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Abstract: Enterococcus faecalis is a bacterial pathogen that can cause opportunistic infections. Studies
indicate that initial biofilm formation plays a crucial regulatory role in these infections, as well as
in colonising and maintaining the gastrointestinal tract as a commensal member of the microbiome
of most land animals. It has long been thought that vegetation of endocarditis resulting from bac-
terial attachment to the endocardial endothelium requires some pre-existing tissue damage, and
in animal models of experimental endocarditis, mechanical valve damage is typically induced by
cardiac catheterisation preceding infection. This section reviews historical and contemporary animal
model studies that demonstrate the ability of E. faecalis to colonise the undamaged endovascular
endothelial surface directly and produce robust microcolony biofilms encapsulated within a bac-
terially derived extracellular matrix. This report reviews both previous and current animal model
studies demonstrating the resilient capacity of E. faecalis to colonise the undamaged endovascular
endothelial surface directly and produce robust microcolony biofilms encapsulated in a bacterially
derived extracellular matrix. The article also considers the morphological similarities when these
biofilms develop on different host sites, such as when E. faecalis colonises the gastrointestinal ep-
ithelium as a commensal member of the common vertebrate microbiome, lurking in plain sight
and transmitting systemic infection. These phenotypes may enable the organism to survive as an
unrecognised infection in asymptomatic subjects, providing an infectious resource for subsequent
clinical process of endocarditis.

Keywords: Enterococcus faecalis; vegetation; infective endocarditis; biofilm; cardiac endovascular
infection; gastrointestinal

1. Introduction

Enterococci are a unique type of bacteria due to their ability to withstand a broad range
of different environmental parameters such as pH, temperature, salinity, bile acids, and so
on. They are resistant to many antibiotic compounds and have the flexibility to flourish
as both common commensal and opportunistic pathogens in a broad range of clinical
settings [1–6]. Enterococci commonly live in the body and can cause chronic endocarditis,
especially Enterococcus faecalis [5,7–10]. They account for approximately 10% of valvular
endocarditis cases, with E. faecalis being the main causative agent [6,8–13] (Figure 1).

To improve patient outcomes, it is important to accurately diagnose and treat entero-
coccal infections. During colonisation of the murine gastrointestinal (GI) tract, E. faecalis
has been shown to form and develop bacterial biofilms. These biofilms consist of bacteria
attached to a host surface and surrounded by a bacterially derived extracellular matrix
(ECM) [13,14]. In animal models of enterococcal catheter-associated urinary tract infections
and endocarditis, E. faecalis has been identified as a significant pathogenic factor [15–22].
This finding was first reported in 2007 [22]. Colonisation results in the formation of a
defensive bacterial biofilm on the native or engineered tissue: biofilm formation often
results in markedly enhanced levels of resilience to antimicrobial agents [23–25].
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defensive bacterial biofilm on the native or engineered tissue: biofilm formation often re-
sults in markedly enhanced levels of resilience to antimicrobial agents [22–24]. 

 
Figure 1. Elderly patients with a history of CIED and younger patients with a history of PWID have 
a higher incidence of IE. Low incidence of IE in patients with central venous catheters, HIV, CHD, 
and immunosuppression. In total, 26.6% of IE cases occur due to Staphilococcus Aureus and 9.7% 
of these occur due to CoNS. Enterococci are involved in more than 10% of cases. Zoonotic endocar-
ditis is determined by Coxiella burnetii and Brucella (from livestock), Bartonella henselae (from cats), 
and Chlamydia psittaci (from parrots, pigeons). Other rare causes include Gram-negative bacteria 
(e.g., Acinetobacter spp, Pseudomonas aeruginosa), Legionella spp, Mycoplasma spp, and Tropheryma 
whippelii. Fungal endocarditis, usually Candida or Aspergillus, is rare but often fatal, arising in pa-
tients who are immunosuppressed or after cardiac surgery, mostly on prosthetic valves. From Nappi 
et al., [11,12]. * Classification from Lancet.  

Bacteria colonise a prestaged, abacterial collection of host factors according to the 
classical or canonical model of bacterial endocarditis. The model proposes a two-step pro-
cess: First, platelets, components of the coagulation chain including fibrinogen, thrombin, 
etc., and other host factors are deposited in reaction to an initial injury, thereby creating a 
“sterile vegetation”. Bacteria already circulating in the bloodstream then populate this ab-
errant site, establishing a largely quiescent infection nidus [10]. Likewise, enterococcal in-
fection is a significant cause of dysfunction in allogeneic tissue used as a biological valve 
replacement for patients who have received an allograft, whether for endocarditis or non-
endocarditis of the aortic valve [11,25].  

Barnes et al. [13] have previously reported that E. faecalis directly engages and colo-
nises the surface of the intestinal epithelium, producing distinct biofilm microcolonies 
across the gastrointestinal tract in a germ-free mouse model of infection. In a rabbit model 
of cardiac endovascular infection, a comparable pattern of colonisation of the native host 
surface is also observed [12]. These observations suggest that the adhesion of enterococci 
to the cardiac endothelium has a similar role in the development of pathogenic endocar-
ditis as it does in non-pathogenic intestinal epithelial colonisation. This is supported by 

Figure 1. Elderly patients with a history of CIED and younger patients with a history of PWID have
a higher incidence of IE. Low incidence of IE in patients with central venous catheters, HIV, CHD,
and immunosuppression. In total, 26.6% of IE cases occur due to Staphilococcus aureus and 9.7% of
these occur due to CoNS. Enterococci are involved in more than 10% of cases. Zoonotic endocarditis
is determined by Coxiella burnetii and Brucella (from livestock), Bartonella henselae (from cats), and
Chlamydia psittaci (from parrots, pigeons). Other rare causes include Gram-negative bacteria (e.g.,
Acinetobacter spp., Pseudomonas aeruginosa), Legionella spp., Mycoplasma spp., and Tropheryma whippelii.
Fungal endocarditis, usually Candida or Aspergillus, is rare but often fatal, arising in patients who are
immunosuppressed or after cardiac surgery, mostly on prosthetic valves. From Nappi et al. [12,13].
* Classification from Lancet.

