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Abstract: Environmental Enteric Dysfunction (EED) is an associate driver of stunting in poor
settings, and intestinal infections indirectly contribute to the pathophysiology underlying EED.
Our work aimed at assessing whether enteric viral carriage is determinant to stunting. A total
of 464 healthy and asymptomatic children, aged 2 to 5 years, were recruited, and classified as
non-stunted, moderately stunted, or severely stunted. Among the recruited children, 329 stool
samples were obtained and screened for enteric and non-enteric viruses by real-time polymerase
chain reaction. We statistically tested for the associations between enteric viral and potential risk
factors. Approximately 51.7% of the stool samples were positive for at least one virus and 40.7%
were positive for non-enteric adenoviruses. No statistical difference was observed between virus
prevalence and the growth status of the children. We did not find any statistically significant
association between viral infection and most of the socio-demographic risk factors studied, except
for having an inadequate food quality score or an over-nourished mother. In addition, being
positive for Ascaris lumbricoides was identified as a protective factor against viral infection. In
conclusion, we did not find evidence of a direct link between stunting and enteropathogenic viral
carriage in our population.
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1. Introduction

Stunting remains a major public health and economic development problem in Low-
and Middle-Income Countries (LMICs). In 2021, it was estimated that four out of ten
children suffered from stunting in Madagascar, one of the highest rates in the world.
However, over the past decade, this prevalence has gradually decreased, from 50.1% in
2008–2009 to 39.8% in 2021 [1,2]. This gradual improvement can be explained by the
programmatic approaches that have been implemented and the increased coordination of
nutrition and health services through strong partnership between health authorities and
several international agencies, such as the United Nations Children’s Fund (UNICEF) and
the World Health Organization (WHO) [3]. Several factors are associated with stunting,
and although a poor diet is one of the main causes of stunting, undernutrition is often
exacerbated by disease and poor health [2]. Environmental Enteric Dysfunction (EED) may
be an associate driver of stunting in LMICs [4,5]. EED is a chronic inflammatory condition
of the gut that occurs in children living in unsanitary conditions, or among adults returning
from deployment to LMICs. It is estimated that more than 75% of children in LMICs
could be affected by, and suffer from, this syndrome at different degrees of severity [6].
In addition, intestinal infections (gastroenteritis), whether symptomatic or not [4,6,7], are
suspected to result in abnormal gut microbiota and Small Intestinal Bacterial Overgrowth
(SIBO) [8,9], both of which contribute to the pathophysiology underlying EED [6].

Many studies have examined the composition and function of the microbiome in the
intestine [10–15]. Some have suggested that the virome component of the intestinal micro-
biota provides protection against pathologic intestinal inflammation, similar to the well-
established protective role of commensal bacteria [16]. However, some pathogenic viruses
can induce gut inflammation, including non-bacterial gastroenteritis and diarrhea [7]. The
spectrum of symptoms can range from an asymptomatic infection to severe diseases with
dehydration. Four viral families are commonly associated with gastroenteritis: Caliciviridae
(including norovirus (NoV) and Sapovirus), Reoviridae (rotaviruses (RoV)), Astroviridae
(astroviruses (AstV)), and Adenoviridae (adenoviruses (AdV)). Adenoviruses, especially
types 40 and 41, are second to rotaviruses as a cause of acute diarrhea in young children
according to two recent studies of diarrheal etiology in LMICs [17–19]. The infection is
spread by fecal–oral transmission and in respiratory droplets of moisture, such as those
produced by coughing [20], and adenoviruses may be excreted in stools for prolonged
periods of time by young children with no evidence of disease [21]. In addition, NoV
can be found in the respiratory tract and in stool samples of children with and without
acute gastroenteritis symptoms [20]. In Madagascar, a previous study has shown that
RoV were detected in 6.2% of children ≤5 years with diarrhea [22]. Moreover, NoV and
AstV were detected in 6.0% and 2.1% of children under 16 years presenting with acute
gastroenteritis, respectively [23,24]. A case–control study with children aged 0 to 59 months
conducted between 2011 and 2014 in urban and semi-urban areas found that RoV were
the main pathogens detected (43.4%) and that they were strongly associated with severe
diarrhea [25].

In the framework of the AFRIBIOTA (AFRIcan MicroBIOTA) project, a case–control
study for stunting was conducted in Antananarivo (capital of Madagascar) and Bangui
(capital of the Central African Republic), in children aged 2–5 years with no overt signs of
gastrointestinal disease [10]. Previous research under AFRIBIOTA found a high proportion
of enteropathogens in both stunted and non-stunted children, suggesting that carriage of en-
teropathogens alone could not be directly associated with stunting [6,11–13]. Furthermore,
it was demonstrated that intestinal helminthic and protozoan infections were widespread,
yet not associated with stunting in the group of children studied [13]. While the role of
viruses in EED has been addressed in different settings [14–17], it had not been studied in
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the group of children from Madagascar. Our study aimed at identifying factors associated
with viral carriage of rotaviruses, Norovirus GII, astroviruses or adenoviruses according to
nutritional status in the study population recruited in Antananarivo, Madagascar.

