arming researchers with
the best tool for their investigations.

3.2.4. Moving Forward: Biosurveillance of Mammals

Considering that there have been two pandemics due to SARS-CoV in the 21st century
alone and the diversity of novel coronaviruses identified by the different studies, the
importance of continual environmental surveillance and preparedness for any new public
health threats cannot be overstated. Indeed, mammal-borne zoonoses as the source of
the next pandemic loom large over public health [231]. As we continue to investigate
the origin and source of SARS-CoV-2, we need to increase the sampling and diversity of
coronaviruses and beyond in our databases to better trace the evolutionary origins of not
only SARS-CoV-2 but potentially, the next candidate for a global pandemic [232]. Only
with more genomic sequences by sampling across a large cohort of mammals can we better
prepare ourselves by implementing intervention measures (e.g., safe handling of animals
and reduced wild-life human interactions) where possible.

4. Case Study: SARS-CoV-2

In December 2019, Wuhan, China, saw a sudden outbreak of pneumonia with no
known causes. Subsequently, HTS of clinical samples revealed the culprit to be a novel
betacoronavirus, which was eventually named SARS-CoV-2 [233,234]. The early epidemi-
ology of SARS-CoV-2 was traced by Chowdhury and Oommen [235]: evidence for the
global spread of the virus was confirmed by cases in Thailand, the USA, Japan, and India
in January 2020. By March 2020, the WHO declared the COVID-19 pandemic, throwing
the world into disarray. The introduction of nonpharmaceutical interventions (NPIs), such
as social distancing and mandatory facemasks, together with the rapid development of
vaccines, helped mitigate the devastation of COVID-19 [236]. Surveillance and contract
tracing studies helped epidemiologists understand the transmission of the virus, including
genomic surveillance and epidemiology, some of which were conducted using HC. Early
studies on HC in SARS-CoV-2 in 2020 primarily verified the utility of HC by comparing
across different methods for pathogen genome recovery (e.g., PCR, HC, and metagenomics),
and the successful recovery of pathogen genomes led to subsequent studies on genomic
epidemiology and evolution (Figure 2).

The genome sequence of SARS-CoV-2 isolate Wuhan-Hu-1 was made publicly avail-
able in mid-Jan 2020 [237], and studies adopting commercial kits for HC in SARS-CoV-2
were published mere months after [238,239]. Given the diversity of commercial panels
available (Table S2), Rehn et al. [240] compared five different panels of efficacy. Expectedly,
they found that taxon-specific panels produced the best results compared to broader-range
panels (e.g., respiratory viruses panel). Beyond the choice of panels, studies also inves-
tigated and verified the efficacy of HC for SARS-CoV-2 sequences across bioinformatic
pipelines [241], sequencing platforms [242,243], and even library preparation methods [244].
Generally, molecular techniques (e.g., metagenomic sequencing, HC, and PCR) performed
comparably, but in SARS-CoV-2, as the pathogen has a relatively small genome (~30 kb),
enrichment of sequences can be executed using dedicated primers for the entire genome
(e.g., ARCTIC 4.1). However, due to the rapid mutation rate of the virus, amplicon dropouts



Pathogens 2024, 13, 275 16 of 30

may lead to the inability to determine lineages [245,246]. Furthermore, PCR may be suscep-
tible to technical artefacts such as primer bias, which has led to contentious results [247].
To circumvent the drawbacks of metagenomics (i.e., cost) and PCR (i.e., primer specificity
and technical artefacts), HC is a strong alternative (see [248]).
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formatic pipelines [241], sequencing platforms [242,243], and even library preparation 
methods [244]. Generally, molecular techniques (e.g., metagenomic sequencing, HC, and 

Figure 2. Number of studies (by year) investigating different aspects of SARS-CoV-2 using hybrid-
capture target enrichment for sequence recovery between 2020 and 2022.