Bacteria colonise a prestaged, abacterial collection of host factors according to the clas-
sical or canonical model of bacterial endocarditis. The model proposes a two-step process:
First, platelets, components of the coagulation chain including fibrinogen, thrombin, etc.,
and other host factors are deposited in reaction to an initial injury, thereby creating a “sterile
vegetation”. Bacteria already circulating in the bloodstream then populate this aberrant site,
establishing a largely quiescent infection nidus [11]. Likewise, enterococcal infection is a
significant cause of dysfunction in allogeneic tissue used as a biological valve replacement
for patients who have received an allograft, whether for endocarditis or non-endocarditis
of the aortic valve [12,26].

Barnes et al. [14] have previously reported that E. faecalis directly engages and colonises
the surface of the intestinal epithelium, producing distinct biofilm microcolonies across the
gastrointestinal tract in a germ-free mouse model of infection. In a rabbit model of cardiac
endovascular infection, a comparable pattern of colonisation of the native host surface
is also observed [13]. These observations suggest that the adhesion of enterococci to the
cardiac endothelium has a similar role in the development of pathogenic endocarditis as it
does in non-pathogenic intestinal epithelial colonisation. This is supported by the absence
of significant systemic host responses to this colonisation over several weeks and the ability
of E. faecalis to adhere to intact endothelia.
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This section reviews both the current and past findings for this kind of infection,
shows how the conventional model fits, and fails to fit, with recent findings in the area,
and considers possible future directions for better understanding the pathophysiology of
this increasingly important clinical infection (Table 1). The infection rate was assessed in
patients who received an allograft, both those who underwent surgery for aortic valve
endocarditis and those who underwent surgery for reasons unrelated to infection. The
causative pathogen type was investigated in previous cardiac surgery and reoperation.

Table 1. Pathogens in Allograft Infections in Non-Endocarditis and Comparison of Pathogens in
Allograft Implants and Allograft Infections in Endocarditis.

Pathogen
Non-IE Allograft Infections IE

Pathogens at Allograft Implants
IE
Pathogens at Allograft Infections

n *
22 No.% n γ

46 No.% n λ

42
No.%

Staphylococcus aureus 0 (0) 9 (20) 11 (26)

CoNS 0 (0) 4 (8.7) 3 (7.1)

Viridans group strep 10 (45) 5 (11) 7 (17)

Enterococcus 0 (0) 7 (15) 3 (7.1)

Others 3 (14) 5 (11) 5 (12)

Pathogen not identified 3 (14) 9 (20) 5 (12)

Other GPC 3 (14) 4 (8.7) 4 (9.5)

Fungus 3 (14) 3 (6.5) 4 (9.5)

Abbreviations: IE, Infective endocarditis; CoNS, coagulase-negative Staphylococci; GPC, Gram-positive cocci.
* Data available for 22/30 non-IE patients with new allograft infection. γ Data available for 46 of 49 allo-
graft recipients with IE at index procedure. λ Data available for 42 of 49 patients with IE with recurrent
allograft infection.

2. History

Originally described in the early 20th century and named Streptococcus faecalis before
being placed in the genus Enterococcus in 1984, Enterococcus faecalis has been known to cause
endocarditis since the seminal paper published by Andrewes and Horder in 1906 [27].

As previously mentioned, the conventional paradigm for bacterial colonisation of
the heart involves an abiotic accumulation of host factors. This is usually accompanied
by an endovascular injury. Nevertheless, it is noteworthy that numerous papers in the
earlier literature (prior to 1975) reported that enterococcal endocarditis appeared to arise in
a substantial proportion of individuals without obvious prior gross endothelial damage or
structural cardiac defects [28,29]. As is frequently the case in earlier literature, the exact
determination of the particular bacterial strain can be challenging. Several animal model
models, notably pigs [30] and rabbits [31], have also described these clinical findings.

During the 1970s and 1980s, the medical community focused on enterococci because
of their high level of intrinsic and transmissible antibiotic resistance in comparison to
pathogenic streptococci. It is worth noting that until the 1980s, enterococci were phyloge-
netically classified as members of the genus Streptococcus [32].

The interest of the medical and health care community in enterococci during the 1970s
and 1980s was largely driven by the relatively high level of inherent and transmissible
antibiotic resistance of these bacteria compared to the pathogenic streptococci routinely
found in the population. It is noteworthy to mention that enterococci were classified
phylogenetically as belonging to the species Streptococcus right up to the 1980s [32]. During
this time, genetic and molecular studies of both plasmids and trans-spliced genetic material
provided an important experimental basis for future genomic approaches to enterococcal
virulence [33,34]. Yet, the global clinical frequency of clinically ascertained enterococcal
infections continued to be low throughout much of this time frame, although it is unclear
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whether this represents a real incidence rate or merely a reflection of a more restricted
diagnostic landscape.

