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Abstract: Bacterial and fungal co-infections are reported complications of coronavirus disease 2019
(COVID-19) in critically ill patients but may go unrecognized premortem due to diagnostic limita-
tions. We compared the premortem with the postmortem detection of pulmonary co-infections in
55 fatal COVID-19 cases from March 2020 to March 2021. The concordance in the premortem versus
the postmortem diagnoses and the pathogen identification were evaluated. Premortem pulmonary
co-infections were extracted from medical charts while applying standard diagnostic definitions.
Postmortem co-infection was defined by compatible lung histopathology with or without the de-
tection of an organism in tissue by bacterial or fungal staining, or polymerase chain reaction (PCR)
with broad-range bacterial and fungal primers. Pulmonary co-infection was detected premortem
in significantly fewer cases (15/55, 27%) than were detected postmortem (36/55, 65%; p < 0.0001).
Among cases in which co-infection was detected postmortem by histopathology, an organism was
identified in 27/36 (75%) of cases. Pseudomonas, Enterobacterales, and Staphylococcus aureus were the
most frequently identified bacteria both premortem and postmortem. Invasive pulmonary fungal
infection was detected in five cases postmortem, but in no cases premortem. According to the univari-
ate analyses, the patients with undiagnosed pulmonary co-infection had significantly shorter hospital
(p = 0.0012) and intensive care unit (p = 0.0006) stays and significantly fewer extra-pulmonary infec-
tions (p = 0.0021). Bacterial and fungal pulmonary co-infection are under-recognized complications
in critically ill patients with COVID-19.
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1. Introduction

Bacterial co-infection commonly complicates severe viral pneumonias. A retrospective
analysis of preserved lung specimens from fatal 1918 influenza cases revealed evidence
of co-infection in 95% of the cases [1]. In the post-antibiotic era, the frequency of bacterial
co-infection detected postmortem has declined, although it remains a significant burden [2].
For example, in a series of fatal 2009 H1N1 influenza cases, postmortem bacterial co-
infection was detected in 26% of cases [3]. The frequency of co-infection in coronavirus
disease 2019 (COVID-19) is less well characterized than influenza, but it is likely to vary by
disease severity and other relevant demographic and clinical factors [4,5]. Among patients
initially presenting to the hospital for COVID-19, bacterial co-infection was reported in
approximately 2% of cases [6], compared with 37–58% of cases among more severely
ill hospitalized or mechanically ventilated patients [7,8]. Here, we define pulmonary
co-infection as bacterial or fungal infections occurring concurrently with the initial SARS-
CoV-2 infection, as opposed to superinfections occurring after COVID-19 has resolved [9].

Pulmonary co-infection is a significant burden for critically ill patients with COVID-19
and has been associated with worse outcomes [10,11]. In critically ill patients, hospital-
acquired infections (HAIs) have been shown to predominate, including high rates of
nosocomial and multidrug-resistant (MDR) bacteria [12]. The diagnostic differentiation of
co-infection from the progression of COVID-19 pneumonia and acute respiratory distress
syndrome (ARDS) or other pulmonary process remains challenging, although imaging may
help in the diagnosis [13]. In a meta-analysis of fatal COVID-19 cases in which an autopsy
was performed, bacterial co-infection was reported in 200 of 621 (32%) cases, predominantly
with nosocomial pathogens including Escherichia coli, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Klebsiella pneumoniae [14,15]. However, co-infection is often only incidentally
noted, and it was a primary endpoint in only 3/75 (4%) of studies [14].

The phenomenon of COVID-19-associated pulmonary aspergillosis (CAPA) has been
described in multiple case series [16–18]. The assessment of the burden of CAPA has been
complicated by a lack of standard case definitions and the infrequent pursuit of tissue-based
diagnoses for critically ill patients [19]. The estimates of CAPA in registry studies range
from 1–39.1% [20,21], and further work is needed to establish the true burden of disease
in COVID-19.

We therefore sought to determine the burden of pulmonary co-infection in fatal cases
of COVID-19, whether premortem diagnoses of pulmonary co-infection accurately pre-
dicted postmortem findings, the prevailing pathogens, and whether there was concordance
between the species identified pre- and postmortem. Among 55 fatal COVID-19 cases from
two medical centers in the United States from March 2020 to March 2021, we observed
that bacterial and fungal co-infection detected premortem underestimated the burden of
disease detected postmortem.

2. Materials and Methods
2.1. Autopsies

Autopsies were performed and tissues collected as previously described [22,23]. Those
for cases P1–P44 were performed at the National Cancer Institute’s Laboratory of Pathology
at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA), coordinated
by the NIH COVID-19 Autopsy Consortium and with consent of the legal next of kin.
Autopsies for cases AU-10 through AU-31 were performed at the King County Medical
Examiner’s Office (Seattle, WA, USA) and the University of Washington (UW) (Seattle, WA,
USA). The case series was a convenience sample of all cases referred to these institutions
for autopsy during the sample period. A total of 55 cases with proven SARS-CoV-2 testing
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were included with no exclusion criteria. Due to biosafety concerns related to potential
severe acute respiratory syndrome coronavirus SARS-CoV-2 laboratory exposures, bacterial
and fungal cultures were not performed at the time of autopsy.

