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Abstract: Blood samples were collected from pigs at six abattoirs in the Kampala, Uganda metropoli-
tan area from May 2021 through June 2022, and tested for African swine fever virus. Thirty-one
samples with cycle threshold values < 26 from pigs with different geographic origins, clinical and
pathologic signs, and Ornithodoros moubata exposure underwent whole genome sequencing. The
p72 gene was used to genotype the isolates, and all were found to be genotype IX; whole genome
sequences to previous genotype IX isolates confirmed their similarity. Six of the isolates had enough
coverage to evaluate single nucleotide polymorphisms (SNPs). Five of the isolates differed from
historic regional isolates, but had similar SNPs to one another, and the sixth isolate also differed
from historic regional isolates, but also differed from the other five isolates, even though they are all
genotype IX. Whole genome sequencing data provide additional detail on viral evolution that can
be useful for molecular epidemiology, and understanding the impact of changes in genes to disease
phenotypes, and may be needed for vaccine targeting should a commercial vaccine become available.
More sequencing of African swine fever virus isolates is needed in Uganda to understand how and
when the virus is changing.

Keywords: African swine fever virus; genotype; whole genome sequencing; Uganda

1. Introduction

The African swine fever virus (ASFV) is a double-stranded DNA arbovirus with a
genome size of 170 to 190 kb, which encodes over 150 proteins, depending on the viral
strain [1], and belongs to genus Asfivirus, family Asfarviridae [2]. ASFV causes an infectious
disease called African swine fever (ASF), which is a highly contagious hemorrhagic disease
that has been reported in both domestic and wild suids including warthogs, bush pigs,
giant forest hogs, and wild boars [3]. Domestic pigs are highly susceptible, and case fatality
rates can approach 100% [4]. Though the virus does not infect humans, ASF has led to food
insecurity and enormous economic losses to farmers due to the high mortality rates of pigs
during outbreaks [5,6] and disruptions of the market structure in the pig value chain [7].

The ASFV was first reported in Kenya in the early 20th century [8]. There have been
24 genotypes of the virus reported based on genome sequencing of the p72 segment of
the virus since this initial discovery [9]. It is evident that ASFV variants can quickly
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spread across regions. Currently, there is a genotype II variant causing a global panzootic
that was first diagnosed outside of Africa in the country of Georgia [10] and has spread
widely since that introduction, impacting Europe, Asia, and the island of Hispaniola
(www.wahis.woah.org, accessed on 27 February 2023). Given this background, the risk
of introduction of new ASFV genotypes into Uganda is likely to occur, and ongoing
monitoring is needed.

In Uganda, sequencing of the p72 gene of the virus from ASF outbreaks in Central
Uganda in 2007 [11], between 2010 and 2013 from all districts in Uganda [12], and 2015
from the Central [13] and Eastern region [5] detected only genotype IX. An ASFV genotype
X virus was found from a Ugandan pig in isolates that were part of the ASFV collection
at the Institute for Animal Health in the Pirbright Laboratory [14,15]. The neighboring
country of Kenya reported genotype IX in warthogs and X in domestic pigs [16]. Another
neighbor, Tanzania, has multiple genotypes in domestic pigs. Isolates from pigs in Tanzania
were sequenced and genotypes X, XV, and XVI were found [17], an outbreak in 2008
was caused by an ASFV genotype XV variant [18], and samples collected between 2015
and 2017 in Tanzania were found to be infected with ASFV genotypes II, IX, and X [19].
Sequenced samples from domestic pigs in the Democratic Republic of the Congo (DRC), a
country on Uganda’s western border, reported detection of genotypes IX [20], and genotype
X [21]. Further, sequencing of samples collected from domestic pigs between 2005 and
2012 detected genotypes I, IX, and X in the DRC [22] Numerous genotypes are commonly
reported among Uganda’s neighbors. Given the diversity of genotypes in the region, it
is important to track their presence in the country to understand when new genotypes
emerge and why.

Previous work in Uganda has been constrained to outbreak locations and to collections
of samples at global reference laboratories. Genotyping of isolates that were representa-
tively collected and that were associated with a variety of characteristics (clinical signs,
region, tick exposure, etc.) had not been done. Further, maintenance of knowledge about
circulating strains is important for the development of appropriate vaccine candidates
for a given region/country and for purposes of molecular epidemiology. The purpose of
this study was to determine what genotypes were circulating based on samples of vary-
ing characteristics, and to establish whether any new ASFV genotypes were circulating
in Uganda.