In the 1980s, the widespread use of oral prophylaxis with cephalosporins led to the
emergence of enterococci (mainly E. faecalis) as the most important hospital pathogens.
Certain genotypes were able to achieve epidemic dissemination, both nationally and
internationally [35–41]. Starting in the 1990s, systematic attempts to determine crucial
genetic factors of virulence in nosocomial and other opportunistic enterococcal infections
were intensified as a result of these clinical developments. Pioneering studies in this field
aimed to identify enterococcal antigens that triggered an antibody response in patients with
infections [42–50]. In early studies, most of the prominent antigens discovered were surface-
exposed antigens of the enterococcal cell coat (Ebp, Ace, Epa). Subsequent studies using
in vitro assays and animal models, including experimental endocarditis, have identified
critical roles for these constituents in host adherence and virulence [42–50]. In addition to
the factors mentioned above, which are genetically determined, there is also evidence that
plasmid-encoded surface adhesins, such as Aggregation Substance, play a role [51–57].

Enterococci have become increasingly significant in healthcare-associated infections
over the last two decades. This trend is likely to be driven by a number of factors. Among
them are increased access to diagnostics, an increasingly elderly population, greater in-
vasiveness of medical interventions, and the continued emergence of antimicrobial re-
sistance [58–63]. During this time period, the number of studies in the general area of
bacterial biofilms increased markedly [64–72]. Additionally, the full genome sequence for
E. faecalis V583 was published [73–75]. In 2003, Bourgogne et al. [76] identified OG1RF, and
since then, several other strains have been extensively studied [77] using enhanced genetic
research tools to investigate E. faecalis infection [78–82]. Our knowledge of the genetic basis
of biofilm development in E. faecalis, both during in vitro propagation and infection, has
been greatly enhanced as a result [9,83–86]. Barnes et al. [13,14] conducted a thorough
study on transposon mutagenesis and recombinase-based in vivo expression technology
(RIVET) genetic screens. The results were non-overlapping but mutually supportive, identi-
fying several factors involved in multiple in vitro biofilm production in the chromosome of
strain OG1RF. These findings were previously reported by Kristich et al. [80] and Ballering
et al. [81]. When the same RIVET library was tested in a rabbit model of subcutaneously
implanted foreign body infection, 28 genes identified in these in vitro tests (two from the
transposon screen, 26 from the RIVET screen) were also found to have promoters [19].
However, only two genes (ahrC and eep) were considered to play a significant role in en-
docarditis pathogenesis when ten strains with mutations in biofilm-associated genes from
these candidate genes were tested for in vivo virulence impairment in a rabbit model of
infective endocarditis [19,87]. Leuck et al. [88] found that E. faecalis clinical strains that were
classed as poor biofilm producers in a standard in vitro microtiter dish assay colonised
porcine heart valves in an ex vivo assay just as well as strong biofilm-forming clinical
strains, supporting the conclusion that in vitro biofilm phenotypes do not closely predict
infective endocarditis.

Madsen et al. conducted a systematic literature review that summarised nine viru-
lence factors of E. faecalis infective endocarditis [17]. This information is highly useful for
readers. The virulence factors listed therein comprise the aggregation substance, cell wall
glycolipids, the Ebp pili proteins, haemolysin, the stress protein gls24, the secreted protease
GelE, the membrane metalloprotease Eep, and the adhesins Ace and EfbA [17,89]. The
transcriptional regulator AhrC is the tenth virulence factor of E. faecalis endocarditis. It
affects the expression of the ace and ebp genes, as reported by Frank et al. [19] and Manias
and Dunny [54,85,90] (Figure 2 [91–94]).
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Figure 2. (A): Vancomycin-susceptible enterococci synthesise cell wall precursors that bind van-
comycin with high affinity. These precursors end in D-Ala-D-Ala and are translocated from the
cytoplasm to the cell surface where, once bound, they cannot participate in cell wall synthesis. In
the presence of an inducer like vancomycin, vancomycin-resistant enterococci produce intermedi-
ates with different end groups (D-Ala-D-Lac, D-Ala, or D-Ala-D-Ser), which have a low affinity
for vancomycin and can therefore be used for cell wall synthesis. (B): The resistance of the chosen
enterococcal strains to artificial gastric juice, containing pepsin and acidified to pH 1.0 to pH 4.0, was
tested by incubating them for 4 h at 37 ◦C. This mimics the transient time food spends in the stomach.
Abbreviations: ‘LA’ denotes either alanyl or alanine, while ‘X lactate’ is used for VanA, VanB, and
VanD types of resistance, and ‘serine’ is used for VanC and VanE types [91–94].

The genetic drivers involved in E. faecalis biofilm formation are shown in Table 2 [83].
Table 2 Shows the genetic determinants that are involved in the formation of E. faecalis
biofilm [47,83].
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Table 2. Genetic determinants that are involved in the formation of E. faecalis biofilm.