2. Materials and Methods
2.1. Study Design/Recruitment of Participants

This case control study was extensively described in a previous publication [10]. Briefly,
the study population restricted to Antananarivo, Madagascar, comprises HIV-negative chil-
dren aged 2 to 5 years, neither suffering from acute malnutrition, nor from any other severe
disease (such as dysenteric syndrome, severe acute respiratory infection (SARI)/influenza-
like illness (ILI), meningitis, malaria, acute otitis media, varicella, measles). Children
were recruited in the capital city, in two neighborhoods (Ankasina and Andranomanalina
Isotry), and in two health centers (Centre Hospitalier Universitaire Joseph Ravoahangy
Andrianavalona—CHUJRA and Centre de Santé Materno-Infantile de Tsaralalana—CSMI).
Children were recruited either in the community (community-recruited children) or directly
at the hospital (hospital-recruited children). After HIV testing, to exclude seropositive chil-
dren, we enrolled a total of 464 children. Trained health professionals conducted sampling
at health centers.

2.2. Data Collection

To assess risk factors for acquiring pathogens, a questionnaire was administered to
children and their caregivers, and the collected subset of data were analyzed. In brief, the
questionnaire contained four sections: 1. Socio-demographic data: age, gender, community
setting, education of the mother; 2. Environmental factors: housing conditions and quality
of drinking water; 3. Behavior habits: hand washing, foods consumption, and exposure
to sewage and garbage; 4. Medical status/history: fever, diarrhea, rotavirus vaccination,
parasitic carriage, stuffy nose, rhinorrhea, and cough [10]. Foods consumed by children
the day before the survey were classified into seven food groups according to WHO
classification: (1) grains, roots and tubers; (2) legumes and nuts; (3) dairy products; (4) flesh
foods (meats/fish/poultry); (5) eggs; (6) fruits and vegetables; and (7) oils and fats. The
Dietary Diversity Score (DDS) is calculated based on the number of food groups consumed
by the child 24 h before the survey. A Dietary Diversity Score (DDS) of four is considered
the minimum DDS for adequate food diversity. Accordingly, a child with a DDS < 4
was classified as having unsuitable food diversity score; otherwise, they were considered
to have adequate dietary diversity [26]. In addition, we also collected anthropometric
measurements (height and weight) as previously described. The children were classified
according to the median height of the WHO reference population [27] in three different
groups: severe stunting (SS) (height-for-age z-score ≤ −3 SD), moderate stunting (MS)
(height-for-age z-score between −3 SD and −2 SD) and non-stunted (NS) (height-for-age z-
score≥−2 SD). The NS individuals were matched for living area and sampling time-period
and were recruited during the entire study period (December 2016–March 2018).

2.3. Sample Collection

The collection of stool samples has previously been described in Vonaesch et al.,
2018 [10]. Stools (around 10 g) were collected in the morning at the hospital (directly before
coming to the hospital for the community recruited children) and the time of defecation
recorded. If community-recruited children were able to emit again feces at the hospital,
these feces were also collected. All stools were collected in appropriate container then
dispatched into cryotubes and directly snap-frozen in liquid nitrogen before being shipped
to the Institut Pasteur de Madagascar and transferred into −80 ◦C freezer until laboratory
experiment processing.
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2.4. Extraction of Nucleic Acids

DNA and RNA extraction methods have previously been described by Collard et al.,
2022 [6]. Briefly, RNA and DNA were extracted by commercial kits using a Qiacube
instrument (Cador Pathogen 96 QIAcube HT Kit, Qiagen France SAS, Courtaboeuf, France),
and following the manufacturer’s recommendations with an additional bead-beating step
to increase mechanical disruption. Freshly thawed 200 mg sample were mixed with ASL
buffer at 4 ◦C and vigorously vortexed for 1 min. The suspension was transferred into a
Pathogen Lysis Tube (Qiagen) containing two mg of sterile glass beads (100 µM diameter)
and disrupted mechanically using a TissueLyser II (Qiagen GmbH, Hilden, Germany) for
10 min at 30 Hz. The suspension was then incubated at 95 ◦C for 5 min, vortexed for 15 s
and centrifuged at 14,000 rpm for 1 min to eliminate any solid particles in subsequent steps.
All samples were eluted in 150 µL AE buffer. Concentrations and purity of RNA and DNA
were assessed by spectrophotometry (Nanodrop 2000 Spectrophotometer, Thermo Fisher
Scientific, Waltham, MA, USA) via 260/280 and 260/230 absorbance ratios. Nucleic acids
extracts were stored at −80 ◦C until further analyses.

2.5. Real-Time PCR and RT-PCR (qPCR and RTqPCR)

The primers and probes used for real-time RT-PCR or PCR are listed in Supplementary
Table S1. The targeted regions of rotavirus, norovirus GII, astrovirus, pan-adenovirus, and
adenovirus genogroup types F40/41 are located in conserved regions of their genomes [27].
Amplifications were carried out in a ThermoFischer QuantStudio 5 instrument (Applied
Biosystems, Port-Louis, Mauritius). Real-time PCR amplification reactions were performed
in a single run using the Superscript®III Platinum Taq DNA polymerase One-Step qRT-
PCR (Invitrogen, Carlsbad, CA, USA) and the described primers [27] as follows: reverse
transcription of RNA was performed at 50 ◦C for 15 min, followed by 45 cycles of a two-step
PCR (95 ◦C for 15 s and 60 ◦C for 30 s). The results were recorded as the Ct value, which is
inversely related to the viral load in each specimen. A specimen was considered positive
if the Ct value was ≤39. Standard curves for each target were established. Negative and
positive controls were included in each run. The efficacy of amplification was assessed for
each real-time PCR by analyzing serial dilutions of pUC57 plasmids carrying all synthetic
target inserts (GeneCust Europe, Dudelange, Luxembourg).

