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Abstract: Human T-cell Leukemia Virus type 1 (HTLV-1) is a human retrovirus responsible for
leukaemia in 5 to 10% of infected individuals. Among the viral proteins, Tax has been described as
directly involved in virus-induced leukemogenesis. Tax is therefore an interesting therapeutic target.
However, its 3D structure is still unknown and this hampers the development of drug-design-based
therapeutic strategies. Several algorithms are available that can be used to predict the structure
of proteins, particularly with the recent appearance of artificial intelligence (AI)-driven pipelines.
Here, we review how the structure of Tax is predicted by several algorithms using distinct modelling
strategies. We discuss the consequences for the understanding of Tax structure/function relationship,
and more generally for the use of structure models for modular and/or flexible proteins, which are
frequent in retroviruses.
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1. Introduction

Human T-Leukemia virus type 1 (HTLV-1) was the first oncogenic retrovirus discov-
ered in humans [1]. It is estimated that 5 to 10 million people are infected with HTLV
worldwide, in areas of high endemicity [2]. HTLV is the etiological agent of adult T-cell
leukaemia (ATL) and Tropical Spastic Paraparesis (TSP) which occur in 5 to 10% of infected
people [2]. Interestingly, only HTLV type 1 virus (HTLV-1) but not its type 2 homolog
(HTLV-2) induces ATL in humans [3]. Among HTLV-1 proteins, Tax plays a central role in
viral replication and HTLV-1–related pathologies [4]. Tax is a 353-residue-long viral protein
(~40 kDa), in which several functional domains have been described [5] (Figure 1) which
confer numerous functions to the protein.
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1. Introduction 
Human T-Leukemia virus type 1 (HTLV-1) was the first oncogenic retrovirus discov-

ered in humans [1]. It is estimated that 5 to 10 million people are infected with HTLV 
worldwide, in areas of high endemicity [2]. HTLV is the etiological agent of adult T-cell 
leukaemia (ATL) and Tropical Spastic Paraparesis (TSP) which occur in 5 to 10% of in-
fected people [2]. Interestingly, only HTLV type 1 virus (HTLV-1) but not its type 2 hom-
olog (HTLV-2) induces ATL in humans [3]. Among HTLV-1 proteins, Tax plays a central 
role in viral replication and HTLV-1–related pathologies [4]. Tax is a 353-residue-long vi-
ral protein (~40 kDa), in which several functional domains have been described [5] (Figure 
1) which confer numerous functions to the protein. 

 
Figure 1. Functional domains of Tax. NLS: nuclear localization signal; E: nuclear export signal, P: 
PDZ-binding motif; ZnF: zinc finger; LZR1 and LZR2: leucine zipper regions 1 and 2. 
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Figure 1. Functional domains of Tax. NLS: nuclear localization signal; E: nuclear export signal, P:
PDZ-binding motif; ZnF: zinc finger; LZR1 and LZR2: leucine zipper regions 1 and 2.

Indeed, this viral effector recruits cellular proteins such as RNA polymerase II, CREB
transcription factor and p300/CBP coactivator on the viral promotor located in the 5′ LTR
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of the provirus to allow efficient transcription of the HTLV-1 genome [5,6]. In addition to
its function as a viral transactivator, this pleiotropic oncoprotein is able to interact directly
with a large panel of cellular proteins, from transcription factors [7,8] to proteins involved
in cell signalling, cell cycle or apoptotic pathways [8,9] or mRNA quality control [10],
thereby playing a central role in HTLV-1 oncogenesis [4,8,11]. In particular, the expression
of Tax is necessary for the proliferation of primary T-cells in ATL patients [12]. Thus, Tax
represents an interesting therapeutic target for treatment against ATL, and deciphering
its 3D structure would be a significant breakthrough towards the development of anti-
HTLV-1 drugs. Unfortunately, the experimental solving of the 3D structure of Tax remains
elusive. To date, the only published structures concerning HTLV-1 Tax are that of short
peptides in complex with HLA molecules [13–23] or structures of the last eight residues
of the C-terminal extremity of Tax, forming a PDZ-binding motif, in complex with PDZ
proteins [24–27].