Gene/Locus Protein/Function Year of Publication

srtC Sortase C/an enzyme that anchors surface proteins to the cell wall 2006 [47]

atn Autolysin 2004 [83]

salB Secretory antigen-like B/cell-shape determinant 2004 [83]

bee Biofilm enhancer in Enterococcus/a putative cell wall-anchored protein 2006 [95]

salA Secretory antigen-like A 2004 [83]

bop Biofilm on plastic surface/a putative sugar-binding transcriptional regulator 2004 [96]

gelE Secretory metalloprotease gelatinase E 2004 [8,83,97]

dltA D-alanine lipoteichoic acid/D-alanine-D-alanyl carrier protein ligase 2006 [98]

ebpA, ebpB, ebpC Endocarditis and biofilm-associated pili 2006 [47]

ebpR Transcriptional regulator of ebpABC 2007 [99]

epa (orfde4) Enterococcal polysaccharide antigen/a putative glycosyltransferase
involved in polysaccharide synthesis 2004 [83]

esp Enterococcal surface protein 2001, 2004 [94,100]

etaR Enterococcal two-component system regulator 2004 [83]

fsrA, fsrB, fsrC E. faecalis regulator/two-component quorum-sensing signal transduction
system, regulates the expression of gelatinase and serine protease. 2004 [8,83,97]

3. Causes of E. faecalis Bacteraemia

Bacteraemia is evidently required for endothelial bacterial colonisation of the en-
dothelium and the development of IE. In cases of acute bacteriaemia, the initial source of
infection is often identifiable. This is due to the short period of time between the spread
of bacteraemia and the onset of IE. Chronic endocarditis, which is similar to the classic
enterococcal endocarditis, is often much more ambiguous [96,101]. A variety of causes
have been proposed, varying from colonisation of the oral cavity in endodontic disease to
translocation of commensal enterococci in the gastrointestinal tract [97,98]. Enterococcus
is the second leading cause of hospital-acquired bacteraemia, due in part to its ability to
thrive in challenging environments. Contamination of environmental surfaces in healthcare
settings can cause exogenous infection, leading to direct seeding of the vasculature through
catheterisation or contamination of implantable medical devices. Indirect infection can also
occur through colonisation of the urinary or gastrointestinal tracts. Endogenous infections
can also result from translocation through the epithelium of the GI tract [97–100,102,103]
(Figure 3).

This process is facilitated by conventional antibiotic regimens, which can drastically
increase the number of enterococci in the intestinal flora [104,105]. More than three decades
ago, Wells et al. [106] experimentally demonstrated translocation of E. faecalis across the
epithelial barrier of the GI system and subsequent penetration into the circulation in a
mouse model. More advanced work has followed, including detection of invasion-defective
E. faecalis mutant strains in a T84 cell culture model [107–109] and high-resolution imaging
of the process with complementary findings on intracellular migration [110]. Despite
the long-standing belief that oral enterococci are a likely source for endocarditis, cohort
evidence has shown that oral infections are not a common factor in IE, despite the fact
that enterococci are also commonly found in the oral cavity and are a leading etiology of
endodontic disease [110]. For instance, only 1.6% of enterococcal cases could be attributed
to oral routes of transmission versus 6.7% of non-enterococcal cases in a recent large Span-
ish cohort study comparing enterococcal IE (516 patients) and non-enterococcal IE cases
(3308 patients) [59].
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to the catheter and multiply within the biofilm in the case of complicated UTIs. The infection may 
progress to pyelonephritis and bacteraemia if left untreated. From Mancuso et al., [98]. 
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cal translocation is a result of host immunosuppression or if enterococci themselves are 
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terial translocation, in some cases after a single dose. Again, E. faecalis is a key player [113–
115].  

Brown et al. [116] have recently reported the discovery of cardiac microlesions during 
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to those caused by Streptococcus pneumoniae during invasive pneumococcal disease. 

Figure 3. The pathogenesis of urinary tract infections (UTIs) begins with the colonisation of
uropathogens in the urethra, followed by the bladder, facilitated by specific adhesins. Causative
bacteria proliferate and form biofilms if they are not eliminated by the immune system. Pathogens
can ascend from the lower urinary tract to the kidney, leading to bacteraemia. Uropathogens can
bind to the catheter and multiply within the biofilm in the case of complicated UTIs. The infection
may progress to pyelonephritis and bacteraemia if left untreated. From Mancuso et al. [99].

Severe physiological challenge, in combination with the possibility of organism-
specific translocation, may result in enough GI barrier breakdown to permit bacterial
penetration via systemic host immunosuppression [111–114]. It is unclear whether ente-
rococcal translocation is a result of host immunosuppression or if enterococci themselves
are immunomodulatory and can initiate the suppressive response [112]. In a mouse
model, common antibiotics at clinically relevant doses can cause GI barrier dysfunc-
tion and bacterial translocation, in some cases after a single dose. Again, E. faecalis is a
key player [115–117].

Brown et al. [118] have recently reported the discovery of cardiac microlesions during
severe bacteraemia caused by E. faecalis infection in mice. These microinjuries are sim-
ilar to those caused by Streptococcus pneumoniae during invasive pneumococcal disease.
However, E. faecalis does not encode the virulence determinants involved in pneumococcal
microinjury formation. The study discovered that the protein DsbA, which forms disul-
phide bonds, is essential for E. faecalis virulence in a C. elegans model and for the efficient
formation of cardiac microlesions. Additionally, E. faecalis facilitated necroptotic cell death
of cardiomyocytes at sites of microlesion formation. Unlike the wild-type strain, which
suppressed the immune response, loss of DsbA resulted in an increase in pro-inflammatory
cytokines. Furthermore, E. faecalis was able to induce microlesions in the heart. This study
has identified the features of both the bacterium and the host response that are involved in
this process.

Although there is only a paucity of clinical evidence to date, there is also some
emerging data on an association between enterococcal endocarditis events and cryptic
colorectal cancers [119–121]. It is uncertain whether there is a significant association
between these clinical conditions, as seen in most cases of Streptococcus gallolyticus subsp.
gallolyticus endocarditis, previously associated with Streptococcus bovis biotype I [122–126].
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Stanley et al. [127] found that a murine model of ischemic-reperfusion stroke showed
bacteraemia caused by a specific group of commensal bacterial strains, with enterococci
being the most prevalent.