The recovery of SARS-CoV-2 genomes opened the doors for genomic epidemiology,
biosurveillance, and phylogeny reconstructions. As infections raged on, multiple vari-
ants of concern (VOCs) appeared—e.g., Alpha, Beta, Gamma, Delta, and Omicron—a
result of the remarkable capacity of SARS-CoV-2 for mutation, with variant recombination
spawning multiple lineages within the VOCs [249]. Genome surveillance has also enabled
strain diversity characterisation around different parts of the world, and divergence dating
provides estimates of cladogenesis for different variants [250,251]. Different VOCs have
unique clinical and biological characteristics, including pathogenicity; it is important to
identify circulating and prevalent VOCs in order to implement appropriate controls [252].
Sequencing of 74,738 HC samples from the United States found that between January 2021
and September 2021, the SARS-CoV-2 Delta variant had effectively dominated almost every
case of COVID-19 by September, after first being detected in March 2021 (>99.9%) [253].
Since the Delta variant had a much higher fatality compared to its predecessor, Alpha,
more severe NPIs were advised to accommodate the rise in cases [254]. Relatedly, Zhang
et al. [255] were able to use SARS-CoV-2 genomes recovered via HC and subsequent phy-
logeny reconstructions to find evidence of transmission and trace the spread of the virus in
asymptomatic patients, which is often overlooked in models calculating the reproductive
number (R0) but crucial for understanding the spread of the disease [256,257]. Indeed,
HC was extensively employed in tracing outbreak patterns during COVID-19 (Figure 2;
Table S1), enhancing our understanding of the pandemic’s evolutionary dynamics, viru-
lence, and management.

Environmental samples can be tested for SARS-CoV-2 and other viruses using HC,
enabling surveillance and guiding policy decisions. Coronaviruses, including SARS-CoV-2,
have been successfully extracted from sewage/wastewater using HC, which were generally
concordant with clinical specimens collected from the same region [224,258]. Non-invasive
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sampling can be readily adapted to provide insight into the circulating strains, and consis-
tent surveys using broad-range bait panels enhance biosurveillance efforts and discovery
of new pathogens [209,223,224], which can be used to guide policy decisions [123,259].
Beyond sewage samples, researchers in Kuwait sought to characterise respiratory viruses
from hospital air using a commercial panel [260]. Nosocomial transmission of respiratory
pathogens remains a threat to recovering patients [261], and they were able to identify
SARS-CoV-2 from hospital air, together with other respiratory pathogens of interest such as
human adenoviruses, respiratory syncytial virus, and influenza B. In hospital settings, HC
can be employed for the identification and genotyping of pathogens for genomic epidemi-
ology, to reduce the spread of nosocomial infecitons [262].. From clinical to environmental
samples, HC proved to be a useful and versatile technique during the recent pandemic,
cementing its value in the toolbox of molecular biologists.

5. The Future of Hybrid Capture
5.1. Bait Design

Bait design can be a tricky process, with the complexities increasing through deep
time and genome sizes. The early forays into HC primarily relied on a tiling method for
bait design, but there has been an increasing number of algorithms available for bait design
in recent years to accommodate complex panel design. New methods primarily focused on
human pathogens include CATCH [117], BaitMaker [199], HUBDesign [45], MrBait [263],
ProbeTools [264], and Syotti [265]. Alternative options popular in evolutionary biology
include phyluce [266], BaitFisher [267], BaitTools [268], and supeRbaits [269]. With the
diversity of algorithms available, researchers need to carefully consider the pros and cons of
each programme and decide on the most suitable method for bait design for their target(s)
of interest.

The availability of options allows for flexibility in bait design, depending on the
research question. For example, HUBDesign would be suitable for designing a panel
spanning a broad taxonomic coverage, as baits are designed by clustering samples based on
an evolutionary framework and conserved, shared genes, thereby reducing the number of
baits required. In contrast, programs such as ProbeTools or Syotti might be a better choice
for polyphyletic viruses, as they operate on a k-mer and Hamming distance approach for
comprehensive capture of targeted regions. However, Syotti does not have a built-in bait
filtration function and post-processing of baits; parameters to consider include GC content
(between 40 and 65%), masking baits at repetitive regions (or prior to bait design), and
ensuring baits do not self-hybridise to each other should be conducted post-design.