In the absence of experimental data on the structure of a complete Tax protein, it is
tempting to consider modelling this 3D structure de novo. Until recently, the algorithms for
the prediction of protein 3D structures were based on homology modelling: schematically,
the algorithm will compare the sequence of the protein of interest (query sequence) with
sequences of proteins for which experimental structural data are available in protein
structure databases, extract its predicted secondary structures, and compare with those
of the sequences of proteins that were the closest homologues in the multiple sequence
alignment. Then, based on these sequence/secondary structure alignments, it models
the structure of the protein of interest using the 3D scaffold of the identified model(s)
and a final energy minimization step. With the emergence of artificial intelligence (AI),
new structure prediction pipelines have been described. Schematically, these algorithms
are based on neural networks and deep learning that are aggregating the physical and
geometric constraints that are present in stretches of sequences present in published protein
structures as well as global constraints to generate 3D models. These recent algorithms
appear to perform with high efficacy in the yearly critical assessment of protein structure
prediction (CASP, https://predictioncenter.org, accessed on 3 February 2024).

In the view of these recent developments in structure prediction, we investigated
whether the 3D structure of the HTLV-1 Tax protein could be accurately modelled. Thus, we
performed the structure predictions of HTLV-1 Tax proteins using eight different homology
or AI-driven predictors. We then observed and compared the obtained structures in order
to get a better knowledge on Tax structure and its potential use for drug design strategies,
but also on the potential limitations of structure prediction.

2. Predicting the Structure of HTLV-1 Tax

First of all, it is worth noticing that the confidence scores for the predictions are given
by distinct indexes and calculation depending on the modelling algorithm. Therefore, for
each prediction, we will calculate the confidence score of all the models using a single
index for clarity, i.e., the composite QMEANDisCo score [28] available via the “Structure
Assessment” tool (https://swissmodel.expasy.org/assess, accessed on 29 January 2024) of
the Swiss-Model server [29]. A good quality prediction is expected to have a QMEANDisCo
above 0.70.

2.1. Predictions Using Homology Modelling

We used three different servers providing structure homology modelling methods to
predict the structure of Tax: Swiss-Model [29], Phyre2 [30], and I-Tasser [31–33].

Swiss-Model (https://swissmodel.expasy.org, accessed on 25 January 2024) predicts
a β-stranded structure, which includes only 41 residues from the N-terminus of Tax
(Figure 2A, residues 27–67). The predicted fragment is homologous to the nitrite reductase
small subunit from Vibrio parahaemolyticus (PDB ID 3C0D [34]) and its confidence score
QMEANDisCo is of 0.31 ± 0.12. Thus, this partial model appears poorly reliable.

https://predictioncenter.org
https://swissmodel.expasy.org/assess
https://swissmodel.expasy.org
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Figure 2. Prediction of Tax 3D structure using (A) Swiss-Model, (B) Phyre2 with defaults settings,
(C) Phyre2 with “intensive” settings and (D) I-Tasser. Models are coloured from N- to C-terminal
from dark blue (residue 1) to red (residue 353), as in Figure 1. Therefore, a single residue will have
the same colour on all models, including the partial models (A,B).

Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2, accessed on 29 January 2024) predicts a
structure of a 60 residue-long fragment (Figure 2B, residues 27 to 96), which encompasses
the Swiss-Model structure and is homologous to the ferrodoxin component of a bacterial
toluene-4-monooxygenase complex (PDB ID 1VM9 [35]). Notably, the β-strands predicted
by Swiss-Model are also present and the extra modelled region contains one α-helix and

http://www.sbg.bio.ic.ac.uk/phyre2
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two β-strands. However, the confidence score of this compact model is still low with a
QMEANDisCo of 0.35 ± 0.11.