3.1. Induced Enterococcal Colonisation Involves Cell Surface Mechanisms—Ultra-Large von
Willebrand Factor and Sortase Are Key Players in This Process

The accepted developmental pathway for bacterial endocarditis includes the primary
production of a host-derived thrombus, with subsequent processes promoting colonisation
of the thrombus by bloodstream bacteria. However, there are multiple instances where
direct colonisation of host epithelial surfaces has been reported and in practice, this mode
of adhesion may be more prevalent than is currently recognised. S. aureus is one of the most
studied of those bacterial pathogens that have been demonstrated to directly adhere to the
endothelium, at least under some circumstances. S. aureus expresses three fundamental
molecules on its surface: fibronectin-binding protein A (FnBPA) and B (FnBPB), as well as
clumping factor A (ClfA). These molecules promote bacterial adherence and identify the
cultured human endothelial cells (ECs) that interact with Gram-positive cocci. Three recent
reports have investigated the adherence of Gram-positive cocci to endothelial cells (ECs)
and have highlighted the fundamental importance of these molecules in IE [128–130].

Pappelbaum et al. [131] showed that Staphylococcus aureus adhesion to healthy en-
dothelial cells is associated with elevated levels of ultra-large von Willebrand factor, a host
cofactor that deserves in-depth analysis due to its peculiarities of action. Bacterial proteins,
such as ClfA and FnBPA, help S. aureus stick to EC surface molecules. This is also done
by subendothelial matrix proteins, like fibrinogen, fibrin, fibronectin, and von Willebrand
factor (vWF). In the setting of the undamaged endothelium, evidence suggests that ultra-
large von Willebrand factors (ULVWFs) significantly facilitate the initial pathogenic phase
of S. aureus-induced endocarditis. When activated human endothelial cells were perfused
with fluorescent bacteria under high-shear-rate conditions, 95% of the S. aureus attached to
ultra-large von Willebrand factor (ULVWF) [131]. Flow experiments using VWF deletion
mutants and heparin indicated that the A-type domains of VWF contribute to bacterial
binding. The role of wall teichoic acid, but not staphylococcal protein A, was suggested
by analysis of several bacterial deletion mutants. ULVWF-mediated bacterial adherence
significantly increased with the presence of inactivated platelets and serum. ADAMTS13,
a thrombospondin 13 disintegrin and metalloproteinase, reduced bacterial binding and
shortened the length of ULVWF in a dose-dependent manner, but even at physiological
levels of ADAMTS13, individual cocci remained bound by ULVWF. To further demonstrate
the role of VWF in vivo, wild-type mice were compared with VWF knockout mice. Using
the dorsal skinfold chamber model and intravital microscopy, fluorescent bacteria binding
was observed in tumour necrosis factor-α-stimulated tissue. VWF knockout mice had
fewer bacteria in their postcapillary and collecting venules compared to wild-type mice.
Using heparin and ADAMTS13 can reduce ULVWF formation and may provide a novel
therapeutic option to prevent IE [131].

Research has been conducted on the cell biology of NETosis in the context of infec-
tion [132]. The enzyme PAD4, which stands for protein arginine deiminase 4, plays a crucial
role in this process. PAD4 is the only member of the PAD family that possesses a nuclear
localisation signal [133–136]. Furthermore, it is believed that PAD4 has particular targets
within the cytoplasm that affect the cell biology of NETosis and the composition of the
neutrophil inflammasome. During an infection, functional cytoplasts (enucleated cells)
capable of supporting phagocytosis can be identified. In blood vessels, NETs act as a plat-
form for platelet adhesion and initiation of coagulation, similar to VWF [134,135,137,138].
Active PAD4, which is released in conjunction with NETs, also facilitates the citrullination
of ADAMTS13. This impedes VWF scission and allows platelet aggregates to remain close
to the vessel wall in the presence of PAD4 [139,140]. Recent studies have linked NETosis
and the increase in NET-associated tissue factor (TF) to systemic inflammation and IL-1β
levels, indicating a common regulatory pathway [141]. Additionally, TF secretion from



Pathogens 2024, 13, 235 9 of 22

activated macrophages and monocytes is stimulated by the activation of both canonical and
non-canonical inflammasomes, as demonstrated by recent research [142,143] (Figure 4).
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and the bacterial species involved in IE are complex and involve numerous ligand–receptor pairs.
Changes in platelet parameters have predictive value. Additionally, von Willebrand factor is also
involved. (B): The diagram illustrates the interactions between von Willebrand factor (VWF) and
neutrophils at an infection site. It provides insights into the relationships between the A1 domain
of VWF multimers, platelets, neutrophils, and NETs under conditions of high and low shear flow
(indicated by red and blue arrows, respectively). Abbreviations: AS, aggregation substance; Clf,
clumping factor; Ebp, endocarditis- and biofilm-associated pili; FcγR, crystallisable fragment gamma
receptor; Fg, ds, double strand; fibrinogen; Fn, fibronectin; FnBP, fibronectin-binding protein; GP,
glycoprotei; GspB, Streptococcus gordonii surface platelet B; IgG, immunoglobulin G; IsdB, iron-
responsive surface determinant B; PadA, platelet adherence protein A; Sar P, staphylococcal accessory
regulator protein; SrpA, serine-rich glycoprotein A; SRR-1, serine-rich repeat glycoprotein 1; SSL5,
staphylococcal superantigen-like 5; VWF, von Willebrand factor [128–144].