The molecular screening of parasitic carriage was described in a previous study [13],
and the resulting datasets were analyzed in this study. The investigated parasites were
Giardia intestinalis, Ascaris lumbricoides, Trichuris trichiura and Enterobius vermicularis.

2.6. Statistical Analysis

The statistical analysis was performed with R-Studio (version 4.0.4; The R Foundation
for Statistical Computing, Vienna, Austria). We assessed the associations between enteric
viral infection (positivity for any of the four enteropathogenic viruses’ groups: rotaviruses,
norovirus GII, astroviruses and adenoviruses—not counting non-enteric adenovirus) and
potential risk factors (exposure variables). Fisher’s exact test/Chi-square test, or Student
test/Wilcoxon test (according to their conditions of use) were performed to analyze a
statistically significant difference (p ≤ 0.05). We then checked the associations between
exposure variables. Categorical variables were expressed as percentages; quantitative
variables were expressed as a mean (+/− Standard Deviation) or median (interquartile
range). The nutritional statuses, stunted vs. non-stunted, were compared using Chi-square
test or Fisher Exact test for qualitative variables, and the Student t test or the Mann–Whitney
U test was used for quantitative variables. We used a multivariable logistic regression
model to identify independent predictors of viral infection using a manual backward
selection approach. All exposure variables with a p-value ≤ 0.2 in the univariable or
variables considered as potential confounding factors were assessed in the initial model,
and the likelihood ratio test was used at each step of the selection model. Exposure variables
were retained in the model if the test was statistically significant (p-value ≤ 0.05). The
variables age, gender and season of inclusion were used to match case and control. As
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we did not get a perfect matching, we forced these variables in the multivariate model.
Confounding factors were checked in the final model. We then assessed the goodness of fit
of the final model using tests of model adequacy (Hosmere and Lemeshow test or Pearson
Chi-squared) and using the ROC curve using the AUC (area under curve). The threshold
of 0.5 to calculate the sensitivity and specificity of the model was considered.

3. Results
3.1. Description of the Study Population

During the entire period of the AFRIBIOTA project, we enrolled 464 children between
24 and 59 months of age, of whom 329 provided enough stool for nucleic acid extraction
and virological analyses. Of the 329 children, 75 were severely stunted (SS), 80 moderately
stunted (MS) and 174 non-stunted (NS) (Figure 1). Their age ranged from 33 to 53 months
and the sex ratio (M/F) was 0.91.
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Figure 1. Flowchart of the inclusion process of HIV-negative children aged 2 to 5 years, re-
cruited in Ankasina or Andranomanalina Isotry, Antananarivo, Madagascar, from December 2016 to
March 2018.

3.2. Detection of Viruses in the Study Population

Of the 329 stools tested, 170 (51.7%) were positive for at least one of the targeted
viruses. Among the positives, 142 (83.5%) were infected with one virus, 20 (11.8%) with
two viruses and 8 (4.7%) with three viruses (Supplementary Table S2). AdVs were the most
prevalent viruses detected, with 134 (40.7%) positive stools, followed by AstV, RoV, and
NoV, with, respectively, 33 (10.0%), 29 (8.8%) and 10 (3.0%) of positive cases (Figure 2).
Adenovirus type F40/41 was detected in 23 (7.0%) stools. Interestingly, most of the RoVs
(72.4%; 21/29) were detected as co-infection with one or two other viruses.

No statistical differences were observed between the prevalence of viruses targeted
and the growth status of children (Table 1). Although not significant, we noted that the
positivity rates of all viruses tested were higher among NS children. Looking at their
distribution over time, at least one of the four types of viruses was detected each month
during the study period (Figure 3). Adenoviruses were detected monthly, from December
2016 through March 2018, except in October 2017, while adenovirus type F40/41, norovirus
GII, astrovirus and rotavirus were detected more sporadically.
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Table 1. Prevalence of viruses detected in stool samples from children according to their growth
status (non-stunted, moderately and severely stunted).

Virus 1 NS 2

N1 (%)
MS 2

N2 (%)
SS 2

N3 (%)
Total

N = 329 p-Value 3

AdV 75 (43.1) 27 (33.7) 32 (42.7) 134 (40.7) 0.344
AdV type F40/41 15 (8.6) 4 (5) 4 (5.3) 23 (7) 0.551

AstV 14 (8) 10 (12.5) 9 (12) 33 (10) 0.444
RoV 14 (8) 4 (5) 11 (14.7) 29 (8.8) 0.115

NorV GII 5 (2.9) 1 (1.25) 4 (5.3) 10 (3) 0.350
1 AdV: Adenovirus; AdV: Adenovirus; AdV-F40/41: Adenovirus type F40 and F41; RoV: Rotavirus; AstV:
Astrovirus; NorV GII: Norovirus GII. 2 Growth status: NS = Non-Stunted (controls; N1 = 174); MS = Moderately
Stunted (N2 = 80); SS = Severely Stunted (N3 = 75). 3 Comparisons between controls and stunted children
(MS + SS) were determined using Pearson’s χ2-test or Fisher’s exact test according to their conditions of use. A
p-value < 0.05 was considered statistically significant.
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To determine whether there was an association between the nutritional status of
children and being infected with adenovirus type F40/41, we restricted the analysis to
the periods when these viruses were detected (February–April 2017; July–September
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2017; December 2017). No statistically significant association was observed (p = 0.72)
(Supplementary Table S2).