2. Materials and Methods
2.1. Sample Collection

A total of 1318 pigs had blood samples collected at six abattoirs around the Kampala
metropolitan area in Central Uganda (Figure 1). In addition, pig sex, type (local breed,
European breed, or cross-bred), clinical signs, and pathologic lesions were recorded at
the time of sample collection. Traders were asked about the origin district of the pig as
well. Abattoirs in metropolitan Kampala have been reported to receive pigs from all the
regions of the country [23]. Uganda has four geographic regions, including the Central,
Northern, Western and the Eastern (Figure 1). A stratified systematic sampling method was
followed from May 2021 through June 2022. Total sample sizes were calculated to capture
approximately 200 positive pigs. To detect the expected ASFV prevalence of pigs in Uganda,
11.5% [24], with 95% confidence and 5% error, 157 pigs would be needed (openepi.com;
accessed July 2018). This would yield 18 positive pigs. To detect 200 positive pigs, at least
1200 pigs were sampled. The total sample size was stratified across abattoirs based on
the annual number of pigs slaughtered at each site. This was then calculated to monthly
sample sizes. Sites had two to four days per month randomly selected for sampling so as
to not exceed 10 pigs sampled per day to allow enough time to collect samples from all of
the pigs. On the day of sampling, pigs were sampled systematically until the sample size
was met. The sampling team consisted of trained veterinarians to ensure proper capture
of clinical signs and pathologic lesions, as well as appropriate sample collection. Blood
samples were transported from the slaughterhouse to the Central Diagnostic Laboratory,
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College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University
using a cold chain where they were stored at −20 ◦C.
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Figure 1. Summary of the number of pig blood samples collected from May 2021 through June 2022
sequenced by administrative district and region in Uganda.

2.2. Nucleic Acid Extraction, Amplification, and Detection of ASFV by qPCR

Whole blood was diluted 1:1 with 1X PBS and total DNA extraction was performed
using the Qiagen DNeasy tissue and blood kits (Qiagen, Hilden, Germany). The US
Department of Agriculture’s (USDA) Foreign Animal Disease Diagnostic Laboratory’s
(FADDL) standard operating procedures (SOPs) [25] which follow the manufacturer’s
instructions were used during these extractions. The real-time PCR (qPCR) assay used has
been previously described [26] and the FADDL ASF qPCR SOP [27] was again followed.
The TaqMan® Fast Virus 1-Step Master Mix (Thermo Fisher Scientific, Waltham, MA, USA)
along with the forward primer of 5′-CCTCGGCGAGCGCTTTATCAC-3′, reverse primer
of 5′-GGAAACTCATTCACCAAATCCTT-3′, and probe of FAM-CGATGCAAGCTTTAT-
MGB/NFQ ordered from Thermo Fisher Scientific (Waltham, MA, USA) were used in the
qPCR procedure. The VetMax Xeno DNA internal positive control (IPC) (Thermo Fisher
Scientific, Waltham, MA, USA) was used during the DNA extraction procedures and the
VetMax Xeno IPC LIZ Assay (Thermo Fisher Scientific, Waltham, MA, USA) was used
during the real time qPCR. This was done for each individual sample following FADDL
SOPs. The qPCR assay was run on a QuantStudio 5 thermocycler (Thermo Fisher Scientific,
Waltham, MA, USA) in 25 µL reaction volumes containing 20 µL of master mix and 5 µL of
the extracted total DNA.

2.3. Blood Sample Selection

Blood samples used for sequencing were positive based on qPCR results and had
a cycle threshold (Ct) value < 26. In total, 31 qPCR positive samples were sequenced.
Samples from different regions of the country (See Figure 1), and different districts (for the
central region), as well as those from pigs that had presented with and without clinical
signs and pathologic lesions at the time of sampling at the abattoir were considered for



Pathogens 2023, 12, 912 4 of 9

selection. The samples sequenced also covered a range of O. moubata exposure status of the
pigs (See Table 1). Table 1 also summarizes the distribution of pig sex and type by region,
although they were not used for sample selection. It is important to note that the intent
was to sequence a diverse set of positive samples, but not necessarily a representative set of
samples as there is no national level data on disease prevalence across Uganda.

Table 1. Characteristics of the 31 blood samples collected from May 2021 through June 2022 that were
selected for sequencing to determine the African swine fever virus genotype.

n = 31 Central Eastern Northern Western

# (%) # (%) # (%) # (%)

Clinical signs
Yes 8 (25.8) 2 (6.5) 1 (3.2) 0 (0.0)
No 12 (38.7) 6 (19.4) 0 (0.0) 2 (6.5)

Pathologic lesions
Yes 16 (51.6) 8 (25.8) 1 (3.2) 2 (6.5)
No 4 (12.9) 0 (0.0) 0 0

Ornithodoros
Negative 7 (22.6) 3 (9.7) 0 (0.0) 0 (0.0)

Weak Positive 9 (29.0) 3 (9.7) 1 (3.2) 1 (3.2)
Positive 1 (3.2) 0 (0.0) 0 (0.0) 0 (0.0)

Strong Positive 3 (9.7) 2 (6.5) 0 (0.0) 0 (0.0)

Sex
Male 6 (19.35 3 (9.7) 1 (3.2) 2 (6.5)

Female 14 (45.2) 5 (16.1) 0 (0.0) 0 (0.0)

Pig type
Local 1 (3.2) 3 (9.7) 0 (0.0) 0 (0.0)

European 9 (29.0) 3 (9.7) 1 (3.2) 0 (0.0)
Cross-bred 9 (29.0) 2 (6.5) 0 (0.0) 2 (6.5)

Clinical signs, pathologic lesions, Ornithodoros moubata exposure and region were used for sample selection.