The Phyre2 server can also be used with an “intensive” option to force the modelling
of the complete protein through a multiple template modelling (i.e., using several model
structures based on local sequence homologies). By doing so, we obtained a model of
the whole Tax protein (Figure 2C). The predicted region 27–96 is unchanged and the
appended modelled parts are constructed from several other template proteins, such as
a plant ferrodoxin reductase (PDB ID 1FND [36], Tax residues 207–250). The resulting
predicted structure is modular with the N- and C-terminal domains separated by a flexible
linker (Figure 2C) but the C-terminal part, which is not modelled with the default settings,
appears to be loosely folded, with few secondary structure elements. The QMEANDisCo
score of this model is lower (0.27 ± 0.05) than with the default settings. It is worth noting
that this ”intensive” Phyre2 algorithm had been already used to model Tax in a publication
from 2021 in which the authors reported that the model quality was also below the expected
confidence scores, despite the fact that they had performed additional rounds of structure
refinement [37].

Then, we moved to I-Tasser (https://zhanggroup.org/I-TASSER/, accessed on 26 Jan-
uary 2024) which is based on the assembly of PDB templates from local homology domains.
The server was able to generate a structure prediction for the full protein (Figure 2D) and
the first threading template was the human S-phase kinase-associated protein 2 (PDB ID
1FQV, chain A [38]). Because of this new template, the N-terminal domain of Tax is pre-
dicted to contain α-helices instead of the previous β-strands. The modelled central region
(residues 100–200) and C-terminal extremity (residues 300–353) contains more secondary
structure elements than the “Phyre2 intensive” model (Figure 2C,D) but the predicted
tertiary structure is still loosely folded. The calculated QMEANDisCo score is also low
with a value of 0.35 ± 0.05.

In summary, the predictions of Tax structure by homology modelling give bad to
mediocre results: some models are only partial (Figure 2) and all of them have a low
confidence score with QMEANDisCo between 0.27 and 0.35 (Table 1).

Table 1. Summary of confidence scores for each model of Tax generated by homology modelling.
QMEANDisCo scores were calculated as explained in the text.

Modelling Server Complete Protein
Modelled?

Calculated
QMEANDisCo

Swiss-Model No 0.31 ± 0.12
Phyre2 (default) No 0.35 ± 0.11

Phyre2 (intensive) Yes 0.27 ± 0.05
I-Tasser Yes 0.35 ± 0.05

The variety of homology templates, together with the low confidence scores, explains
the high divergence of the predicted structures, which was evident from the side-by-side
comparison of the different models (Figure 2). Yet, three out of four algorithms predicted
an N-terminal domain with a β-strand-rich region. This domain of Tax contains four
cysteine and three histidine residues, potentially forming a zinc finger responsible for the
interaction of this region with the viral DNA promoter [5]. However, none of the template
proteins identified by the servers have been described to possess this motif, although they
are metal-binding enzymes [34,35].

Altogether, these low confidence scores and the discrepancy between the templates
identified by the modelling tools and what is known from Tax function confirms that, to
date, no homologous structure of the Tax protein has been described. This is not completely
surprising, as the sequence of Tax is the results of years of co-evolution of the virus with
its host and has probably evolutionary diverged in a specific way. However, homology
modelling remains an interesting approach when trying to predict the structure of a viral
protein of interest, even when sequence similarity is low: there are examples of viral proteins

https://zhanggroup.org/I-TASSER/
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displaying low sequence homologies (around 20%) but a similar fold because of conserved
structure-function requirements (e.g., the Gag protein of lentiviruses [39]). Moreover, as
the amount of protein structures available in structure databases is quickly increasing
(https://www.rcsb.org/stats/growth/growth-released-structures, accessed on 2 February
2024), a HTLV-1 Tax homologue (e.g., a Tax-like protein from a distant oncoretrovirus)
might sooner or later be published and therefore identified by these algorithms. Thus, it
could be interesting to regularly renew these predictions as homology modelling of Tax
can become conclusive.

