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Abstract: During the last few decades, bat lyssaviruses have become the topic of intensive molecular
and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis
in humans which has led to research into effective strategies for their eradication. Modelling of po-
tential future cross-species virus transmissions forms a substantial component of the recent infection
biology of rabies. In this article, we summarise the available data on the phylogeography of both
bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the
Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential
for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the
western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most
divergent lyssaviruses generates impetus for additional phylogenetic and virological research within
this geographical region.
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1. Introduction

The Order Chiroptera has a Laurasiatherian origin (“laurasian beasts”), evolved
between 50 and 70 million years ago (MYA), and has undergone rapid diversification [1,2].
Due to their capabilities of self-powered flight and echolocation, bats [3] comprise over
20%, or more than 1460 species, of all modern mammals and are globally distributed,
with the exception of the extreme polar regions [4]. They have many characteristics that
differentiate them from other mammalian species, such as their unique physiology [5,6],
metabolism [7], and immune system [2,8,9]. These features make them a suitable reservoir
for viral zoonoses [4,10,11] and more than 200 viruses have been isolated from or detected
in bats [12–14]. The order comprises 45 species in Europe [15] from two superfamilies, the
Rhinolophoidea and Vespertilionoidea [16], representing a natural reservoir of RNA-viruses
(Table 1).

Viruses from 11 families have been isolated on the continent [17] and bat lyssaviruses in
Europe (family Rhabdoviridae) have been the subject of detailed reviews [18–21]. Lyssaviruses
are a genus of negative-sense single-strand RNA viruses in the family Rhabdoviridae, sub-
family Alpharhabdovirinae. Notably, they are members of the order Mononegavirales, which
includes other prominent zoonotic pathogens such as filoviruses (Ebola, Marburg, etc.)
and the neurotropic Bornaviridae [22]. Based on genetic divergence, lyssaviruses are clas-
sified into 21 different viral species. Recently, several putative new lyssaviruses were
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published [23–26]. Apart from the Mokola virus (MOKV) and Ikoma lyssavirus (IKOV),
which have rodents and African civets as a reservoir, respectively [25,27,28], the rest of the
lyssaviruses can be transmitted by Chiroptera [27,29]. According to the most recent ICTV
report [24], lyssavirus names are provided here followed by the traditional abbreviations
used to identify their isolates: rabies virus (RABV), Aravan virus (ARAV), Australian bat
lyssavirus (ABLV), Bokeloh bat lyssavirus (BBLV), Duvenhage virus (DUVV), European
bat lyssavirus 1 (EBLV-1), European bat lyssavirus 2 (EBLV-2), Gannoruwa bat lyssavirus
(GBLV), Ikoma lyssavirus (IKOV), Irkut virus (IRKV), Khujand virus (KHUV), Lagos bat
virus (LBV), Lleida bat lyssavirus (LLEBV), Mokola virus (MOKV), Shimoni bat virus
(SHIBV), Kotalahti bat lyssavirus (KBLV), Divača bat lyssavirus (DBLV), West Caucasian
bat virus (WCBV), Matlo bat lyssavirus (MBLV), and Lyssavirus Formosa, which includes
Taiwan bat lyssavirus 1 (TWBLV-1) and Taiwan bat lyssavirus 2 (TWBLV-2) [21,24,30–35].
In fact, KBLV and MBLV are only tentative lyssaviruses. The current study aims to review
the evolution, phylogeography, and transmission routes of bat lyssaviruses in Europe.

Table 1. European bat species with identified lyssaviruses and their IUCN conservation status. Ab-
breviations: EN: Endangered—very high risk of extinction in the wild; VU: Vulnerable—high risk of
extinction in the wild; NT: Near Threatened—likely to become threatened in the near future; LC: Least
Concern—does not qualify for a more at-risk category. Widespread and abundant taxa are included
in this category; Data Deficient—inadequate information to make a direct, or indirect, assessment of
its risk of extinction based on its distribution and/or population status; N/A: not assessed.
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2. Origin, Evolution, and Geographic Distribution of Bat Lyssaviruses