2.4. African Swine Fever Genome Sequencing

Following sample selection, the extracted DNA previously used for qPCR testing
was prepared for sequencing with minor modifications from the protocol previously de-
scribed [28], adapted from the Nextera XT DNA Sample Preparation Guide (Illumina, San
Diego, CA, USA, 2019) [29]. All the reagents used were supplied with the Nextera XT
DNA Library Prep sequencing kit (Illumina, San Diego, CA, USA) unless otherwise stated.
Briefly, the DNA was quantified on a Qubit 4 fluorometer and 1.0 ng from each DNA
sample was fragmented and adapter sequences added to the ends to allow amplification
by limited-cycle PCR in downstream steps. The incubation time for the fragmentation
and tagmentation was increased to 15 min to allow for generation of DNA fragments
of appropriate sequencing size. The sizes of the fragments produced were examined by
capillary electrophoresis on a 5200 Fragment Analyzer System (Agilent, Santa Clara, CA,
USA). For the PCR amplification, Nextera PCR Master Mix (NPM) Index 1 (i7) and 2 (i5)
primers in a TruSeq index plate fixture were utilized. The PCR was carried out in a 96-well
plate on a SimpliAmp™ thermocycler (Thermo Fisher Scientific, Waltham, MA, USA) fol-
lowing the limited PCR program outlined in the Nextera XT DNA Sample Preparation
Guide. The sizes of the fragments produced were examined by capillary electrophoresis on
a 5200 Fragment Analyzer System (Agilent, Santa Clara, CA, USA). The PCR products were
cleaned using AMPure XP beads (Beckman Coulter, Indianapolis, IN, USA), washed with
freshly prepared 80% ethanol on a magnetic stand and suspended into 50 µL resuspension
buffer (RSB) supplied in the sequencing kit.

The resultant libraries were pooled in equal concentrations to create a pooled amplicon
library (PAL) of 4 nM. The PAL was denatured according to manufacturer’s instructions to
create a diluted amplicon library (DAL) of 14 pM. The DAL was loaded into a thawed MiSeq
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V3 600 cycle reagent cartridge for sequencing on the Illumina MiSeq platform (Illumina, Inc.,
San Diego, CA, USA). Sequencing occurred at the Makerere University College of Health
Science Biomedical Research Centre (MakBRC, Kampala, Uganda) Sequencing Laboratory.

2.5. Sequence Data Analysis

Samples were analyzed using methods and software as previously described by Lakin
et. al. [30]. Briefly, Illumina data were aligned to the ASFV Kenya Bus/2006 reference
genome (GenBank accession KM111295.1) using the Burrows-Wheeler Aligner (v0.7.17)
with options “-a-h 2-Y-M” (Li & Durbin, 2012). Freebayes parallel (v1.3.4) was used to call
insertions and deletions for the Illumina data with the option “standard-filters” (Garrison
and Marth, 2012). The publicly available vSNP pipeline (USDA, https://github.com/
lakinsm/simple-snp, accessed on 27 December 2022) was used to visualize SNPs for the
epidemiological analysis calculated using an open-source SNP caller (https://github.com/
lakinsm/simple-snp, accessed on 27 December 2022). Variants were filtered to meet the
following thresholds: a minimum depth of 10 observed alleles at a genomic location across
the population of samples (DP > 10), a minimum observed alternate allele count of 7 at a
given genomic location across the population of samples (AO > 7), and an alternative allele
frequency greater than or equal to 70% at a given site within a given sample.

To construct the phylogenetic tree, a total of 46 ASFV genomes from public databases
were aligned alongside the Illumina sequencing data using the Burrows-Wheeler Aligner.
Reference genomes for Genotype IX (ASFV Kenya Bus/2006 KM111295.1) and X (ASFV
Kenya Tk1/2005 NC_044945.1 and ASFV Kenya/1950 NC_044944.1) were used during
alignment, and SNPs were called as described above. A SNP-based phylogenetic tree was
generated using RAxML (v8.2.12).