Altogether, the use of homology modelling for Tax can only lead to the conclusion
that this protein possesses a peculiar sequence for which no structural homologue could be
identified to date, even for the zinc finger region.

2.2. Predictions Using AI-Based Pipeline

The difficulties in predicting the 3D structure of proteins that have no homologues in
structure databases, as described above for Tax, is a problem which has been encountered
for years. The recent appearance of AI-based algorithms, which all appeared to perform
with high efficacy in international protein structure prediction competitions, has given
new hopes for the deciphering ab initio of structure function relationships. Because they
are based on different AI-driven processes, we have used four of them to predict the
structure of Tax: AlphaFold 2 [40], RoseTTAFold [41], ESMFold [42] and D-I-Tasser [43]
(Figure 3). AlphaFold 2 and ESMFold binaries were installed and run on an in-house server,
while RoseTTAFold and D-I-Tasser were run through their primary webservice (https:
//robetta.bakerlab.org/submit.php accessed on 25 January 2024 and https://zhanggroup.
org/D-I-TASSER/ accessed on 26 January 2024, respectively). The mean per-residue
confidence metric called pLDDT, available in AlphaFold 2, is given for each AI-prediction
when known, and the QMEANDisCo score is systematically calculated.
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Figure 3. Prediction of Tax 3D structure using (A) AlphaFold 2, (B) RoseTTAFold, (C) ESMFold and
(D) D-I-Tasser. Colour scheme is identical to Figure 2.

AlphaFold 2 is using neural networks based on evolutionary, physical and geometric
constraints of protein structures [40]. The model generated by this algorithm (Figure 3A)
shows a two-domains protein. The N-terminal domain is composed of β-strands while
the central domain, which is rather compact, contains both β-strands and α-helices. No
secondary structure elements are predicted in the C-terminal end. The confidence score
pLDDT for the whole protein is 37.4, while the target values are >70 for a confident score
and >90 for a very high confidence score. Even the pLDDT per residue never reaches a
value above 70. This low-confidence score is confirmed by the QMEANDisCo of this model,
which is 0.35 ± 0.05.

RoseTTAFold is using a “three-track network” in which information at the sequence,
the secondary structure, and the 3D level are successively integrated [41]. Based on the Tax
sequence, RoseTTAFold is also predicting a two-domain protein, separated by an isolated α-
helix (Figure 3B). Both the N- and C-terminal domains are containing a mixture of β-strands
and α-helices. However, by opposition to the AlphaFold 2 model, the C-terminal region of
Tax is predicted here as containing two α-helices. The N-terminal region (residues 20–74) is
predicted to contain helical motifs that are absent from the AlphaFold 2 model (Figure 3A).
It is also the only region of the protein where the error estimates per residue of the model
are below 6 Å. However, the overall confidence score of the RoseTTAFold model is 0.35
(target > 0.70), while a calculated QMEANDisCo of 0.39 ± 0.05. Thus, even with some
locally favourable confidence scores for the N-terminal region, this model is not estimated
as very reliable overall.
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ESMFold adopts a different approach, as it uses language models trained on protein
sequences and therefore does not depend on multiple sequence alignments [42]. ESMFold,
like the other AI-based algorithms, predicts that the Tax protein is composed of two do-
mains (Figure 3C). The N-terminal region is composed only of β-strands, while the central
domain contains both β-strands and α-helices, and the C-terminal extremity is predicted as
disordered. The mean pLDDT is 47.6 (target > 70) and the calculated QMEANDisCo value
is 0.43 ± 0.05 (target > 0.70). Of interest, pLDDT scores per residue are between 70 and 80
(i.e., scoring as “confident”) for the residues at the N-terminus (residues 15–75).