3.3. Characteristics of the Study Population Associated with Viral Infection

By examining the socio-demographic data of the population studied, no statistical
differences were observed regarding viral infection for the sex, age, and weight at birth
(Table 2). In addition, no statistically significant differences were observed for the following
variables: growth status, chronic malnutrition, history of acute malnutrition, diarrhea,
respiratory infection, fever, rotavirus vaccination and parasitic carriage. The only piece
of socio-demographic evidence showing a statistically significant difference was the food
diversity score (p = 0.035), with 58.9% of the children with an inadequate food diversity
score being positive for a virus compared to 47% of those with an acceptable feeding.
Our data showed that a viral infection was detected in 56% of severely stunted and in
52.9% of non-stunted children, while 45% of MS cases were positive for at least one virus.
Furthermore, at the time of the study, almost all children had no symptoms of diarrhea
(97.3%; 320/329), no history of diarrhea (96.1%; 316/329) nor any history of respiratory
infection (97.3%; 320/329), but 66.3% had a history of fever and the rates of viral infection
in each case were circa 50% (Table 2). At last, the rotavirus vaccination status of the children
showed that 95.4% (312/329) were vaccinated and 52.2% of those who received at least
one dose of vaccine were positive for viral infection, including rotavirus. Some children
displayed clinical signs of respiratory infection, such as rhinorrhea (62.6%), stuffy nose
(51.4%) and cough (36.8%). Association of these symptoms with viral infection showed no
significant differences, even though children with stuffy nose, rhinorrhea and cough were
positive to viral carriage in 50.3%, 49% and 47.9% of the cases, respectively.

Table 2. Characteristics of the study population according to viral infection detected (N = 329).

Variable

Viral Detection
Total (N = 329)

p-ValueNo (N = 159) Yes (N = 170)

n (%)/Median [IQR] n (%)/Median [IQR] n/Median [IQR]

Sex 0.362 1

Female 79 (45.9%) 93 (54.1%) 172
Male 80 (51.0%) 77 (49.0%) 157
Age (months) 44.28 [34.8–53.1] 42.131 [33.0–52.2] 43.232 [33.7–53.0] 0.256 2

Weight at birth 0.085 3

Mean (SD) 3.167 (0.668) 3.356 (0.681) 3.269 (0.680)
Standard deviation 1.750–5.000 1.900–4.900 1.750–5.000
Food diversity score (child) 0.035 1

Inadequacy/insufficiency 53 (41.1%) 76 (58.9%) 129
Acceptable 106 (53.0%) 94 (47.0%) 200
Growth status 0.352 1

Moderately stunted 44 (55.0%) 36 (45.0%) 80
Severely stunted 33 (44.0%) 42 (56.0%) 75
Non-stunted 82 (47.1%) 92 (52.9%) 174
Chronic malnutrition 0.941 1

Moderate chronic malnutrition 47 (49.5%) 48 (50.5%) 95
Acute chronic malnutrition 37 (46.8%) 42 (53.2%) 79
Normal nutrition 75 (48.4%) 80 (51.6%) 155
History of acute malnutrition 1.000 4

Yes 5 (50.0%) 5 (50.0%) 10
No 154 (48.3%) 165 (51.7%) 319
Diarrhea 0.323 4

Yes 6 (66.7%) 3 (33.3%) 9
No 153 (47.8%) 167 (52.2%) 320
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Table 2. Cont.

Variable

Viral Detection
Total (N = 329)

p-ValueNo (N = 159) Yes (N = 170)

n (%)/Median [IQR] n (%)/Median [IQR] n/Median [IQR]

History of diarrhea 0.685 1

Yes 7 (53.8%) 6 (46.2%) 13
No 152 (48.1%) 164 (51.9%) 316
Respiratory infection history 0.176 4

Yes 2 (22.2%) 7 (77.8%) 9
No 157 (49.1%) 163 (50.9%) 320
History of fever 0.389 1

Yes 101 (46.3%) 117 (53.7%) 218
No 56 (51.4%) 53 (48.6%) 109
Rotavirus vaccination 0.354 1

At least one dose 149 (47.8%) 163 (52.2%) 312
Zero dose 9 (60.0%) 6 (40.0%) 15
Stuffy nose 0.608 1

Yes 84 (49.7%) 85 (50.3%) 169
No 75 (46.9%) 85 (53.1%) 160
Rhinorrhea 0.2141

Yes 105 (51.0%) 101 (49.0%) 206
No 54 (43.9%) 69 (56.1%) 123
Cough 0.301 1

Yes 63 (52.1%) 58 (47.9%) 121
No 96 (46.2%) 112 (53.8%) 208
Number of children under 5-years old
in the household 1.0 [1.0–2.0] 1.0 [1.0–2.0] 1.0 [1.0–2.0] 0.627 1

Nutritional status of the mother 0.006 2

Normal 106 (54.1%) 90 (45.9%) 196
Undernourished 24 (51.1%) 23 (48.9%) 47
Overnourished 24 (32.4%) 50 (67.6%) 74
Education level of the mother 0.258 3

No schooling 3 (33.3%) 6 (66.7%) 9
Elementary school 84 (53.8%) 72 (46.2%) 156
Secondary School 58 (43.6%) 75 (56.4%) 133
High School or above 12 (44.4%) 15 (55.6%) 27
Weaning age 0.388 2

≤12 months 19 (52.8%) 17 (47.2%) 36
12–24 months 28 (41.2%) 40 (58.8%) 68
≥24 months 97 (50.0%) 97 (50.0%) 194
Age at the introduction of first
solid foods 0.458 2