Finally, for fungi and parasites with larger genomes, bait design can be a tricky process.
The majority of studies discussed in this review for the two taxa targeted the enrichment of
transcripts for characterization of transcriptomes or for a small number of taxa, which can be
easily achieved using a tiling design. However, programs such as phyluce and BaitFisher
may be useful for designing a broad-range panel to capture sequences for subsequent
pathogen identification. The former extracts ultra-conserved elements from reference
genomes or transcriptomes, whereas the latter is design baits based on orthologous genes
identified from transcriptomes, with the option of alignment cutting to account for exon-
intron boundaries in parasites and fungi. These properties make the programs suitable
for capturing shared, conserved loci across deep evolutionary divergences. The results
can then be used for either classification (e.g., [270,271]) or phylogeny reconstructions to
identify current or novel pathogens.

5.2. Long-Read Sequencing

Capture of target sequences for HC was previously designed for short-read sequenc-
ing platforms, such as Illumina or Ion Torrent [18,53,242]. With the advent of long-read
sequencing, such as PacBio or Oxford Nanopore Technologies (ONT), some recent studies
have combined HC and long-read sequencing [38,242,243,272], albeit being few and far
between. Long reads are suitable for accurate assemblies, which have downstream ana-
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lytical implications such as comparative genomics and pathogen identification [273,274].
In a response letter to reviewers by Kuchinski et al. [222], they found several limitations
of MinION sequencing in conjunction with HC. Most importantly, they only managed
to recover sequences comparable in length to those from Illumina libraries, defeating
the purpose of using long-read sequencers. Similarly, during the recent pandemic, a HC
protocol developed by PacBio had a recommended insert size of only 675 bp to cover
SARS-CoV-2 sequences, which is only marginally longer than the standard insert size in
Illumina sequencing [243,275].

Despite the challenges in HC for long-read sequencing, Slizvoskiy et al. [38] managed
to characterise AMR genes from mock and stool samples using a custom panel designed
with a 1× tiling (120 bp baits) with PacBio sequencing. Using MinION sequencing, Eckert
et al. [272] recovered a mean read length of between ~1000 and 3000 bp for HCMV and
M. tuberculosis, albeit with an insert size of >10 kb. Currently, more research is required
into suitable bait design techniques—numerous overlapping baits for specific loci may
compromise the integrity of long fragments due to mechanical stress, and other factors
such as bait specificity and PCR biases for shorter fragments will be important consider-
ations. Specific algorithms tailored for HC and long-read sequencing may be required,
coupled with empirical tests to optimise methods. Ultimately, we remain excited about the
prospects for combining HC with long-read sequencing technologies in the field of human
pathogen genomics.

6. Conclusions

In this review, we demonstrate that HC methods are especially useful for the enrich-
ment of human pathogen sequences as they can be designed for disease across multiple
scales of divergence, loci, or other desired configurations. Improvements in bait design
algorithms and an increased interest in HC will likely result in a diversity of panels enrich-
ing human pathogens from different types of samples (e.g., environmental and clinical).
Indeed, HC is a viable and useful tool for the enrichment of sequences at low concentrations,
especially when capturing across a broader taxonomic range. Pathogen genomic sequences
can be used for pathogen identification, genomic epidemiology, and environmental surveil-
lance, making it invaluable in the study of outbreaks. In addition, the applications of HC
can extend to transcriptome characterisation and determining differential gene expression,
furthering our standing of host–pathogen interactions. Future research into the combi-
nation of long-read sequencing and HC will produce more robust results, especially in
difficult-to-sequence/assemble regions, and we suspect novel applications of HC will likely
arise as the field matures.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/pathogens13040275/s1, Table S1: List of studies employing
hybrid capture for human pathogens.; Table S2: List of commercial kits for hybrid capture target
enrichment of human pathogens.
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