Finally, we used D-I-Tasser which is an evolution of I-Tasser (see above) that includes
a deep neural-network predictors analysis coupled to the I-Tasser force fields (Figure 3D).
D-I-Tasser predicted a model for the whole protein and the first threading template is, this
time, a protein from the drosophila apoptosome (PDB ID 1VT4 [44]). As a consequence, the
predicted topology is different from the I-Tasser one and the D-I-Tasser model has more
α-helices (Figures 2D and 3D). The confidence score of the D-I-Tasser model is better than
the one of I-Tasser with a QMEANDisCo of 0.44 ± 0.05, which is within the range of the
other AI-programs. Yet, it remains well below the confidence threshold of 0.70.

In summary, the predictions of the structure of the whole Tax protein by AI-based
modelling algorithms gave low confidence scores (QMEANDisCo between 0.35 and 0.44,
Table 2), with D-I-Tasser having the best score.

Table 2. Summary of confidence scores for each model of Tax generated by AI-based algorithms.
QMEANDisCo scores were calculated as explained in the text.

Modelling Program Complete Protein
Modelled?

Original Confidence
Score

Calculated
QMEANDisCo

AlphaFold 2 Yes pLDDT = 37.4 0.35 ± 0.05
RoseTTAFold Yes Predicted GDT = 0.35 0.39 ± 0.05

ESMFold Yes pLDDT = 47.6 0.43 ± 0.05
D-I-Tasser Yes eTM = 0.4 0.44 ± 0.05

When comparing QMEANDisCo values for all the generated model (Tables 1 and 2), it
is noticeable that no algorithm performed significantly better than the others, and that both
homology and AI-based algorithms reach similar low QMEANDisCo confidence scores.
This means that the sequence of the Tax protein seems resistant to modelling, whether by
homology or ab initio.

3. Comparison of HTLV-1 Tax Structure Models

Two of the four AI-generated models (RoseTTAFold and ESMFold) exhibited the best
local confidence scores for the N-terminal domain of Tax, which is the zinc finger domain
which was also modelled by Swiss-Model and Phyre2. Therefore, we wondered if there
could be some conserved local folding which would be identifiable although the confidence
scores of the whole models were not good. Thus, we compared the secondary structures
elements of all these models with respect to Tax functional regions (Figure 4).

It appears that the Nuclear Export Signal and the centre of the dimerization domain
are predicted as being in an α-helical region by all predictors that modelled this region
(residues 175–205). Notably, it is the region which had the best local confidence score
in the D-I-Tasser model. For the rest of the protein, none of the models are convergent
(Figure 4). For example, if we consider the zinc finger domain of Tax, we can observe that
five models are predicted to have a β-stranded fold (AlphaFold 2, ESMFold, Swiss-Model
and both Phyre2 models), while the other three (RoseTTAFold, I-Tasser and D-I-Tasser)
predicted the presence of helical elements and turns, together with β-strands or replacing
them. Furthermore, despite having good local confidence scores for this domain, the Cα

trace of the ESMFold and RoseTTAFold models do not superpose (Figure 5A).
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As there are a lot of different topologies for zinc fingers that have already been de-
scribed in the literature [45], this observation could suggest that the Tax protein harbours
another, yet undescribed, zinc finger topology that the algorithms do not identify, especially
as they do not support the prediction of metal coordination. Indeed, although not super-
posing, both ESMFold and RoseTTAFold predicted three cysteines (C29, C36 and C49) and
one histidine (H52) in close vicinity, which could coordinate a zinc ion (Figure 5B,C). Such
zinc fingers with three cysteines and one histidine (CCCH) have been described and are
involved in RNA metabolism [46]. Their consensus sequence is C-(X4–15)-C-(X4–6)-C-(X3–4)-
H (with X for any amino-acid) [47]. Thus, this putative CCCH zinc finger in Tax, with the
sequence C-X6-C-X12-C-X2-H, would be non-canonical and marked by a particularly longer
distance between the second and third cysteines (12 instead of 4 to 6). Of note, this zinc
finger is also predicted by AlphaFold 2 but not by D-I-Tasser, nor by any other homology
modelling method.