Despite the greater diversity of African lyssaviruses [55], Hayman et al. [56] as-
sumed that they have a Palearctic origin and challenged “Out of Africa” hypothesis. The
Lyssaviruses’ most recent common ancestor (MRCA) evolved from an insect rhabdovirus
between 7000 and 11,000 years ago [30,57,58] which was transmitted to representatives of
the order Chiroptera and spread globally [57,59]. According to Rupprecht et al. [30], Africa
is the most likely home to the ancestors of taxa within the Genus Lyssavirus, family Rhab-
doviridae. According to this review, a large number of different lyssaviruses co-evolved with
bats as ultimate reservoirs over millions of years. On the other hand, Velasco-Villa et al. [60]
argue that in the Western Hemisphere before the arrival of the first European colonizers, ra-
bies virus was present only in bats and so-called mesocarnivores (canids, raccoons, skunks,
etc.). It is assumed that all mammals are susceptible to infection with the rabies virus.
However, it is most possible that lyssaviruses will never be eradicated due to their presence
in chiropteran hosts.

Lyssaviruses have undergone purifying selection followed by a neutral evolution of the
viral genomes [61]. The low rate of nonsynonymous evolution of lyssaviruses is probably
the result of constraints imposed by the need to replicate in multiple cell types (muscle,
peripheral and central nervous systems, and salivary glands) within the host, which in
turn boosts cross-species transmission (e.g., different groups of mammals), or because viral
proteins are not subject to immune selection, which means existing lyssaviruses are well
adapted to their reservoir [62,63].

The host switching of the classic rabies lyssavirus (RABV) from bats to other mammals
is estimated to have occurred 800 to 1400 years ago, which does not explain the timing
of the oldest putative human rabies cases, estimated to have circulated 4000 years ago
in ancient Mesopotamia [64,65]. A possible explanation is that the Mesopotamian RABV
lineage disappeared as a consequence of genetic drift (loss of polymorphism) or its high
fatality rates [64]. According to Rupprecht et al. [66] and Badrane et al. [67], bats are the
primary evolutionary host of rabies viruses as a reservoir of all existing lyssaviruses except
MOKV and IKOV, whereas other mammals and humans only maintain several lineages of
RABV, including the extinct Mesopotamian strain [30,64,68].

In Europe, bat lyssaviruses (Figure 1) were detected in the United Kingdom, the
Netherlands, Finland, Denmark, Poland, Czech Republic, Germany, Switzerland, France,
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Spain, Hungary, Italy, Slovenia, Croatia, Bulgaria, Ukraine, and Russia [19,21,35,38,69–71].
During the last two decades, previously unknown lyssaviruses were isolated as follows:
WCBV in 2002 on the European side of the Caucasus Mts. [72], BBLV in 2010 from Ger-
many [50], LLEBV in 2011 from Spain [73], KBLV in 2017 from Finland [23], and DBLV in
2014 from Slovenia [35].

Pathogens 2023, 12, x FOR PEER REVIEW 5 of 17 
 

 

lineage disappeared as a consequence of genetic drift (loss of polymorphism) or its high 

fatality rates [64]. According to Rupprecht et al. [66] and Badrane et al. [67], bats are the 

primary evolutionary host of rabies viruses as a reservoir of all existing lyssaviruses ex-

cept MOKV and IKOV, whereas other mammals and humans only maintain several line-

ages of RABV, including the extinct Mesopotamian strain [30,64,68]. 

In Europe, bat lyssaviruses (Figure 1) were detected in the United Kingdom, the 

Netherlands, Finland, Denmark, Poland, Czech Republic, Germany, Switzerland, France, 

Spain, Hungary, Italy, Slovenia, Croatia, Bulgaria, Ukraine, and Russia [19,21,35,38,69–

71]. During the last two decades, previously unknown lyssaviruses were isolated as fol-

lows: WCBV in 2002 on the European side of the Caucasus Mts. [72], BBLV in 2010 from 

Germany [50], LLEBV in 2011 from Spain [73], KBLV in 2017 from Finland [23], and DBLV 

in 2014 from Slovenia [35].  

 

Figure 1. Distribution of bat lyssaviruses in Europe. Abbreviations used: WCBV—West Caucasian 

bat lyssavirus; LLEBV—Lleida bat lyssavirus; KBLV—Kotalahti bat lyssavirus; BBLV—Bokeloh bat 

lyssavirus; EBLV-1—European bat lyssavirus 1; EBLV-2—European bat lyssavirus 2; DBLV—Divača 

bat lyssavirus, Seropositive—Seropositive Blood samples.  