<6 months 43 (45.3%) 52 (54.7%) 95
≥6 months 115 (49.8%) 116 (50.2%) 231
Running water in the house 0.695 2

Yes 21 (45.7%) 25 (54.3%) 46
No 138 (48.8%) 145 (51.2%) 283
Water used for child hygiene 1.000 3

Running water and other water sources 4 (50.0%) 4 (50.0%) 8
Running water only 155 (48.4%) 165 (51.6%) 320
Water used for the child during the last
2 weeks 1.000 3

Running water 157 (48.6%) 166 (51.4%) 323
Other water sources 2 (40.0%) 3 (60.0%) 5
Drinking water treatment 0.107 2

No 109 (45.6%) 130 (54.4%) 239
Yes 50 (55.6%) 40 (44.4%) 90
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Table 2. Cont.

Variable

Viral Detection
Total (N = 329)

p-ValueNo (N = 159) Yes (N = 170)

n (%)/Median [IQR] n (%)/Median [IQR] n/Median [IQR]

Using soap in the household 0.674 3

Yes 83 (50.3%) 82 (49.7%) 165
Sometimes 73 (46.8%) 83 (53.2%) 156
No 3 (37.5%) 5 (62.5%) 8
Washing the hands of the child 0.527 3

No hand washing 0 (0.0%) 2 (100.0%) 2
Only with cold/hot water 53 (48.2%) 57 (51.8%) 110
Sometimes with water and soap 90 (50.3%) 89 (49.7%) 179
Always with water and soap 16 (42.1%) 22 (57.9%) 38
Water used for child hygiene 1.000 3

Running water and other water sources 4 (50.0%) 4 (50.0%) 8
Running water only 155 (48.4%) 165 (51.6%) 320
Water used for the child during the last
2 weeks 1.000 3

Running water 157 (48.6%) 166 (51.4%) 323
Other water sources 2 (40.0%) 3 (60.0%) 5
Drinking water treatment 0.107 2

No 109 (45.6%) 130 (54.4%) 239
Yes 50 (55.6%) 40 (44.4%) 90
Using soap in the household 0.674 3

Yes 83 (50.3%) 82 (49.7%) 165
Sometimes 73 (46.8%) 83 (53.2%) 156
No 3 (37.5%) 5 (62.5%) 8
Washing the hands of the child 0.527 3

No hand washing 0 (0.0%) 2 (100.0%) 2
Only with cold/hot water 53 (48.2%) 57 (51.8%) 110
Sometimes with water and soap 90 (50.3%) 89 (49.7%) 179
Always with water and soap 16 (42.1%) 22 (57.9%) 38
Guardian’s hand washing 1.000 3

No hand washing 2 (40.0%) 3 (60.0%) 5
Only with cold and/or hot water 92 (48.7%) 97 (51.3%) 189
With water and soap 64 (48.5%) 68 (51.5%) 132
Number of handwashing of the
guardian per day 0.770 2

1–2 times 12 (42.9%) 16 (57.1%) 28
3–4 times 73 (50.0%) 73 (50.0%) 146
≥5 times 73 (47.7%) 80 (52.3%) 153
Type of kitchen 0.213 2

Indoor kitchen in specific room 20 (55.6%) 16 (44.4%) 36
Indoor kitchen no specific room 85 (52.1%) 78 (47.9%) 163
Outdoor kitchen in specific room 13 (43.3%) 17 (56.7%) 30
Outdoor kitchen no specific room 40 (40.4%) 59 (59.6%) 99
Child has a personal plate 0.285 3

Yes 18 (39.1%) 28 (60.9%) 46
No 141 (49.8%) 142 (50.2%) 283
Sewage disposal 0.572 2

Adapted 132 (47.7%) 145 (52.3%) 277
Unsuitable 27 (51.9%) 25 (48.1%) 52
Household waste disposal 1.000 3

Adapted 127 (48.3%) 136 (51.7%) 263
Unsuitable 27 (48.2%) 29 (51.8%) 56
Unknown 5 (50.0%) 5 (50.0%) 10
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Table 2. Cont.

Variable

Viral Detection
Total (N = 329)

p-ValueNo (N = 159) Yes (N = 170)

n (%)/Median [IQR] n (%)/Median [IQR] n/Median [IQR]

Guardian’s hand washing 1.000 3

No hand washing 2 (40.0%) 3 (60.0%) 5
Only with cold and/or hot water 92 (48.7%) 97 (51.3%) 189
With water and soap 64 (48.5%) 68 (51.5%) 132
Number of handwashing of the
guardian per day 0.770 2

1–2 times 12 (42.9%) 16 (57.1%) 28
3–4 times 73 (50.0%) 73 (50.0%) 146
≥5 times 73 (47.7%) 80 (52.3%) 153
Type of kitchen 0.213 2

Indoor kitchen in specific room 20 (55.6%) 16 (44.4%) 36
Indoor kitchen no specific room 85 (52.1%) 78 (47.9%) 163
Outdoor kitchen in specific room 13 (43.3%) 17 (56.7%) 30
Outdoor kitchen no specific room 40 (40.4%) 59 (59.6%) 99
Child has a personal plate 0.285 3

Yes 18 (39.1%) 28 (60.9%) 46
No 141 (49.8%) 142 (50.2%) 283
Sewage disposal 0.572 2

Adapted 132 (47.7%) 145 (52.3%) 277
Unsuitable 27 (51.9%) 25 (48.1%) 52
Household waste disposal 1.000 3

Adapted 127 (48.3%) 136 (51.7%) 263
Unsuitable 27 (48.2%) 29 (51.8%) 56
Unknown 5 (50.0%) 5 (50.0%) 10

1 Chi-square test. 2 Wilcox test. 3 T-Student test. 4 Fisher exact test. IQR = Interquartile range. Missing data:
Weight at birth (n = 175), history fever (n = 2) and rotavirus vaccination (n = 2).