2.2. Histopathology

Standard histopathologic stains, including hematoxylin and eosin (H&E), Brown and
Hopps (B&H), and Gomori methenamine silver (GMS), were performed on lung tissues
from all lobes of all patients. Acute bronchopneumonia on histology (i.e., the presence of
neutrophil infiltrates in alveolar spaces and bronchioles) was used to diagnose pulmonary
co-infection, as this finding is not observed in the diffuse alveolar damage (DAD) pattern
seen in COVID-19 pneumonia alone [22,23]. Cases demonstrating acute bronchopneumonia
were classified as positive for a microorganism following a positive result by special stains
or PCR and sequencing.

2.3. Chart Review

Medical records from all cases were independently reviewed by two members of the
research team. Patient demographics and treatments were recorded using a standardized
form (Supplementary Figure S1). Co-morbidities previously associated with poor outcomes
in COVID-19 were recorded [24]. Premortem pulmonary co-infection was determined
on retrospective chart review using criteria previously validated in critically ill patients
with respiratory insufficiency or failure [25] and consistent with society guidelines for the
diagnosis of hospital-acquired and ventilator-associated pneumonias (HAP/VAPs) [26].
Briefly, this included radiographically confirmed lung infiltrates plus two or more of the
following criteria: new fever, new leukocytosis, and new purulent pulmonary secretions.
In cases in which the above could not be adequately determined on chart review, increasing
oxygen requirements in a previously stable patient was used as an additional criterion.
Due to conflicting diagnoses between primary and consulting teams and frequent use
and discontinuation of empiric antibiotics, clinical documentation and antibiotic use were
not used as diagnostic criteria. For all cases that met criteria for premortem pulmonary
co-infection, respiratory culture data from the time of diagnosis were reviewed. If cultures
grew one or more pneumopathogens, these were considered the causative agents. Diag-
nosis of an extra-pulmonary co-infection was made by (a) positive culture of a pathogen
from a normally sterile site or (b) positive culture from a non-sterile site plus signs and
symptoms consistent with infection. Nosocomial pathogens and antibiotic regimens ap-
propriate for HAP/VAPs were defined according to society guidelines [26]. Briefly, this
required an agent covering methicillin-resistant Staphylococcus aureus and Gram-negative
coverage with an anti-pseudomonal agent. Patients were defined as having “diagnosed
pulmonary co-infection” if they had premortem and postmortem diagnoses of pulmonary
co-infection, “undiagnosed pulmonary co-infection” if they had no premortem diagnosis
of pulmonary co-infection but did have a postmortem diagnosis of co-infection, and “no
pulmonary co-infection” if they had no postmortem pulmonary co-infection, regardless of
premortem diagnoses.

2.4. Statistics

All statistics were calculated in Prism 8 (GraphPad, San Diego, CA, USA). Continuous
variables were compared using a two-tailed t-test for normally distributed variables and a
two-tailed Mann–Whitney test for non-normal variables between two groups and one-way
ANOVA or Kruskal–Wallis test for normal and non-normal variables between three or more
groups. Dichotomous variables were compared using the Fisher exact test or chi-squared
test. A p-value of <0.05 was used to define significance.

2.5. Pathogen Identification by PCR and Sequence-Based Taxonomic Classification

Both formalin-fixed paraffin-embedded (FFPE) and frozen, unfixed tissues were in-
vestigated for the presence of bacterial and/or fungal pathogens by clinically validated,
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laboratory-developed tests in the CLIA-certified, high-complexity clinical molecular mi-
crobiology laboratory at UW. Briefly, DNA was extracted from FFPE tissue with the FFPE
Advanced Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. The
DNA was extracted from unfixed tissue as previously described [27]. The PCR amplifi-
cations were performed as previously described: broad-range bacterial PCR targeted the
V1–V2 hypervariable region of the 16S rRNA gene [28], and broad-range fungal PCR tar-
geted the 28S D1/D2, ITS1, and ITS2 loci [29,30]. Amplified products were sequenced, and
taxonomic classification was assigned by BLAST analysis [31] using both public databases
(NCBI) and an in-house proprietary database, with priority given to type strain and refseq
records, as previously described [27,32].

When sequencing of 16S products suggested multiple bacterial templates, bacterial
populations were deconvoluted using amplicon next-generation sequencing (NGS) on an
Illumina Miseq with 250 bp paired-end reads, as previously described [33].