The role of vWbp and the sortase-assembled pilus family emerged during the analysis
of adhesion mechanisms in Gram-positive cocci infections. Claes et al. [128] discovered that
the interaction between vWbp and surface proteins of S. aureus reduces bacterial adhesion
to VWF and vascular endothelium under shear stress. Mutants deficient in Sortase A (SrtA)
and SrtA-surface proteins, as well as Lactococcus lactis-transmitting single staphylo-surface
proteins, have been employed. S. aureus attaches to the endothelium via vWF. The VWF-
binding protein (vWbp) facilitates adhesion under shear stress. The vWbp interacts with
vWF to complete the adhesion process. It is suggested that the synergistic action of Sortase,
a ClfA-dependent surface protein, plays a role in this process.

Similarly, Enterococcus faecalis is an opportunistic bacterium that causes various hospital-
acquired infections, including catheter-associated urinary tract infections. It may contribute
to virulence and the development of infective endocarditis. In a mouse model of E. fae-
calis-ascending urinary tract infections, the role of the endocarditis- and biofilm-associated
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pilus (Ebp), a member of the sortase-assembled pilus family, was demonstrated. The
Ebp pilus consists of the major EbpC shaft subunit and the minor subunits EbpA and
EbpB. In experimental catheter-associated urinary tract infections, the EbpABC(-) strain,
a non-piliated pilus knockout mutant, was significantly less virulent than its isogenic
parent OG1RF. In contrast, the EbpC(-) strain, which is a mutant with a deleted nonpiliated
ebpC gene, exhibited similar behaviour to OG1RF in vivo because it expressed EbpA and
EbpB. Deletion of either the minor pilin gene ebpA or ebpB disrupted pilus biogenesis
and resulted in defects in experimental catheter-associated urinary tract infections. The
Ebp pilus has been identified as a virulence factor in E. faecalis catheter-associated urinary
tract infections. Its in vivo function depends on a metal ion-dependent adhesion site motif
that is predicted in EbpA’s von Willebrand factor A domain. Understanding the molecular
basis of this common protein domain among the tip subunits of sortase-assembled pili is
important in preventing and treating catheter-associated urinary tract infections caused by
Enterococcus faecalis. The Ebp pilus of E. faecalis and its subunits are crucial to the virulence
of enterococcal infections in a mouse model of catheter-associated urinary tract infections.
The metal ion-dependent adhesion site motif in EbpA is crucial for Ebp function in vivo.
This discovery has implications for the molecular basis of virulence in E. faecalis catheter-
associated urinary tract infections, as well as other infections caused by enterococci and
other Gram-positive pathogens. The metal ion-dependent adhesion sitemotif is also present
in other sortase-assembled pili [128].

3.2. The Role of the Endocardium and Enterococcal Pathoadaptation

The endothelium is a specialised type of epithelium. This concept offers an in-
triguing explanation. Several studies have confirmed that the endocardium is indeed
a modified endothelium [145–149], although there has been some uncertainty about the
specifics of endocardial development. E. faecalis can directly colonise different host ep-
ithelial surfaces in a variety of animal experimental models. In a germ-free mouse model,
Barnes et al. [14] demonstrated that E. faecalis can successfully colonise the surface of the
intact, normal intestinal epithelium directly. Barnes et al. [13] have recently suggested that
enterococcal coverage of endocardial and endovascular surfaces is possible without the
need for host tissue destruction or even restricted surgical intervention, using a rabbit model
of endocarditis.

Endocarditis caused by E. faecalis is a serious clinical manifestation, commonly ac-
quired in a community setting. Understanding the extrinsic pathogenesis at the valve level
is a priority. Infective endocarditis is a complex disease with many host and microbial
components contributing to the formation of bacterial biofilm-like vegetations on the aortic
valve and adjacent areas of the heart. Thurlow et al. [21] reported further evidence sup-
porting a non-valvular role in early endocardial colonisation. In their model, even after the
inflamed valve was harvested, cardiac tissue homogenates still showed greatly elevated
bacterial loads.

In a rabbit model of enterococcal endocarditis, the pathogenic capacity of vancomycin-
resistant E. faecalis V583 and three isogenic protease mutants (∆gelE, ∆sprE, and ∆gelE
∆sprE mutants) were compared [150]. Compared to V583 or the SprE(-) mutant, the
bacterial load in the heart of the GelE(-) mutants (∆gelE and ∆gelE ∆sprE mutants) was
considerably reduced. A marked deposition of the fibrinous matrix layer and increased
chemotaxis of inflammatory cells was also observed on aortic valves infected with GelE(-)
mutants (∆gelE and ∆gelE ∆sprE mutants). This suggests a role for proteolytic modulation
of the immune response to E. faecalis. Furthermore, it was observed that GelE can degrade
the anaphylatoxin complement C5a and that this proteolysis leads to reduced neutrophil
recruitment in vitro, supporting a role for proteolytic modulation of the immune response to
E. faecalis. In vivo, GelE-producing strains were observed to cause a decrease in heterophil
migration at infected tissue sites, while SprE-producing strains did not show this effect.
These results indicate that of the two enterococcal proteases, GelE is the most important
in mediating the pathogenesis of endocarditis. Perez et al. published an important study
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in which the gene encoding gelatinase (gelE) was found to be under the control of the Fsr
quorum sensing system, whose encoding genes (fsrA, fsrB, fsrC, and fsrD) are situated
immediately upstream of gelE. Biofilm formation was prevented and gelatinase activity was
suppressed in a derived mutant of E. faecalis V583 when a DNA fragment was integrated
into the fsr locus. Sequence analysis revealed the presence of IS256 integrated into the
fsrC gene at nucleotide position 321. It is worth noting that IS256 is also linked to biofilm
formation in Staphylococcus epidermidis and Staphylococcus aureus [150] (Figure 5 [151]).
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Figure 5. The diagram is a representation of the Fsr quorum sensing system and its regulation in E.
faecalis. The system involves the export and processing of the FsrD propeptide (encoded by fsrD) to
produce the small lactone gelatinase biosynthesis activating pheromone (GBAP) via FsrB. FsrC is
part of a two-component regulatory system that reacts to extracellular GBAP by phosphorylating the
intracellular response regulator FsrA, which in turn induces the expression of ef1097, ef1097b, the fsr
locus, gelE (encoding a gelatinase) and sprE (encoding a serine protease). The pre-protein encoded
by ef1097 is cleaved and transported via the Sec-dependent pathway and the precursor is further
truncated by the gelatinase to form enterocin O16. The interaction of GBAP with FsrC is inhibited
by ZBzl-YAA5911 in a competitive manner, whereas NaCl inhibits it in a concentration-dependent
manner. The inhibition of FsrB activity is due to the presence of ambuic acid. Siamycin I, sviceucin,
and WS9326A inhibited the phosphorylation of FsrC. From Ali et al. [151].