Figure 1. Distribution of bat lyssaviruses in Europe. Abbreviations used: WCBV—West Caucasian
bat lyssavirus; LLEBV—Lleida bat lyssavirus; KBLV—Kotalahti bat lyssavirus; BBLV—Bokeloh bat
lyssavirus; EBLV-1—European bat lyssavirus 1; EBLV-2—European bat lyssavirus 2; DBLV—Divača
bat lyssavirus, Seropositive—Seropositive Blood samples.

The most frequent lineages are EBLV-1, first reported in 1955 from Germany, and
EBLV-2, isolated in 1985 in Switzerland [38,68]. EBLV-1 is exclusively detected in Serotine
bats (Eptesicus serotinus), while EBLV-2 is mainly found in Daubenton’s bats (Myotis dauben-
tonii). EBLV-1 is present in two forms: EBLV-1a and EBLV-1b. EBLV-1a displays a wide
geographical distribution between France and Russia with phylogenetic homogeneity—an
indication of extensive dispersal by bats [20,41]. Resent research has shown that EBLV-1 is
associated with the bat E. serotinus of the mountainous parts of Southern Europe, such as
the French Alps or the Iberian Peninsula [39]. EBLV-1 demonstrates the risk of spillover
because of its host’s close phylogenetic relation with a different bat, the E. isabellinus. The
phylogenetic analysis of nine EBLV-1 strains of E. serotinus distributed in the south of
the Pyrenees revealed that two of them are closely related to EBLV-1a sequences from
Southern France, i.e., this group expanded to Northern Spain. The results of the con-
ducted research give the authors reason to assume the expansion of the EBLV-1a subtype
across southern France, with a very recent arrival to the Iberian Peninsula, i.e., a current
southwards dissemination [38]. In contrast, EBLV-1b is distributed between Spain and
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Poland with a well-defined geographic structure, indicating restricted contact between bat
populations [20,38]. Therefore EBLV-1b had the potential to spread southwards according
to the E. isabellinus distribution. The lineage of EBLV-1 is presumed to have arisen 500 to
750 years ago and has a relatively recent origin [41]. Conversely, the lineage of EBLV-2
is dated to more than 8000 years ago, with current establishment in Europe within the
last 2000 years. [74]. EBLV-2 has been reported in Western Europe and is also represented
by two forms: EBLV-2a and EBLV-2b [69,75]. The first occurs in the United Kingdom,
Netherlands, Germany, Switzerland, and Denmark, while the second includes the Finnish
EBLV-2 strains and a strain from Switzerland [74], where the divergence of the Finnish
strains from the Swiss strain occurred within the last 200 years [74].

3. Virion Structure and Genome

Rhabdoviruses (family Rhabdoviridae) have a characteristic bullet-shaped virion mor-
phology, with an envelope derived from the plasma membrane of the infected host cell
and approximate dimensions of 60–110 nm × 130–250 nm, which distinguishes them from
other taxa in the order Mononegavirales: Bornaviridae, Filoviridae, and Paramyxoviridae. They
include a 11.9–12.3 kb long non-segmented, linear, single-strand RNA genome. The basic
genome includes five genes that encode (from 3′ to 5′) the nucleoprotein (or nucleocapsid
protein, N), phosphoproteins (P), matrix protein (M), glycoprotein (G), and large protein (L,
RNA—dependent RNA polymerase) [76,77].

Open reading frames known as ORFs present an ancestral pseudogene [78] which
is used for studying virus–host interactions in WCBV [59] due to the outstanding size,
which is 40% larger than in other bat lyssaviruses [79]. It has been found that in some
rhabdoviruses very long non-coding regions (up to 749 nt) were present either within or
between transcriptional units [59]. This region seems to serve as a resource for the de novo
emergence of genes which may be related to elucidating the taxonomy, phylogeny, and
evolution of lyssaviruses. This is most likely to occur when ORFs are present in transcribed
non-coding regions (UTRs) such as in the so-called ‘pseudogene ψ region’ of WCBV, which
is unique to an ORF of 180 nt. The de novo creation of genes in non-transcribed intergenic
regions (IGRs), as well as those present in the G-L gene junctions of various hapavirus, is
associated with prior or simultaneous evolution of new or modified transcriptional control
sequences. In the trend towards increasing genome size and complexity in rhabdoviruses,
the loss of a gene and/or genes is also likely to have occurred periodically, which may also
be evolutionarily determined in the family Rhabdoviridae [59].