3. Results
3.1. Case-Series Demographics

Fifty-five postmortem COVID-19 cases were enrolled between 27 March 2020 and 2
March 2021 from NIH and UW. In total, 18/55 (33%) patients were female. The median
patient age was 63 (IQR 48.5–71). In total, 22/55 (45%) patients identified as White, 19/55
(35%) identified as Black, 11/55 (20%) identified as Hispanic, and 1/55 (2%) identified as
Asian. The median body-mass index (BMI) was 31.2 (IQR 25.9–36.8), and 49/55 (89.1%)
patients had at least one major comorbidity (Table 1). No significant differences in demo-
graphic or clinical variables were detected between the UW and NIH cases, except that the
UW cases had significantly longer postmortem intervals (median 72 vs. 22 h, p < 0.0001,
Supplementary Table S1).

Table 1. Demographics of autopsy cases separated by co-infection diagnosis. The p values are
univariate analyses of the difference between patients with pulmonary co-infection diagnosed pre-
and postmortem (diagnosed pulmonary co-infection), patients with pulmonary co-infection diag-
nosed only postmortem (undiagnosed pulmonary co-infection), and patients with no pulmonary
co-infection postmortem regardless of premortem diagnosis (no pulmonary co-infection).

All Cases
(n = 55)

Diagnosed Pulmonary
Co-Infection (n = 11)

Undiagnosed
Pulmonary
Co-Infection (n = 25)

No Pulmonary
Co-Infection
(n = 19)

p-Value

Median age in years (IQR) 63 (48.5,71) 48 (41.5,64.5) 63 (60,71) 68 (48.5,73) 0.0995

Female (%) 18/55 (32.7%) 3/11 (27.3%) 9/25 (36.0%) 6/19 (31.6%) 0.2187

Race (%) 0.1384

White (%) 25/55 (45.5%) 4/11 (36.4%) 13/25 (52.0%) 8/19 (42.1%)

Black or African American (%) 19/55 (34.5%) 2/11 (18.2%) 10/25 (40.0%) 7/19 (36.8%)

Hispanic Ethnicity (%) 11/55 (20.0%) 6/11 (54.5%) 2/25 (8.0%) 3/19 (15.8%) 0.0048

Median BMI (IQR) 31.15 (25.9,36.8) 39 (34.3,48.7) 31 (24.3,35.4) 28 (25.2,33.45) 0.0368

Major Comorbidities (IQR) 2 (1,3) 1 (1,3) 2 (2,4) 2 (1.5,3) 0.3632

Immunosuppression/Cancer (%) 9/55 (16.4%) 1/11 (9.1%) 4/25 (11.1%) 4/19 (21.1%) 0.7328

Pulmonary (%) 20/55 (36.4%) 4/11 (36.4%) 8/25 (22.2%) 8/19 (42.1%) 0.4764

Cardiac (%) 33/55 (60.0%) 3/11 (27.3%) 19/25 (52.8%) 11/19 (57.9%) 0.0222

Liver (%) 3/55 (5.5%) 0/11 (0.0%) 2/25 (5.6%) 1/19 (5.3%) 0.9501

Neuro (%) 5/55 (9.1%) 1/11 (9.1%) 2/25 (5.6%) 2/19 (10.5%) 0.0834

Diabetes Mellitus (%) 23/55 (41.8%) 3/11 (27.3%) 13/25 (36.1%) 7/19 (36.8%) 0.3304

CKD (%) 9/55 (16.4%) 0/11 (0.0%) 5/25 (13.9%) 4/19 (21.1%) 0.2594

Obesity (%) 30/55 (54.5%) 9/11 (81.8%) 13/25 (36.1%) 8/19 (42.1%) 0.1027

BMI: body-mass index; CKD: chronic kidney disease.
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3.2. Clinical Interventions

In total, 51/55 (92.7%) patients were admitted to an intensive care unit (ICU) for a
median of 12 days (IQR 5.5–23.5), 46/55 (83.6%) received invasive mechanical ventilation
for a median of 11 days (IQR 2.75–21.25), 44/55 (80.0%) required vasopressor support,
22/55 (40.0%) required renal replacement therapy, and 13/55 (23.6%) were placed on extra-
corporeal membrane oxygenation (ECMO) (Table 2). Furthermore, 50/55 (90.9%) patients
received at least one dose of an antibiotic during their hospital admission, 46/55 (83.6%)
patients received a corticosteroid, 24/55 (43.6%) received the antiviral drug remdesivir,
4/55 (7.2%) received the anti-IL-6 monoclonal antibody tocilizumab, and 7/55 (12.7%)
received convalescent plasma.

Table 2. Treatment characteristics of autopsy cases separated by co-infection diagnosis. The p values
are univariate analyses of the difference between patients with diagnosed pulmonary co-infection,
undiagnosed pulmonary co-infection, and no pulmonary co-infection.