Enterococcal pathoadaptation to the endocardium is believed to be facilitated by the
IS256 element, which causes gene inactivation and recombination. However, the regu-
lation and activation mechanisms of IS256 remain poorly understood. To describe how
chronic lytic phage infection leads to extensive amplification of IS256 in E. faecalis and how
antibiotic exposure is associated with amplification of IS256 in E. faecium during clinical
human infection, Kirsch et al. [152] recently applied an IS256-specific deep sequencing ap-
proach. Comparative genomics assessment revealed that IS256 is predominantly expressed
in hospital-acquired enterococcal isolates. IS256 mobility in E. faecalis is transcriptionally
regulated by multiple mechanisms, indicating tight control of IS256 activation in the ab-
sence of selective pressure. The results show that rapid genome-scale transposition in
enterococci is driven by stressors such as phages and antibiotic load. IS256 diversification
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may thereby illustrate how evolutionary selection mediates enterococcal genome evolu-
tion, ultimately leading to the development of dominant nosocomial lineages threatening
human health.

Brown et al. have recently reported in an experimental mouse model setting that peri-
toneal inoculation of E. faecalis can result in sub-endothelial microlesions in the heart [118,153].
The study also showed a strong immune response to the infection, indicating that different
inoculation routes may result in varying outcomes for both the host and the bacteria. E. faecalis
invades the vascular endothelium to enter myocardial tissue and induce cell death [118].
Notably, E. faecalis lacks homologs of pneumococcal surface adhesin CbpA, pneumolysin
(ply), and pyruvate oxidase (spxB), suggesting the involvement of other factors. However, it
can produce reactive oxygen species (ROS) [154]. ROS release by E. faecalis may therefore
also be involved in cell death and microlesion development. One protein that has been
found to affect E. faecalis cardiac microlesion formation is a disulphide bond-forming (Dsb)
protein called DsbA. Thioredoxins, such as DsbA, play a crucial role in various bacterial
fitness and pathogenicity factors, including biofilm formation, cell division, virulence, motil-
ity, cell wall synthesis, and growth. Proteins with a highly expressed CXXC active site
motif interact with the free thiol groups of substrate cysteines, catalysing a disulphide link-
age. Gram-positive bacteria have a lesser understanding of oxidative protein folding than
gram-negative bacteria [155].

4. Point and Counterpoint

From a clinical point of view, the pathophysiology of IE is centred on the functional
changes caused by bacterial damage to the cardiac valves. This process is generally believed
to follow a foreseeable course: deployment of host factors at a site of endocardial surface
injury or impairment, development of vegetations, valvular insufficiency, and decline
in cardiac function. Staphylococci or streptococci are the most common causes of acute
infective endocarditis in clinical practice, usually with a fast-moving, febrile course [12].
Chronic (subacute) IE, on the other hand, is more often related to a slowly developing,
more insidious course with prodromal malaise and non-specific findings: oral streptococci
and enterococci are the most likely pathogens in these instances [156]. For complex reasons
previously discussed [60,157], although the incidence of bacterial endocarditis is gener-
ally steady or decreasing in modern health care systems, the proportion of cases due to
enterococci has been on the rise [60,157].

From the 1970s onwards, a substantial proportion of both fundamental and clinical
investigations in the endocarditis literature have suggested that physical injury to the
vascular endothelium is a prerequisite for the active pathogenesis of IE. Most current
frameworks assume an initial host immune reaction involving platelets, soluble compo-
nents of the coagulation cascade, etc., with subsequent bacterial invasion of the emerging
thrombus [158,159]. Upon close scrutiny of the historical references prior to 1975, however,
IE has been described in a wide variety of animal experimental settings in the absence of
such damage [160–165]. The researchers found that removing the endothelium prior to
infection increased the rate of vegetation formation and reduced the number of animals
required for the experiments. But this is simply an issue of convenience and efficiency, not
biological need [1,166–173].