4. Phylogeny of Bat Lyssaviruses

Based on the sequence analysis of the lyssavirus N gene, serologic cross-reactivity and
pathogenicity bat lyssaviruses are divided into two phylogroups [67,80–82], https://ictv.
global/report/chapter/rhabdoviridae/rhabdoviridae/lyssavirus and an unresolved but
widely adopted third phylogroup [83,84], https://www.who-rabies-bulletin.org/site-page/
classification which might contain some of the most divergent lyssaviruses (Figure 2). For
simplicity, we used 17 reference sequences of N + P + M + G + L [32,33,35,50,72,80,82,85–90]
genes available in GenBank for our phylogenetic analysis (Supplementary Table S1).
European viruses are included in Phylogroups I and group of lyssaviruses, which are
highly divergent. Phylogroup II is discussed only as a potential scenario for cross-species
bat transmission.

https://ictv.global/report/chapter/rhabdoviridae/rhabdoviridae/lyssavirus
https://ictv.global/report/chapter/rhabdoviridae/rhabdoviridae/lyssavirus
https://www.who-rabies-bulletin.org/site-page/classification
https://www.who-rabies-bulletin.org/site-page/classification
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Figure 2. Phylogeny of bat lyssaviruses. The N + P + M + G + L coding regions of representa-
tive reference sequences of lyssaviruses used in the analysis were derived from Genbank. The
evolutionary history was inferred by using the Maximum Likelihood method and General Time
Reversible model [91]. There were a total of 568 positions in the final dataset. Evolutionary anal-
yses were conducted in MEGA X [92]. Virus names are: RABV—rabies virus, ARAV—Aravan
virus, ABLV—Australian bat lyssavirus, BBLV—Bokeloh bat lyssavirus, DUVV—Duvenhage virus,
EBLV-1—European bat lyssavirus 1, EBLV-2—European bat lyssavirus 2, GBLV—Gannoruwa bat
lyssavirus, IKOV—Ikoma virus, IRKV—Irkut virus, KHUV—Khujand virus, LBV—Lagos bat virus,
MOKV—Mokola virus, SHIBV—Shimoni bat virus, KBVL—Kotalahti bat lyssavirus, DBLV—Divača
bat lyssavirus, TWBLV-1—Taiwan bat lyssavirus 1, and TWBLV-2—Taiwan bat lyssavirus 2.

Phylogroup I includes all these lyssaviruses RABV, ARAV, ABLV, BBLV, DUVV, EBLV-1,
EBLV-2, GBLV, IRKV, KBLV, DBLV, KHUV, TWBLV-1, and TWBLV-2, whereas LBV, MOKV,
and SHIBV form Phylogroup II [23,31,34,35,44,45,85,86]. Phylogenetically, the most di-
vergent lyssaviruses LLEBV, IKOV, WCBV, and MBLV appear related [27,50,73,93]. Phy-
logroup I is divided into two major groups: the first includes the Palearctic lyssaviruses
IRKV, EBLV-1, TWBLV-1, TWBLV-2 and African DUVV lyssaviruses and the second ARAV,
BBLV, KHUV, and EBLV-2 which are also lyssaviruses with Palearctic distribution, as well
as Australian—ABLV, Oriental—GBLV, and American—RABV [57]. Interestingly, EBLV-1 is
most closely related to DUVV and IRKV, while EBLV-2 to KBLV, KHUV, and BBLV [30,32].
Based on the close phylogenetic relation between EBLV-1 and DUVV lyssaviruses [49],
it is hypothesized that EBLV-1 originated in North Africa and spread to Europe (Iberian
Peninsula) via the Strait of Gibraltar. However, Hayman et al. [13] present phylogenetic
evidence based on the rabies N gene sequences that EBLV-1 and DUVV share a common
ancestor with IRKV (isolate from Russia) and both have been transferred to Africa from
the Palearctic region, and Europe in particular. Phylogenetic relationships in the most
divergent lyssaviruses demonstrate close phylogenetic relatedness between the LLEBV
virus from Spain, sub-Saharan Africa MBLV with the Eurasian WCBV and the African
IKOV lyssavirus [34,56,94]. Genetically, LLEBV is more closely related to IKOV than to
WCBV, in contrast with MBLV [34].