All Cases
(n = 55)

Diagnosed Pulmonary
Co-Infection
(n = 11)

Undiagnosed
Pulmonary
Co-Infection
(n = 25)

No Pulmonary
Co-Infection
(n = 19)

p-Value

Days from onset to death (IQR) 18 (12,32) 48 (33,65.5) 16 (9,19) 23 (10,31) 0.0009

Hospital duration, days (IQR) 12 (6,25.5) 45 (23,59) 8 (5,16) 12 (4.5,26.5) 0.0012

ICU duration, days (IQR) 12 (5.5,23.5) 44 (21,55.5) 7 (2,12) 11 (1,21.5) 0.0006

Intubation duration, days (IQR) 11 (2.8,21.3) 42 (20.5,55.5) 4 (0.0,10.0) 11 (0.0,16.0) 0.0003

Post-Mortem Interval, hours (IQR) 24 (18.9,39.5) 24.6 (18.6,43.5) 24.0 (19.4,35.1) 23.1 (16.0,46.5) 0.8793

ICU Admission (%) 51/55 (92.7%) 11/11 (100.0%) 23/25 (92.0%) 17/19 (89.5%) 0.5542

Intubated (%) 47/55 (85.5%) 11/11 (100.0%) 21/25 (84.0%) 15/19 (78.9%) 0.2777

Pressor Use (%) 44/55 (80.0%) 11/11 (100.0%) 17/25 (68.0%) 16/19 (84.2%) 0.0712

RRT (%) 22/55 (40.0%) 6/11 (54.5%) 9/25 (36.0%) 7/19 (36.8%) 0.5446

ECMO (%) 13/55 (23.6%) 6/11 (54.5%) 1/25 (4.0%) 7/19 (36.8%) 0.0022

Abnormal Chest Imaging (%) 52/55 (94.5%) 10/11 (90.9%) 25/25 (100%) 17/19 (89.7%) 0.2629

Antibiotic Use (%) 50/55 (90.9%) 11/11 (100.0%) 23/25 (92.0%) 16/19 (84.2%) 0.0288

HAP Coverage (%) 34/55 (61.8%) 10/11 (90.9%) 14/25 (56.0%) 10/19 (52.6%) 0.0828

COVID-Specific Therapies

Steroid Use (%) 46/55 (83.6%) 11/11 (100.0%) 21/25 (84.0%) 14/19 (73.7%) 0.1712

Remdesivir (%) 24/55 (43.6%) 5/11 (45.5%) 13/25 (52.0%) 5/19 (26.3%) 0.2229

Tocilizumab (%) 4/55 (7.3%) 4/11 (36.4%) 0/25 (0.0%) 1/19 (5.3%) 0.0017

Convalescent Plasma (%) 7/55 (12.7%) 5/11 (45.5%) 3/25 (12.0%) 3/19 (15.8%) 0.0589

ICU: intensive care unit. RRT: renal replacement therapy. ECMO: extra-corporeal membrane oxygenation. HAP:
hospital-acquired pneumonia. Abnormal chest imaging: any new infiltrative or consolidative process.

3.3. Premortem Co-Infections

In total, 15/55 (27.3%) patients had a pulmonary co-infection diagnosed premortem,
of which three had only a pulmonary co-infection and 12 had both pulmonary and extra-
pulmonary co-infections. Furthermore, 23/55 cases (41.8%) met the criteria for any co-
infection diagnosed premortem at any site, including the lungs, blood stream, urinary
tract, and skin and soft tissue, as well as Clostridium difficile colitis (Table 3). The most
common extra-pulmonary co-infection was bacteremia (16/55, 29.1%). In 7/12 cases with
both pulmonary and extra-pulmonary (six bacteremia, one hepatic abscess) co-infections
identified premortem, the same organism was recovered from the cultures from both sites.
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Table 3. Premortem infections and type or location of infection. Extra-pulmonary infections were
further subdivided by site of infection. The p values are univariate analyses of the difference between
patients with diagnosed pulmonary co-infection, undiagnosed pulmonary co-infection, and no
pulmonary co-infection.

All Cases
(n = 55)

Diagnosed Pulmonary
Co-Infection
(n = 11)

Undiagnosed
Pulmonary
Co-Infection
(n = 25)

No Pulmonary
Co-Infection
(n = 19)

p-Value

Any Pre-mortem Infection 23/55 (41.8%) 11/11 (100.0%) 5/25 (20.0%) 7/19 (36.8%) <0.0001

Pulmonary 15/55 (27.3%) 11/11 (100.0%) 0/25 (0.0%) 4/19 (21.1%) <0.0001

Extra-Pulmonary 20/55 (36.4%) 9/11 (81.8%) 6/25 (24.0%) 5/19 (26.3%) 0.0021

Bacteremia 16/55 (29.1%) 9/11 (81.8%) 2/25 (8.0%) 5/19 (26.3%) <0.0001

UTI 4/55 (7.3%) 0/11 (0.0%) 2/25 (8.0%) 2/19 (10.5%) 0.5542

Fungemia 4/55 (7.3%) 2/11 (18.2%) 2/25 (8.0%) 0/19 (0.0%) 0.1781

Skin/Soft Tissue Infection 1/55 (1.8%) 0/11 (0.0%) 1/25 (4.0%) 0/19 (0.0%) 0.5427

C. difficile colitis 1/55 (1.8%) 1/11 (9.1%) 0/25 (0.0%) 0/19 (0.0%) 0.1304

UTI: urinary-tract infection.