Therefore, while it is possible that pre-existing cardiac structural abnormalities or dis-
orders of the cardiac endothelium in humans may increase the risk of bacterial colonisation
and endocarditis, there is little evidence to suggest that overt endothelial surface disruption
is necessary for bacterial colonisation, as previously reported [1,174]. However, even in
previously published experimental studies in which pre-inoculation endothelial injury
was not included, the process of bacterial invasion is still considered to rely on an existing
host-derived thrombus as a precondition [156]. It is worth noting that certain pathogens can
directly colonise the endothelial surface in certain circumstances [11]. In a recent study by
Barnes et al. [13], it was reported that E. faecalis directly colonised the undamaged endothe-
lial surface in a rabbit model system of endocarditis, without any obvious participation of
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host factors. Specifically, Barnes et al. discussed endothelial colonisation, which refers to the
assembly of non-valvular microcolonies and biofilm formation as a bacterial mechanism for
persistent infection, rather than classic frank valvular endocarditis. Further investigation of
this aetiology is relevant, although there is no evidence to suggest that the attachment of
enterococci to the valve surfaces is markedly distinct. Importantly, endothelial coverage
and establishment of biofilm on valvular surfaces may be temporally distinct. This suggests
that a suspected gastrointestinal source of enterococcal bacteraemia may progress through
multiple steps before presenting with clinical signs of endocarditis [13,16].

The conventional endocarditis research and development studies show platelets and
fibrin as the bare subendothelial components. The main question is how enterococci interact
with the surface of normal cells. Jamet et al. [175] found that in the vasculature, enterococci
may bind to circulating von Willebrand factor (vWF), similar to Staphylococcus aureus
and Streptococcus pneumoniae [128,129,176,177]. Moreover, vWF is a crucial constituent of
vertebrate haemostatic signalling pathways [178–180], and E. faecalis strain OG1RF contains
virulence factors (ElrA) that seem to be involved in dealing with vWF domains [175].
This mechanism involves circulating von Willebrand factor (vWF) binding to free-floating
bacteria. The bacteria then attach to surface-bound vWF on endothelial cells, which allows
them to adhere to the cell surface. This process is believed to inhibit platelet recruitment
and other responses of the host coagulation cascade by shrouding the bacteria in host vWF.
Or, conversely, a previous paper report by Gaytán et al. [181] showed that a new adhesin
that binds to sialic acid is crucial for infective endocarditis in several bacterial species.
However, it is unclear how this relates to enterococcal endocarditis. Although host-factor
interactions cannot be excluded in enterococcal IE, Barnes et al. [13,14,16] have shown that
E. faecalis microcolonies form in a similar way in the vasculature and other non-circulatory
disease settings, such as the murine gastrointestinal tract and in vitro polymer surfaces.
This suggests the existence of another, perhaps more common, mechanism of adhesion.

The potential for patients with enterococcal endocarditis to infect themselves through
GI translocation would resolve several clinical problems in identifying the source of infec-
tion in many instances. Antibiotic and systemic stress can cause increased gut permeability
to enterococci, which is a common occurrence in both outpatient and inpatient settings. Fur-
thermore, in some endovascular infection models, there is no clear systemic, cell-mediated
immune response observed, indicating that E. faecalis may evade the host immune system
for extended periods. This complicates the establishment of definitive links between the
onset of (potentially temporary) bacteraemia and endovascular colonisation. Further inves-
tigation is required to understand the potential and actual routes of patient self-infection in
this area of research [182–185].

A multifaceted process is involved in the induction of enterococcal biofilm. It includes
adherence to the surface, attachment, maturation of the microcolony, and the subsequent
development of chronic disease. Despite extensive in vitro studies on the mechanisms
of surface attachment, enterococcal virulence factors, plasmid exchange, and antibiotic
resistance, their role in causing disease in vivo is still a matter of considerable debate.
Furthermore, numerous laboratory-scale in vitro systems for studying biofilm formation
have proven to be inconsistent with in vivo studies, indicating the need for further im-
provements. Additionally, the general mechanisms of biofilm formation in clinical disease
states, including endocarditis, are understudied [182–191].

Over the past ten years, basic in vitro research has revealed that the genetic and
physiological drivers of biofilm formation are likely to be highly variable between bacterial
species: a universal biofilm inhibitor probably does not exist. Although some species may
share similarities, it is also important to study the outliers, which include enterococci that
have played a significant role for years. The genetic drivers involved in E. faecalis biofilm
formation are shown in Table 2 [47,83,95,192–200].

In clinical settings, approximately half of enterococcal IE cases fail to identify a defini-
tive source. This new framework suggests that prolonged persistence of enterococcal
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microcolonies on the cardiac endothelium may be consistent with a cloaked mechanism of
enterococcal infection [183,201–204].

In vitro mechanistic studies provide evidence that platelets play a crucial role in the
initial phase of infective endocarditis by constituting the first line of the immune response.
This disease’s first phase is supported by the interaction of pathogens with platelets, making
it a priority to counteract platelet antimicrobial activity. Experimental in vitro and animal
models have suggested that aspirin can limit bacterial–platelet interactions, preventing
vegetation development. These findings are promising. Clinical trial data on the outcome of
patients with infective endocarditis treated with aspirin remain controversial. Contradictory
findings cast a cloud of uncertainty over the benefit of antiplatelet agents in the prevention
of infective endocarditis. In addition to aspirin, ticagrelor, an antagonist of the platelet
receptor P2Y12, has been attributed with a therapeutic effect. This is due to its powerful
antiplatelet activity and well-known antibacterial activity. In addition, a more recent study
using a mouse model reported a significant capacity of ticagrelor to eradicate Staphylococcus
aureus bacteraemia [205–207].
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