Another possibility is that this region of Tax is intrinsically disordered and that the
zinc finger is only forming through induced folding when Tax interacts with a biological
partner. The formation of the zinc finger of Tax could also require trans-complementation
with domains or residues of the interacting partner, as it contains only seven cysteines or
histidine residues while eight are needed to complete two zinc fingers. Such an induced
folding and trans-complementation for the formation of the zinc finger have been described
for the HIV-1 Tat protein: this regulatory protein, which is intrinsically disordered [48,49],
contains seven cysteine residues and uses a residue from its interacting partner, Cyclin T1,
to complete its two zinc fingers that are then folded as α-helices [50].

The experimental elucidation of the 3D structure of this region of Tax, alone or in
complex with one of its biological partners, will be necessary to conclude on this matter.

4. Conclusions and Perspectives

In conclusion, the only convergent result that can be obtained from the comparisons
of all these models is that the Tax protein seems to be a modular protein, containing two
more or less compact domains separated by a flexible linker, with a nuclear export domain
probably α-helical, and with a C-terminal end which is loosely structured and/or can adopt
different folding. As soon as we try to go deeper in the details, the different models that we
have obtained are divergent. This could be expected by the fact that none of the models
had good confidence scores, suggesting that they are all (at least partially) wrong.

When we focus on specific functional domains such as the zinc finger, some models
seemed to converge, but there are still some discrepancies, even between models that
predicted this region with good confidence scores. Thus, to date, it appears that it is not
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possible to model the structure of the Tax protein with a sufficient accuracy to use any of
these predictions to understand structure-function relationships of Tax and even less to
guide a structure-based drug design.

Notably, Tax can undergo several post-translational modifications, such as phospho-
rylation [51], acetylation [52], SUMOylation and/or poly-ubiquitination [53] which are
important for its function [8] and may influence its conformation, as described for other
proteins [54–56]. However, there is no algorithm to date which includes this parameter
during protein structure prediction.

This work on the Tax protein has three consequences for the understanding of Tax
structure, but also beyond the HTLV-1 field for the use of structure models of modular proteins.

First, it underlies that, although the confidence scores must be the first criterion to
consider, a good confidence score, even at a local scale, is not enough to discern “good” from
“bad” models, as exemplified by the comparison of the N-terminal regions that showed
good local confidence scores with RoseTTAFold and ESMFold (Figure 5). Therefore, even
for models which are predicted with pLDDT confidence scores around 70–80%, it should
be recommended to use two or three distinct structure prediction algorithms to check if
there is some convergence or not.

Second, one should keep in mind that it may difficult to predict the structure of some
proteins because of their intrinsic complexity. This is particularly true for retroviral proteins
such as Tax of HTLV-1. Indeed, the genome of retroviruses is about 10kb in size, but must
still sustain a complete viral replication cycle. This means that retroviral proteins have
often several functions (and it is the case of Tax), which force them to adopt different confor-
mations to adapt to different needs of the virus. As a consequence, retroviral proteins tend
to be modular proteins with flexible regions, that are undergoing conformational changes
with reorganization of the respective orientations of some domains/subdomains [57,58].
Some of them can even be mostly intrinsically disordered and/or undergo induced folding,
i.e., appearance of secondary/tertiary structure elements only in certain conditions [48,59].
Predicting such a fluctuating landscape, even at a local scale, could be unreachable for
3D modelling algorithms. This has been demonstrated for AlphaFold 2 [60,61], but it is
probably a problem for all structure modelling strategies.

This leads to the third consequence of this work: algorithms predicting the structure
of proteins must still be fed by experimental structural data, in order to increase their panel
of possible conformations and thereby their accuracy. The case studied here clearly shows
that whatever programs are used, even the most recent and innovative ones based on AI,
they all find themselves faced with a “gray zone”, which does not allow them to deliver
reliable predictions. It is when the structure of Tax will be experimentally solved that we
will understand which model, if any, was the closest to reality and where it was wrong. It
will also help identify which domains of Tax had specific, unpredictable structures. These
unique features would be the best targets for the development of anti HTLV-drugs.
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