3.4. Postmortem Co-Infection Findings

At autopsy, 36/55 cases (65.5%) had evidence of pulmonary co-infection (Table 1,
Figure 1). A positive bacterial stain was observed in 25/36 (69.4%) of these cases and a
positive GMS stain consistent with invasive fungal infection was observed in five cases
(Figure 1).
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Figure 1. Histological examination of lung tissue. (A) Hematoxylin and eosin (E,H) staining demon-
strating bronchopneumonia with neutrophils within the alveolar spaces in P30, 40× magnification. 
(B–D) Brown–Hopps stain of lung sections. (B) Rare diplococci (indicated by arrow) in P8, 100× 

Figure 1. Histological examination of lung tissue. (A) Hematoxylin and eosin (E,H) staining demon-
strating bronchopneumonia with neutrophils within the alveolar spaces in P30, 40× magnification.
(B–D) Brown–Hopps stain of lung sections. (B) Rare diplococci (indicated by arrow) in P8, 100× mag-
nification. (C) Gram-negative rods in P11, 60× magnification. (D) Gram-positive cocci in pairs in P30,
60× magnification. (E–H) GMS stain highlighting fungal organisms of lung sections. (E,F) Multiple
foci of yeasts and pseudo hyphae in P1 and P5 at 40× magnification. (G) Cluster of fungal hyphae
consistent with underlying Aspergillus infection in P15, 40× magnification. (H) Fungal ball composed
of yeasts and hyphae in P44, 40× magnification.

3.5. Comparison of Premortem and Postmortem Pulmonary Infection Findings

There were significantly more cases with a postmortem diagnosis of pulmonary co-
infection (36/55, 65.5%) than were diagnosed premortem (15/55, 27.2%, p = 0.0001). In total,
32/55 cases (58.2%) had a postmortem diagnosis of pulmonary co-infection and evidence
of a pathogen, which was also significantly higher than the proportion of cases diagnosed
with pulmonary co-infection premortem (15/55, 27.2%, p = 0.0019).
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3.6. Factors Associated with Premortem Identification of Pulmonary Infection

Of the 36 cases with a postmortem diagnosis of pulmonary co-infection, 11/36 (30.6%)
had a diagnosed pulmonary co-infection, while 25/36 (69.4%) had an undiagnosed pul-
monary co-infection (Table 3). The patients with undiagnosed pulmonary co-infections
were significantly less likely to be Hispanic (2/25 vs. 6/11, p = 0.0048), had lower BMI
(median 31 vs. 39, p = 0.0368), and tended to be older (median 63 vs. 48, p = 0.0995) (Table 1).
The patients with undiagnosed pulmonary co-infections also had significantly shorter times
from symptom onset to death (median 16 vs. 48 days, p = 0.0009) and shorter hospital (me-
dian 8 vs. 45 days, p = 0.0012) and ICU stays (median 7 vs. 44 days, p = 0.0006), and spent
less time on ventilators (median 4 vs. 42 days, p = 0.0003). The rates of ICU admission and
intubation were similar between the patients with diagnosed and undiagnosed pulmonary
co-infections, while the patients with diagnosed pulmonary co-infections were significantly
more likely to be placed on an ECMO circuit (6/11 vs. 1/25, p = 0.0022) (Table 2). While
the rates of antibiotic use were high in both groups (11/11 vs. 23/25) there was a strong
trend towards lower usages of combinations of antibiotics appropriate for the coverage
of hospital-acquired or ventilator-associated pneumonia in patients with undiagnosed
pulmonary co-infections (14/25 (56%) vs. 10/11 (91%), p = 0.0828) [26]. Patients with
diagnosed pulmonary co-infections were more likely to be diagnosed with premortem
extrapulmonary infections (9/11 vs. 2/25, p < 0.0001) (Table 3).

3.7. Identification of Pre- and Postmortem Pulmonary Bacterial Pathogens

To identify the bacterial pathogens from postmortem specimens, we attempted 16S
PCR and sequencing (Supplementary Figure S2). We first sequenced from one FFPE block
of lung tissue, from a lobe in which acute bronchopneumonia was seen, for each of the
36 cases with a postmortem diagnosis of pulmonary co-infection. This approach identified
a pathogen in only six cases. To increase the recovery of intact nucleic acids for sequencing,
we repeated the analysis with frozen tissue taken adjacent to histopathologically confirmed
bronchopneumonia. Of the 30 cases with preliminarily negative results, tissues were
available for 22. The sequencing of the frozen samples was positive in 10 cases, for a total
of 16 positive sequencing results.