Given that non-enteropathogenic adenoviruses were the most prevalent in each group
of children, we assessed their possible association with these clinical signs by excluding
the enteric virus type F40/41 carriage as well as co-infections with other enteric viruses.
Non-enteric adenovirus infection alone was not statistically correlated with the age of the
children, their growth status, nor with clinical signs such as stuffy nose, rhinorrhea, or
cough (Supplementary Table S3). Among children displaying clinical signs, non-enteric
adenoviruses were detected in 31.7% of those with stuffy nose (p = 0.111), 32.2% of those
with rhinorrhea (p = 0.066) and 30.0% of those with cough (p = 0.102). For each symptom,
these rates were lower than those obtained for children without clinical signs.

3.4. Characteristics of the Household Environment of the Study Population and Viral Infection

We observed that a higher proportion of children of over-nourished mothers (67.6%)
were infected with a virus as compared to children of normal (45.9%) or undernourished
(48.9%) mothers (Table 2). This difference was statistically significant with a p-value = 0.006.
None of the other parameters considered showed a statistically significant difference.

At last, looking at the association of viral infection with parasitic infestation, we
observed that 75.4% (248/329) of the study population was positive for at least one par-
asite, and 50% (124/248) of those positive for a parasite were also infected with a virus
(Table 3). About a quarter (24.6%) of the children were positive for Giardia intestinalis, 49.2%
for Ascaris lumbricoides, 65.6% for Trichuris trichiura and 0.9% for Enterobius vermicularis.
Among those positive for one of these parasites, between 33.3% (E. vermicularis) and 52.3%
(T. trichiura) were carrying a virus. A statistically significant difference was only detected
for A. lumbricoides with a proportion of viral infection higher (58.3%) in “Ascaris-free”
children as compared to infected ones (44.4%) (Table 3).
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Table 3. Parasitic carriage of the study population according to virus positivity (N = 329).

Viral Detection
Total (N = 329)

p-ValueNo (N = 159) Yes (N = 170)

n (%) n (%) n (%)

Presence of at least one parasite 0.370 1

Yes 124 (50.0%) 124 (50.0%) 248 (75.4%)
No 34 (44.2%) 43 (55.8%) 77 (23.4%)
Giardia intestinalis 0.873 1

Yes 40 (49.4%) 41 (50.6%) 81 (24.6%)
No 118 (48.4%) 126 (51.6%) 244 (74.2%)
Ascaris lumbricoides 0.013 1

Yes 90 (55.6%) 72 (44.4%) 162 (49.2%)
No 68 (41.7%) 95 (58.3%) 163 (49.5%)
Trichuris trichiura 0.637 1

Yes 103 (47.7%) 113 (52.3%) 216 (65.6%)
No 55 (50.5%) 54 (49.5%) 109 (33.1%)
Enterobius vermicularis 0.614 2

Yes 2 (66.7%) 1 (33.3%) 3 (0.9%)
No 156 (48.4%) 166 (51.6%) 322 (97.9%)

1 Chi-square test. 2 Fisher exact test. Missing data: Presence of at least one parasite (n = 4), G. intestinalis (n = 4),
A. lumbricoides (n = 4), T. trichiura (n = 4) and E. vermicularis (n = 4).

3.5. Risk Factors and Protective Factors Associated with Viral Infection

A bivariate analysis of risk factors associated with viral infection was carried out. Then,
a multivariate analysis of resulting predictor variables with p-value ≤ 0.20 was undertaken
to determine any collinearity (Supplementary Tables S4 and S5). The identified predictor
variables were food score diversity of the child, nutritional status of the mother, weight
at birth, age, sex, respiratory infection history, drinking water treatment, A. lumbricoides
infestation, whether the child ate in the plate of the guardian, mother’s schooling level and
household waste disposal. An association was observed between the food diversity score
and drinking water treatment (p < 0.001), as well as between the food diversity score and
mother’s schooling level (p = 0.003). In addition, mother’s schooling level was associated
with A. lumbricoides carriage (p = 0.017).

We observed that children with an adequate food diversity score were less likely
(ORaj = 0.59, CI 95% (0.37–0.95)) to be infected with viruses than those with an inadequate
food diversity score, controlling for the effects of mother nutritional status and A. lumbri-
coides infestation (Table 4). Children without A. lumbricoides infestation were more likely
to have a viral infection than those infested by this type of parasite, controlling for the
effect of children’s food diversity score and mother nutritional status (ORaj = 1.79, CI
95% (1.12–2.86)). Moreover, children whose mother was overweighted were more likely
(OR = 2.37, CI 95% (1.33–4.21)) to be infected with viruses than those with a mother having
a normal weight or being underweighted, controlling for the effect of children’s diversity
score and A. lumbricoides infestation. The p-values of the Hosmer–Lemeshow and Pearson
residual tests were, respectively, <2.2 × 10−16 and 0.383, indicating an insufficient model fit
of the data.