For a better understanding of lyssavirus phylogeny and their current distributions, a
closer look at their bat species reservoirs is required. Generally, morphological keys such
as Dietz et al. [95] are widely used for bat identification. On the other hand, morphological
identification from carcasses can be limited due to the state of decomposition or nearly
indistinguishable morphological features in juvenile bats and can lead to misidentifica-
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tions [96]. Therefore, genetic markers are highly required due to their role for precise bat
taxonomic clarification especially in cryptic species complexes, e.g., Çoraman et al. [97]
and De Benedictis et al. [98]. Genomic and mitochondrial analyses have placed bats into
two suborders: Yinpterochiroptera—including the five families in the superfamily Rhi-
nolophoidea plus the flying foxes—Pteropodidae, and Yangochiroptera—including the
three superfamilies: Emballonuroidea, Vespertilionoidea, and Noctilionoidae, comprising a
total of 13 families. Two superfamilies (Rhinolophoidea and Vespertilionoidea) are of partic-
ular interest in Europe because their representatives are the main reservoir of lyssaviruses.
The greater horseshoe bat (Rhinolophus ferrumequinum) (Rhinolophidae, Rhinolophoidea)
and the Vespertilionoidea species Greater mouse-eared bat (Myotis myotis), Lesser mouse-
eared bat (M. blythii), Natterer’s bat (M. nattereri), Serotine bat (Eptesicus serotinus), Merid-
ional serotine (E. isabellinus), Common pipistrelle (Pipistrellus pipistrellus), Nathusius’s
pipistrelle (P. nathusii), Brown long-eared bat (Plecotus auritus), Common noctule (Nyctalus
noctula), Parti-coloured bat (Vesperilio murinus) (Vespertilionidae), Common bent-wing bat
(Miniopterus schreibersii) (Miniopteridae), and European free-tailed bat (Tadarida teniotis)
(Molossidae) have all been documented as being infected by EBLV-1 [36–38,40,71]. The
virus was also isolated from the Egyptian fruit bat (Rousettus aegyptiacus) (Pteropodidae) in
a Dutch zoo [53]. Regardless of the high number of bat hosts recorded for EBLV-1, EBLV-2
is restricted to Myotis daubentonii and M. dasycneme [38,68,69]. KBLV was found only in
Myotis brandtii [23], BBLV only in M. nattereri [52,99], and DBLV only in M. capacinii [35].
For comparison, from those bat species, virus serological detection is provided on 15 bats
(R. ferrumequinum, B. barbastellus, E. serotinus, M. blythii, M. brandtii, M. capaccinii, M. myotis,
M. nattereri, N. noctule, P. nathusii, P. pipistrellus, P. auratus, M. schreibersii, T. teniotis, R. aegyp-
tiacus), identification of viral species affiliation on 16 bats (R. ferrumequinum, E. isabellinus,
E. serotinus, M. brandtii, M. capaccinii M. dasycneme, M. daubentoniid, M. myotis, M. nattereri,
N. noctule, P. nathusii, P. pipistrellus, P. auratus, V. murinus, M. schreibersii, R. aegyptiacus)
and both identified in 12 bat species (R. ferrumequinum, E. serotinus, M. brandtii, M. capac-
cinii, M. myotis, M. nattereri, N. noctule, P. nathusii, P. pipistrellus, P. auritus, M. schreibersii,
R. aegyptiacus), see Table 1.

However, the phylogeny of the Natterer’s bat group is more complex. In Europe,
M. nattereri is composed of M. escalerai (Iberia), M. species A (Italy and parts of the Pyre-
nees), M. species B (Northwest Africa), M. species C (Corsica), and the nominal form M.
nattereri present across the rest of Europe [52,100,101]. According to Eggerbauer et al. [102],
BBLV-positive bats in Germany and France were of the nominal form. Çoraman et al. [103]
provided a detailed phylogenetic analysis and reported signs of repeated hybridization
between the Natterer’s bat lineages [103], with southern France a probable contact zone
between different M. species and M. nattereri. Additional research could reveal the potential
of BBLV to spread to other Natterer’s bat lineages.