From the premortem positive cultures, the most frequently isolated pathogens were p.
aeruginosa (n = 4) and K. pneumoniae (n = 4), followed by methicillin-susceptible Staphylococ-
cus aureus (MSSA) (n = 3) and methicillin-resistant Staphylococcus aureus (MRSA) (n = 3). In
the postmortem sequencing, E. coli (n = 3) and P. aeruginosa (n = 2) were the most frequently
identified pathogens (Table 4). In cases in which a pathogen was identified both pre- and
postmortem, the same pathogen was identified in six of seven cases (Figure 2). While
most of the organisms identified by the sequencing were plausible pneumopathogens, for
patient P9, P. aeruginosa and Enterococcus faecium were found by 16S PCR and sequencing.
This patient had premortem diagnoses of P. aeruginosa VAP and E. faecium bacteremia.
Therefore, we performed 16S PCR and sequencing using the liver tissue, through which we
identified only E. faecium, which is consistent with bacteremia. A 16S PCR was performed
on five cases without pulmonary co-infection, and all the cases were negative. The NGS
sequencing reports are available in Table 2.

Table 4. Pulmonary pathogens identified pre- and postmortem. Numbers of isolates may not add up
to the number of patients, as some patients had more than one organism, or no organism identified.

Pre-Mortem Pulmonary
Culture Results (n = 11)

Postmortem Sequencing Results
(n = 36)

P. aeruginosa 4 2

K. pneumoniae 4 0

MSSA 3 2 *

MRSA 3
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Table 4. Cont.

Pre-Mortem Pulmonary
Culture Results (n = 11)

Postmortem Sequencing Results
(n = 36)

E. coli 2 3

A. baumanii 2 1

S. marcesens 1 0

K. aerogenes 1 0

K. oxytoca 1 0

P. mirabilis 1 0

C. albicans 1 0

Mycoplasma salivarium 0 2

Fusobacterium nucleatum 0 2

P. putida 0 1

S. pneumoniae 0 1

Legionella sp. 0 1

Prevotella melanogenica 0 1
MRSA: methicillin-resistant Staphylococcus aureus. MSSA: methicillin-susceptible Staphylococcus aureus. *
Includes all S. aureus as 16S PCR is unable to distinguish between MSSA and MRSA.
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Figure 2. Pathogen identification in cases with diagnosed and undiagnosed pneumonia, and corre-
lation between premortem culture results and postmortem sequencing results. Each colored circle
represents one case. Yellow: no PCR product available for sequencing. Blue: postmortem sequencing
identified the same species of pathogen as premortem respiratory culture. Green: postmortem
sequencing identified an organism not seen on premortem culture. Red: postmortem sequencing
identified mixed flora. Diagonal black lines indicate positive B&H stain on histology.

3.8. Pulmonary Fungal Co-Infections

Invasive fungal pulmonary infections were identified on histology in 5/55 (9.1%) cases
(Figure 1). Cases in which yeast were seen within the airways but without evidence of
invasive disease were excluded. Case P15 demonstrated septate hyphae on GMS staining
consistent with a septate hyaline mold without a premortem diagnosis of fungal infection
or anti-fungal coverage. This patient had a history of sarcoidosis but was not on immuno-
suppression prior to admission. Cases P5 and P39 had invasive yeast and pseudohyphae;
both cases had premortem diagnoses of fungemia (Candida albicans and Candida lusita-
niae, respectively). Case P1 had invasive yeast and pseudohyphae without a premortem
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diagnosis of fungal infection or anti-fungal coverage. Case P44 had invasive yeast and
pseudohyphae in one lobe and a fungal ball with septate branching forms in a second
lobe, and had been diagnosed premortem with a C. albicans empyema. Cases P5, P15, P39,
and P44 all received extended methylprednisolone tapers in addition to initial courses of
steroids. Antifungal coverage was given for the three cases in which a fungal infection at
a different site was identified premortem, plus an additional five cases that did not have
evidence of fungal disease. All the foci of invasive disease were limited to small, adjacent
alveolar spaces rather than being widely disseminated. All the cases of invasive fungal
infection were identified only in FFPE blocks that had been fixed for >72 h. The PCRs of
the 28s and ITS loci performed on the DNA extracted from the highly fixed blocks and
from the blocks from remote locations in the same lobe fixed for only 24 h failed to yield a
product that could be sequenced. In no case was frozen tissue immediately adjacent to a
positive GMS stain available to attempt sequencing from unfixed tissues.

All five cases of pulmonary fungal co-infection had evidence of acute bronchopneumo-
nia on histology. Additionally, four of these five cases had a B&H stain positive for bacteria,
while P5 had a premortem diagnosis of bacterial co-infection with cultures positive for
K. pneumonia and S. marcescens (Supplementary Table S2). To identify the risk factors for
invasive fungal pulmonary co-infection, we compared these five cases with all the cases
with bacteria-only pulmonary co-infection across all the demographic and clinical factors
reported (Supplementary Table S3). The patients with fungal co-infection were significantly
younger (median age 41 vs. 63, p = 0.048) and had fewer comorbidities (median 1 vs. 2,
p = 0.0273) than those with only bacterial infections. The fungal cases had significantly
longer times from symptom onset to death (median 31 vs. 18 days, p = 0.0453), as well
as longer hospital and ICU stays (median 27 vs. 10 days, p = 0.0016 and 22 vs. 7 days,
p = 0.0207, respectively).