Table 4. Risk factor estimation using multivariate logistic regression model of viral detection.

Viral Detection Crude OR
(CI 95%) *

Adjusted OR **
(CI 95%) * p-Value

No (N = 149) Yes (N = 155)

Child’s food diversity score
0.03Unsuitable 49 (32.9%) 70 (45.2%) ref. ref.

Adequate 100 (67.1%) 85 (54.8%) 0.59 (0.37–0.95) 0.58 (0.35–0.94)
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Table 4. Cont.

Viral Detection Crude OR
(CI 95%) *

Adjusted OR **
(CI 95%) * p-Value

No (N = 149) Yes (N = 155)

Nutritional status of the mother
Normal 102 (68.5%) 86 (55.5%) ref. ref.
Undernourished 23 (15.4%) 20 (12.9%) 1.03 (0.53–2) 1.07 (0.54–2.11) 0.791
Overnourished 24 (16.1%) 49 (31.6%) 2.42 (1.37–4.27) 2.45 (1.38–4.42) 0.003
A. lumbricoides carriage 0.021
Yes 87 (58.4%) 69 (44.5%) ref. ref.
No 62 (41.6%) 86 (55.5%) 1.75 (1.11,2.75) 1.75 (1.09–2.83)

* CI: Confidence Interval of 95%. ** Adjusted with age, gender, and season of inclusion.

4. Discussion

Stunting is major public health and development concern for LMICs such as Mada-
gascar. Stunting syndrome or linear growth delay, linked to poor nutrition and repeated
infections such as intestinal infections, indirectly contribute to the pathophysiology un-
derlying EED [4,5]. As a matter of fact, stunting has a permanent impact on the physical
growth and intellectual development of children [1,5,8]. In recent years, a broad number
of studies have addressed the implication of EED on children’s development [5,8,28–30].
Through the AFRIBIOTA project, pediatric environmental enteropathy was investigated,
and the status of bacteria and parasites in the gut microbiota, as well as Small Intestinal Bac-
terial Overgrowth (SIBO), was evaluated in apparently healthy and stunted children from
Antananarivo, Madagascar [6,11–13]. Although overgrowth of bacterial enteropathogens
was detected at a higher rate in the duodenal fluid of asymptomatic stunted children [6],
the current view of stunting associated with the overstimulation of the small intestine
through recurrent infections is now challenged by the finding that oropharyngeal bacteria
were also detected in the feces along the gastrointestinal microbiome through decompart-
mentalization [11]. A separate study on parasitic infections showed that the prevalence
of intestinal parasites was substantial in both stunted and control children. No apparent
differences were seen in stunted and healthy children [13].

In this study, we screened a range of viruses known to affect intestinal structure
and function, such as enteric and non-enteric adenoviruses, rotaviruses, astroviruses and
norovirus GII, for their presence and possible association with growth stunting in controlled
and stunted children living in two districts of Antananarivo. Different parameters, ranging
from living conditions, hygiene, and sanitation, as well as co-infestation with parasites,
were evaluated to determine if they could correspond to risk factors or protective factors
associated with viral carriage. Surprisingly, no significant differences were found, apart
from children with an inadequate food quality score and of those of over-nourished mothers,
who had a higher rate of viral infection than children with an adequate food quality score
and normal or undernourished mothers. Variables commonly thought to be risk factors
for enteropathies (e.g., WASH) showed no association with viral carriage. This lack of
association might be explained firstly by random variation and secondly because enteric
viruses might be less sensitive to hygiene conditions and individual characteristics in
comparison with bacterial enteropathogens. In fact, in our previous studies, we found
more consistent associations with the carriage of enteric bacteria [11] and the occurrence of
stunting [12]. Given the number of associations tested, most of the variables commonly
associated with growth delay and risk factors to enteropathy did not give statistically
significant outcomes compared to a small number that came out as statistically significant
at the α < 0.05, which is puzzling. We assumed that our analysis is underpowered and thus
any possible explanation for the association found in children with an inadequate food
quality score and those with over-nourished mothers could be due to random variation.

When considering a separate study of the Afribiota project that addresses the main
analysis of risk factors for stunting [12], no association was found between food diversity
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and stunting, and higher education of the mother was found to be a protective factor for
stunting. However, the most common stunting-associated factors globally cited in the liter-
ature were also reflected in the study, such as low birth weight, lack of access to soap, poor
sanitation as well as comorbidities such as anemia and infections (diarrhea, dermatitis, or
respiratory disease), which are risk factors. Additionally, it is believed that enteropathogens
were considered the main taxa driving inflammation in undernutrition. In a parallel study,
under the Afribiota project addressing bacterial composition of the microbiota in the gut of
stunted children [11], it was observed that, due to microbial decompartmentalization of the
oropharyngeal to gastrointestinal tract, there is an overrepresentation of enteropathogenic
bacteria in the duodenum of stunted children compared to duodenal, gastric and stool sam-
ples of non-stunted or normal children. In sum, the profile of bacterial and viral infections
or carriage in the same population cannot be compared, as in our case half of the children
of the study population were infected with at least one virus at the time of inclusion.

Although this study has been undertaken with children recruited from two of the
poorest neighborhoods in Antananarivo, it is worthwhile to note that previous studies
in other countries have reported that higher rates of enteric viruses were also found in
children of a higher socio-economic level whose hygienic behavior contributes to viral
contamination [31]. In that case, young children are more exposed to diarrheal pathogens,
by ingestion of contaminated material by aerosolized infectious particles from infected
individuals or through fecal contamination of food, water, soil, and surfaces [9,32,33].