The Common bent-wing bat (Miniopterus schreibersii) has been proven to be a host to
IRKV and DUVV from Phylogroup I and most divergent WCBV and LLEBV. The species
seems to be a universal reservoir for both phylogroups not only in Europe but also in Asia
and Africa [56,104], due to the fact that M. schreibersii is a strictly cave-dwelling species [95]
capable of long-distance migration [105]. The most abundant European lyssavirus group,
EBLV-1, has still not been detected in the Common bent-wing bat despite its close phyloge-
netic relationship to DUVV.

5. Transmission Routes of Bat Lyssaviruses
5.1. Bat Intra- and Cross-Species Transmission

The main transmission route of rabies viruses is via a bite from the host and the
virions released into the saliva during the clinical period of rabies and/or during the end
of the incubation period [106–108]. All lineages from Phylogroup I are transmitted by
bats whereas the classical rabies virus (RABV) has evolved to spread via carnivores and
through bat species restricted to the Americas [21]. In Europe, EBLV-1 is the most prevalent
lyssavirus among the Chiroptera due to bat colony sizes, species richness, and the presence
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of migratory species. Colombi et al. [109], suggested that in the roost, the main factor for
virus spillover is the large number of species and their individual mobility. However, roost
sizes of less than approximately 200 individuals are not enough for efficient maintenance
of the lyssavirus infection [110]. On the other hand, migrant species such as Pipistrellus
nathusii, Nyctalus noctula, N. leisleri, and Miniopterus schreibersi can play a key role for the
dispersal of EBLV-1 in Europe, and M. schreibersi also for WCBV and LLEBV [84,105,111,112].
These species are capable of flying long distances between summer and winter roosts and
increasing the lyssavirus geographical range via cross-species transition is an expected
scenario. Consequently, seasonal bat movements between hibernacula, breeding, and
mating sites are an important prerequisite for successful virus cross-species spillover. For
instance, hibernation is characterized by decreased activity in the bat immune system and
metabolism [113,114], thereby extending incubation periods and allowing virus persistence
between transmission periods. Based on the transcriptomic responses of bat cells to EBLV-1
Constantine [115], it is concluded that the lack of bat cell reaction to infection in conditions
simulating hibernation may contribute to the virus tolerance or persistence in bats. In
addition, long hibernation roosts could facilitate the transmission of EBLV-1 between
geographically separated breeding populations [19]. This statement is also supported by a
study focused on RABV in the Americas, where Myotis species have been found to harbor a
diverse range of RABV variants, suggesting that increased contact between species increases
viral transmission [73]. Breeding colonies are a good site to understand the intraspecies
transmission of antibodies via intra-uterine transfer, or viral transmissions as a result of
biting or daily communal grooming via antibodies intra-uterine transfer [116] or biting
during daily grooming [19,117]. Nerveless, characterizing EBLV-1 dynamics in juvenile
bats is difficult due to unequal equilibration between them and adults and the chance that
mothers can transfer antibodies to them via the placenta or during lactation [118]. The
most efficient intra- and interspecific lyssavirus transmission route is during the mating
period, due to aggressive male behaviour when defending territory against other males
and during mating with females [19]. In support of this assertion, most cases of bat rabies
in Europe peak in August and September [19,107,119].

Bats naturally infected with RABV have the virus in their nasal mucosa, leading
to the proposition that airborne transmission of RABV between bats living in enclosed
areas is possible [120–122]. Laboratory experiments showed that aerosols of the RABV
virus were successfully overcome by bats but were fatal for the majority of experimental
mice [123]. Johnson et al. [124] conducted a similar experiment with EBLV-2 where mice
were intranasally inoculated and two of them developed the disease between 16 and 19
days post-infection. In addition, four cases of human rabies infection via aerosol were
reported between 1956 and 1977 in a USA cave [124].

5.2. Other Vertebrates Cross-Species Transmission

Due to the adequately taken measures for terrestrial mammal rabies eradication
in Europe [125], bats are probably the most important potential lyssavirus reservoir for
humans in Europe [87]. Even so, transmission is rare; the most recent case of bat-human
spillover was in southwest central France in 2019 when a human male died from EBLV-
1 (https://www.zmescience.com/ecology/animals-ecology/extremely-rare-case-of-death-
from-bat-rabies-in-france/), one human died from EBLV-2 in Finland in 1985, and a third
in the UK in 2002 [69]. Due to growing urbanization, pets present an expected intermediate
host for bat-to-human lyssavirus transmission, and both EBLV-1 and WCBV have been
found in cats in France [42] and Italy [53,126]. Experimental data suggests that the infectious
dose for lyssaviruses is low and certainly some human infections, especially those involving
transmission from bats, support this finding [127].