4. Discussion

In a case series of 55 COVID-19 autopsy patients, we found that a higher proportion
of patients had a pulmonary co-infection than met a set of standardized clinical criteria for
diagnosis premortem. The proportion of cases with pulmonary co-infection at autopsy was
significantly higher (p < 0.0001) than the 200/621 (32%) reported in a prior meta-analysis [14].
The identified pathogens were predominantly nosocomial and showed good agreement
between premortem cultures and postmortem sequencing. The clinical factors associated with
undiagnosed pulmonary co-infection premortem included shorter length of stay, decreased
use of ICU resources, including ECMO, and the absence of extra-pulmonary co-infections.
These results suggest that pulmonary co-infections may be initially under-diagnosed in a
subset of critically ill patients in the initial period after admission. This may be due to a shorter
interval for diagnostic consideration, a lower index of suspicion in newly admitted patients,
and the less frequent monitoring of patients receiving lower-intensity care.

In comparison to other studies, our use of acute bronchopneumonia as the primary
histopathologic endpoint and our thorough examination of all the lung lobes from all the
patients may have increased the sensitivity of the postmortem detection of co-infection; in over
96% of other autopsy case series, bronchopneumonia was only incidentally reported [14]. The
cases we presented were from the first year of the pandemic and may represent the evolution
of practice patterns that were not in place during the first months of the pandemic and that
were less likely to be affected by short-term effects, such as surge conditions. The similarity
between the rates of pulmonary co-infection observed in the NIH and UW cases suggests that
the high rate of co-infection was not driven by local medical practices.

Despite the high rate of intubation among our cases, VAP alone does not explain the
proportion of patients with pulmonary co-infection: based on previously published rates
of VAP in the United States, we would expect 1–3 cases per 1000 ventilator days, or only
1.8–3.6 cases of VAP within our case series, rather than the 36 observed [34,35]. The case
rate of 65.5% was also higher than those reported in autopsy series of the contemporary
H1N1 influenza pandemic [36]. It is not clear whether the higher proportion of pulmonary
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co-infection in our case series was due to intrinsic SARS-CoV-2-mediated factors, such as
the impairment of the myeloid compartment [37], or to clinical-practice patterns during the
epidemic, such as high rates of steroid usage and immunomodulatory therapy.

The diagnosis of lower-respiratory-tract infections is known to be challenging in
scenarios with concomitant lung pathology, and no proposed sets of clinical and/or mi-
crobiological markers have shown excellent sensitivity and specificity when compared to
histology [25]. Using the presence of bronchopneumonia on histology as the gold standard,
the clinical criteria used to diagnose pulmonary co-infections had a sensitivity of 30.6%
and a specificity of 78.9% in this study. Probably due to the progression of viral pneumonia
and ARDS, new infiltrates and consolidations were present in almost all the patients on
chest X-ray, regardless of the findings on autopsy, suggesting that this criterion had poor
specificity. Cross-sectional imaging may offer a greater ability to resolve disparate disease
processes [13]. The poor performance of these clinical criteria is in line with the findings
reported in other critically ill patients [25], and the low sensitivity in this series of fatal
cases suggests that there should be a high index of suspicion for pulmonary co-infection
among critically ill COVID-19 patients.

In prior studies on COVID-19, the identification of co-infecting organisms primarily
relied upon the correlation of culture results with histology or appearance on special stains.
Tissue-based molecular-pathogen detection has demonstrated excellent clinical sensitivity
and the ability to distinguish morphologically identical organisms [38]. These results
support the use of molecular techniques in postmortem studies as a valuable adjunct for
premortem infectious-disease studies, although the yield of 16/36 (44%) of cases with a
PCR product available for sequencing does represent a limitation. The increased yield of
sequencing data using frozen tissue highlights the importance of collecting frozen tissue
at autopsy. In two cases (P20 and AU-21), no organisms were seen on special stains, but
an organism was identified by sequencing. In both cases, the organism (P. aeruginosa
and S. aureus, respectively) was correlated with a positive premortem respiratory culture,
supporting the validity of our approach. In cases P8 (Figure 1) and P14, only rare organisms
that were not sufficient to identify a pathogen were seen on the special stains; these were
identified through sequencing as A. baumannii and Legionella sp., respectively. The risk of
the misdiagnosis of postmortem bacterial overgrowth was minimized by short postmortem
intervals and the need for the simultaneous presence of acute bronchopneumonia.