2.6. Mapping

QGIS version 3.28.1 Firenze (qgis.org) was used for mapping. Uganda district shp files
were downloaded from the United Nations (UN) Human High Commissioner for Refugees
(https://data.unhcr.org/en/documents/details/83043, accessed on 30 March 2023) and
regional data was downloaded from the Office for the Coordination of Humanitarian Affairs
(https://data.humdata.org/dataset/cod-ab-uga, accessed on 29 June 2023). Districts were
linked to data on the number of samples sequenced per district and mapped.

3. Results
3.1. Genotype Characterization

This study had sequencing results for 31 blood samples that were positive for ASFV
with Ct values of less than 26. The pigs from which the blood samples were taken vary
by region and district of origin, clinical presentation, and O. moubata tick exposure. The
samples were taken from a larger set of 1318 blood samples representatively collected
between May 2021 and June 2022. All 31 ASFV isolates were classified as genotype IX based
on their p72 sequences and whole genome similarity to known genotype IX sequences.

3.2. Sequence Analysis

Of the 31 ASFV samples sequenced, six had sufficient depth of coverage across the
genome (>7x) to characterize variants. Although these six isolates aligned closely to a
Genotype IX virus found in Uganda in 2015, they established their own clade, suggesting
further evolution of the virus (Figure 2). Further, one of these six new isolates (S24/2021)
differed from the other five isolates.

All six ASFV genotype IX sequences characterized in this study diverged from Kenya
genotype X sequences (Kenya/1950, Tk1/2005) by over 2500 SNPs (>1%) of the genome
and grouped with historic genotype IX sequences from Kenya (Bus/2006) and Uganda
(2015 isolates). The newly characterized genotype IX sequences shared approximately
100 single nucleotide polymorphisms (SNPs) with the historic genotype IX sequences but
diverged from the 2015 Ugandan sequences by approximately 20–60 SNPs not previously
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described in the 2015 sequences. Five of the six isolates characterized in this study were
closely related and clustered into the same clade, while one sequence (S24/2021) appeared
to be more ancestrally related to the previously sequenced Ugandan isolates. The SNPs
characterized occurred throughout the genome and were not isolated to any region, gene,
or multigene family. Further sequencing is needed to thoroughly describe these isolates
and to elucidate the level of difference, but the results did show that there were SNPs that
were shared among five of this study’s isolates, and the sixth isolate also had a unique
SNP fingerprint.
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4. Discussion

This study sequenced 31 ASFV detected in blood samples collected between May 2021
through June 2022 from pig abattoirs in the Kampala metropolitan area of Uganda. All
samples were identified as genotype IX based on p72 sequence analysis. This aligns with
previous work done on in 2007 [11], 2013 [12], and 2015 [13,31]. There have also been two
isolates classified as genotype X from Uganda, one from 1965 and another from 1995 [14].
Although we cannot definitively say that other genotypes are not present in Uganda, it
appears as though genotype IX is a stable and common cause of ASFV despite the fact
that neighboring countries that have a shared border with Uganda have various other
genotypes circulating [16–22,32]. Given that the genotype II that was introduced into the
Republic of Georgia [10] has spread globally in the same period of time, this suggests that
there is not a rapid regional movement of variants, although studies that would target
sequencing of isolates in high-risk areas of entry would better determine if there were any
incursions of new genotypes.

There were six ASFV sequences that had enough depth of coverage to further evaluate.
It was found that they created their own clade and one of the six differed from the other
five variants and had its own SNP pattern (Supplementary Files S1 and S2). The differences
detected among these isolates suggests that viruses continue to evolve within genotypes
and specific geographical locations, as has been previously described for the genotype II
epizootic ongoing since 2008 [33]. The impact of this evolution on considerations such as
clinical presentation and pathologic presentation, as well as transmission efficacy from O.
moubata or between pigs will require further study.

In this study the ASFV genotype IX was confirmed to be circulating widely in Uganda,
but the work also revealed that the viruses in this genotype continue to evolve, creating
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diversity within the genotype and the country. There is a need for researchers to leverage
whole genome sequencing and to develop a more robust database of African swine fever
sequences for comparison to track this evolution and its impact. The p72 gene segment
has allowed for genotyping [14] of ASFV, but with whole genome sequencing technology,
more detailed comparisons of viruses and their evolution are possible. Such work will
allow better understanding of relationships between the genome and disease presentation
and is critical to fully leverage molecular epidemiology in outbreak responses, which can
determine transmission dynamics and spatiotemporal trends.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pathogens12070912/s1, Supplementary File S1: SNP table describing the
variants used to build the phylogenetic tree, displaying a subset of mutations, ordered by relevance to
the phylogenetic classification. Supplementary File S2: SNP table with variants ordered by genomic
location, including all variants called within the Ugandan genomes relative to Genotype IX ASFV
strain Kenya Bus/2006.
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