5.3. Within the Contact Zone of the Palearctic and Ethiopian Realms—Potential Scenarios

Heretofore, Phylogroup II was only known from the African continent in two bat
families: Pteropodidae and Hipposideridae [28,128,129]. LBV was isolated from the Straw-

https://www.zmescience.com/ecology/animals-ecology/extremely-rare-case-of-death-from-bat-rabies-in-france/
https://www.zmescience.com/ecology/animals-ecology/extremely-rare-case-of-death-from-bat-rabies-in-france/
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coloured fruit bat (Eidolon helvum) and Egyptian fruit bat (Rousettus aegyptiacus), and SHIBV
from the Striped leaf-nosed bat (Macronycteris vittatus).

Compared with other Pteropodids, Rousettus aegyptiacus has the northernmost distri-
bution, reaching Cyprus and southern Turkey [130], and roosts in a variety of underground
sites [131] with other Palearctic species [132]. As a rule, cave-dwelling bats form large sum-
mer and winter colonies [93] where cross-species pathogen transmission is common [133].
A recent study [134] has shown that the families Rhinolophidae and Pteropodidae were a
common factor in cross-species transmission of β-coronaviruses between continents due to
their close phylogenetic relationship. This might also be applicable across the contact zones
of different zoogeographic realms, e.g., Africa (Ethiopian realm) and Europe (Palearctic
realm). Considering that the distributions of Rousettus aegyptiacus and Rhinolophus ferrume-
quinum overlap in the Southeastern zone of the Palearctic on the border with the Ethiopian
realm (Figure 3), the successful transfer of lyssaviruses from Phylogroup II via the Egyptian
fruit bat to other cave-dwelling species, e. g., R. ferrumequinum, could be a plausible scenario
due to their close phylogenetic relationship within the suborder Yinpterochiroptera [16].
Furthermore, phylogeny can act as a biotic factor driving the occurrence of RNA virus cross-
species transmission between closely related host species [135]. For example, R. aegyptiacus
and various species in the genus Rhinolophus are known to be successful virus reservoirs
of variety of β-coronavirus, Marburgvirus, Henipavirus, Orthorubulavirus, Pararubulavirus,
and Lyssavirus [14,28,119].
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Additional molecular investigations are needed to solve the relationship between Phy-
logroup II and the other phylogroups. This is an important consideration since Phylogroup
II is spread within the families Pteropodidae and Hipposideridae, both of which are within
the suborder Yinpterochiroptera and closely related to the family Rhinolophidae, which
includes cave-dwelling species widely distributed across Europe. Taking into account the
close phylogenetic relationship between these bat families, the spread of the lyssavirus
Phylogroup II to the Palearctic realm is a possible scenario within the contact zone with the
Ethiopian realm.

6. Conclusions

Bat lyssaviruses in Europe belong to two phylogroups: I and highly divergent lyssaviruses.
The phylogeny of the lyssaviruses is closely related to the phylogeography of Palearctic
bat species. EBLV-1 has been detected in species in the superfamilies Yangochiroptera and
Yinpterochiroptera, which demonstrates the virus plasticity between highly divergent bat
lineages. In contrast, EBLV-2, KBLV, and BBLV have limited distributions in Europe, with
their reservoirs restricted to Myotis spp. Phylogenetic relationships within Phylogroup I
demonstrate that EBLV-1 and DUVV are closely related and that spillover between different
bat families at a large distance from each other is possible (Europe—Africa), while the
second closest group, EBLV-2, KBLV, and BBLV, has a restricted distribution in just one bat
genus. The existing rabies vaccines developed for RABV eradication are effective against
lyssaviruses from Phylogroup I but offer little to no protection against phylogroup II and
the most divergent unclassified lyssaviruses.

Living under the shadow of the recent COVID-19 pandemic, the detection and preven-
tion of future pathogens is of crucial importance. The newly discovered bat lyssaviruses
(BBLV, LLEBV, KBLV, DBV, TWBLV-2, and MBLV) and vesiculoviruses from the USA
(SDRV1 and SDRV2) and China (YSBV, TYBV, and QZBV) warn us that the Rhabdoviridae
represent an unexplored pathogen pool with new and yet to be described viruses potentially
adverse to human health.
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