Most of the bacterial pathogens identified were Gram-negative rods, including lactose
non-fermenters and members of the order Enterobacterales, which is consistent with noso-
comial infections. One organism (P14, Legionella sp.) was more likely to be a community-
acquired pathogen. The good agreement between the premortem culture and the post-
mortem sequencing supports the attribution of pulmonary infection to these pathogens
and the utility of sequencing in the identification of pathogens in situations in which post-
mortem culture is not possible. The predominance of Gram-negative rods was consistent
with studies on living patients [15] and autopsy series [14]. Based on this finding, em-
piric antibiotic coverage in critically ill patients with COVID-19 should be tailored toward
hospital-acquired rather than community-acquired pathogens. The strong trend towards
the greater use of antibiotics appropriate for hospital-acquired infection in patients with
diagnosed pulmonary co-infection probably failed to reach significance due to the limited
sample size in our study. This is also consistent with prior work from the same geographic
region and time period, which found very low rates of bacterial co-infection at the time of
hospital admission for COVID-19 [6]. This is in contrast with pre- and postmortem studies
of influenza co-infection [1] and suggests differences between the underlying pathogeneses.
The implication for antibiotic selection is that for critically ill patients with COVID-19 that
show evidence of pulmonary co-infection, antibiotics should be tailored to nosocomial
pathogens. As this study only included critically ill, fatal cases of COVID-19, these findings
should not be generalized to all cases of COVID-19 or all hospitalized patients, for whom
antibiotic prescribing patterns may be unnecessarily high [39,40].
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Five cases of invasive fungal pulmonary co-infection were found on autopsy, none
of which had been identified premortem, although fungal infection at other sites had
been diagnosed in three of the five cases. On average, these patients had longer hospital
and ICU stays; this was probably related to their younger age and fewer comorbidities
compared with patients who had pulmonary bacterial co-infections without fungal co-
infections. This may have been an independent risk factor and may have contributed to
greater cumulative antibiotic and/or steroid administration, and it should serve as a factor
in the identification of patients at risk of pulmonary fungal co-infection in the future. As
recommended treatment durations for invasive fungal infections are generally longer than
for bloodstream infections, longer treatment durations for fungal infections in COVID-19
may need to be considered. Two cases (P15 and P44) had septate hyphae on histology that
was not identified with culture or sequencing. These findings are consistent with but do
not confirm Aspergillus spp. and CAPA.

We acknowledge several limitations in our study. There were inherent biases in our
postmortem case series, which may have over-represented severe illness and pathology,
including selection bias and the lack of a control group. As the recruitment ended before
the widespread vaccination for SARS-CoV-2 was available, the cases in this case series were
all unvaccinated. A recent analysis of poor outcomes for vaccinated individuals found a
median of four major co-morbidities in fatal cases of COVID-19, compared to the median
of two in this study [24]. Although we did not observe a higher rate of bronchopneumonia
in the patients with more comorbidities, this does suggest that the patient populations may
not be directly comparable. The timings of the cases in this case series mean that we cannot
draw conclusions regarding currently circulating variants. Next-generation sequencing
may be overly sensitive and detect colonizing bacteria, although we noted good agreement
between the bacterial stains, sequencing, premortem culture data (when available, and
acknowledging the lack of postmortem cultures) and histopathology. Due to the nature of
autopsies, we were unable to prove whether the death of a patient with bronchopneumonia
was due to COVID-19 or to bacterial/fungal co-infection. Given the complex patterns of
antibiotic administration in critically ill patients, it was not possible to categorize antibiotic
use more deeply as empiric, targeted towards presumed diagnosis, or definitive. Due to
the relatively small sample size of 55 patients, it is not clear whether some of the statistical
associations, such as Hispanic ethnicity and diagnosed pulmonary co-infection, were due
to sampling or to true pathogenesis.

Despite these limitations, we were able to draw meaningful conclusions from an in-
vestigation of bacterial and fungal pulmonary co-infections in a large, multi-center autopsy
case series of COVID-19 patients. We found that in our case series, pulmonary co-infection
was more common than previously believed, that the rates of pulmonary co-infection
were significantly higher than those recognized premortem, that bacterial co-infections
were predominantly caused by nosocomial pathogens, and that invasive fungal infec-
tions are under-recognized in this population. The patients with undiagnosed pulmonary
co-infections had shorter hospital and ICU stays, fewer extra-pulmonary infections, and
tended to receive potentially inappropriate antibiotic therapy. These findings suggest
that in critically ill patients with COVID-19, there should be high index of suspicion for
pulmonary bacterial co-infection, supporting empiric antibiotic use to covering nosocomial
pathogens in this population. However, antibiotic stewardship must remain a priority
for these patients, and the narrowing or discontinuation of therapy should be guided by
culture results and clinical status.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens12070932/s1. Figure S1: Chart-review form used to
collect demographic and treatment data; Figure S2: Flow diagram illustrating sample-selection
criteria and results of 16S bacterial PCR and sequencing on lung tissue; Table S1: Characteristics of
autopsy cases separated by site of autopsy; Table S2: NGS sequencing reports by patient; Table S3:
Comparison of cases with pulmonary co-infection with and without fungal co-infection.
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