As a matter of fact, the gastrointestinal tract is a common site of infection by pathogenic
viruses, bacteria, protozoa and helminths. Signals derived from commensal bacteria and
helminth parasites can influence the mammalian immune response, and helminths are
known to be able modulate the immune system [34]. We found it interesting to evaluate
the association of parasites to viral carriage. The large roundworm A. lumbricoides is a
common soil-transmitted helminth in developing countries [35]. Ascaris infestation is one
of the most common human parasitic infestations worldwide, which causes approximately
60,000 deaths per year, mainly in children experiencing malnutrition and developmen-
tal deficits from chronic infection. Recent studies on virus-helminth co-infection have
shown that Ascaris infestation in mammals can compromises the host cell control of other
infectious agents, including Mycobacterium tuberculosis, Plasmodium spp., and HIV as well
as responses to non-parasite antigens, thus hampering vaccination efficacy against other
pathogens [34–36]. Unexpectedly, our findings show that, among our cohort, being infested
with A. lumbricoides had a protective effect on viral carriage. These results demonstrate the
complexity of interaction between virus and helminth within the host in real life. Several
factors may play a role, including (i) the type of helminth and virus, (ii) the tissue tropism,
(iii) the nature of the antiviral immune response and (iv) the timing of viral infection and
the helminth life cycle [35].

The association of enteric viruses with diarrhea has been well established in symp-
tomatic individuals. Apart from the classic enteropathogenic viruses, non-enteric (respira-
tory and keratoconjunctivitis) adenoviruses are known to replicate in the gut and to persist
in a latent state following primary infection, most commonly in early childhood [33]. The
shedding of non-enteric adenoviruses into the stool from asymptomatic individuals has
been described [14,37] and suggested as a potential etiology of gastroenteritis in recent
studies with hospitalized pediatric patients in Bangladesh, Thailand, and Italy [37–39]. In
this study, we found that 40.7% of children were positive for adenoviruses (through a Pan-
AdV PCR) and 7.0% for adenoviruses type F40/41. Our results show that enteropathogens
(adenoviruses type F40/41, astrovirus, norovirus GII, rotavirus) were sporadically de-
tected during the period of enrolment (December 2016–March 2018), while non-enteric
adenoviruses were detected all over the study period. So far, Madagascar has no avail-
able data on the epidemiology of diarrheal diseases to evaluate the circulation of those
pathogens. However, non-enteric adenoviruses were detected all year round in a previous
study conducted on children under 5 years of age suffering from influenza-like illness in
Madagascar [40]. Here, we observed the same pattern of circulation.



Pathogens 2023, 12, 1009 14 of 17

This study has some limitations. Norovirus GI and specifically Sapovirus testing
were not included in this screening. Sapovirus testing could not be performed because of
technical constraints, whereas in a previous study on diarrheic children of different age
groups in Antananarivo, the circulation of norovirus GI had been barely detected [23].
Moreover, given that the panel of viral pathogens screened was not exhaustive, we cannot
rule out the presence of other enteric and non-enteric viruses in our study population [14,15].
Previous studies conducted in Madagascar have demonstrated that non-polio enteroviruses
were identified in 26.8% of stools collected from healthy children under five [41]. We may
have thus underestimated the prevalence of enteric viruses in our population. Nevertheless,
to limit this bias, we have targeted the main viral families associated with diarrheal diseases
based on the literature and on previous Malagasy studies.

Even if no association was found between stunting and viral carriage, our results
reported that more than half of the children were infected with viruses and co-infections
with viruses and bacteria are common. These data can serve as a baseline for public
health interventions and community health programs. As suggested in previous separate
studies on factors associated to stunting, including analysis of bacterial and parasitic en-
teropathogens, strategies such as water, sanitation, and hygiene (WASH) interventions
should be strengthened [12,13] to reduce virus transmission through sensitization or the
implementation of different activities. Moreover, programs addressing the improvement of
a child’s diet such as a nutrition education program or interventions favoring food accessi-
bility should be prioritized, as suggested in a previous study addressing the nutritional
status of children in two distant districts of Madagascar, Moramanga (Middle East) and
Morondava (South-West), where a low food diversity score was frequent, as more than one
third of children (39.2%) had an inadequate food diversity score [42].

5. Conclusions

The stunted and controlled children recruited in this study were apparently healthy
and not suffering from diarrhea, although some presented respiratory clinical manifes-
tations such as stuffy nose, rhinorrhea, and cough. We did not find any evidence that
enteropathogenic viral carriage had a direct link with stunting in our study population.
Our analysis shows that respiratory clinical manifestations were not correlated with ade-
novirus infection, suggesting other causes. For example, it is known that enteric viruses,
such as norovirus and rotavirus, can be detected in different sites, such as the lower airway
tract beside the intestine replication sites, causing many upper respiratory symptoms, such
as cough or runny nose. It is also possible that the children harbored other respiratory
viruses or unknown viral infections not tested in this study.
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www.mdpi.com/article/10.3390/pathogens12081009/s1, Supplementary Table S1: List of primers
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type F40/41 infection; Supplementary Table S3. Correlation of adenovirus non-type F40/41 carriage
with clinical symptoms observed in the study population (N = 251); Supplementary Table S4. Sensi-
tivity and specificity of the final model; Supplementary Table S5. Bivariate analysis of risk factors
statistically associated with viral carriage (p-value < 0.20).
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