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Abstract: Continued surveillance of antimicrobial resistance is critical as a feedback mechanism for
the generation of concerted public health action. A characteristic of importance in evaluating disease
surveillance systems is representativeness. Scenario tree modelling offers an approach to quantify
system representativeness. This paper utilises the modelling approach to assess the Australian
Gonococcal Surveillance Programme’s representativeness as a case study. The model was built by
identifying the sequence of events necessary for surveillance output generation through expert con-
sultation and literature review. A scenario tree model was developed encompassing 16 dichotomous
branches representing individual system sub-components. Key classifications included biological
sex, clinical symptom status, and location of healthcare service access. The expected sensitivities for
gonococcal detection and antibiotic status ascertainment were 0.624 (95% CI; 0.524, 0.736) and 0.144
(95% CI; 0.106, 0.189), respectively. Detection capacity of the system was observed to be high overall.
The stochastic modelling approach has highlighted the need to consider differential risk factors such
as sex, health-seeking behaviours, and clinical behaviour in sample generation. Actionable points
generated by this study include modification of clinician behaviour and supplementary systems to
achieve a greater contextual understanding of the surveillance data generation process.

Keywords: antimicrobial resistance; surveillance; Neisseria gonorrhoeae; scenario tree modelling;
stochastic modelling

1. Introduction

Antimicrobial resistance (AMR) is a growing public health threat that poses a risk to the
use of antimicrobials [1]. Early estimates project mortality due to AMR to reach 10 million
per year by 2050 in the absence of effective action [2]. The global threat posed by AMR
has prompted concerted efforts by the World Health Organization (WHO) to implement a
global action plan [3]. This initiative has provided the impetus for member states of the
WHO to develop context-specific plans to ensure the viability of therapeutics. A critical
element of those plans is the necessity of surveillance to understand the epidemiology of
AMR, monitor the effectiveness of interventions, and to identify emerging threats [3].

Surveillance is a fundamental component of communicable disease control [4]. The
role of surveillance is critical in the generation and provision of information that informs
any public health action [5]. The exigencies of concerted endeavours require the quality of
surveillance data to be reliable to support greater comprehensiveness of the situation. In
the context of AMR, surveillance is an essential feedback mechanism for governance [3].
Despite the wide acceptance of surveillance as a key component in AMR mitigation ef-
forts, there exists considerable variability across national contexts regarding surveillance
system structures [6–8]. As a result, the comparability of AMR data is limited by its repre-
sentativeness. Evaluative frameworks for public health surveillance, such as that of the
Centres for Disease Control and Prevention (CDC), have recognised the importance of
representativeness but facilitate evaluation from a subjective perspective [9]. The absence
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of a standardised and objective methodology for assessing AMR surveillance system repre-
sentativeness will continue to impede the comparability of data and states of AMR across
global contexts.

Scenario tree modelling (STM) is an established technique that has been utilised in
the decision analysis and risk assessment spaces to understand the outcomes following
sequential events throughout a system by composing a series of trees defined by positive
and negative outcomes [10,11]. In the context of AMR surveillance systems, the adoption of
the STM has yet to be demonstrated. However, there is unrealised potential in its application
to further refine AMR surveillance system representativeness. In the wider literature, STM
has been used to substantiate freedom from disease by examining the surveillance data
generation process and identifying the potential for the disease to not be captured [11]. The
proposed benefit of STM is that the methodology necessitates the systematic deconstruction
of the data generation process to understand the sequence of events that are implicated [10].
With the understanding of how surveillance data are generated, discussion regarding the
representativeness of the system can focus on identifying leverage points to improve. At
the time of publication of this article, there has yet to be any literature which has applied
this methodology to AMR surveillance.

The Australian Gonococcal Surveillance Programme (AGSP) is a national surveillance
program that has been implemented to monitor trends in Neisseria gonorrhoeae prevalence,
incidence, and resistance [12]. The surveillance system is pivotal in the formulation of
policy and action in the clinical management of N. gonorrhoeae. Ensuring the AGSP provides
data that is actionable is critical for the development of efficacious stewardship. Despite
paramount significance of the system in the management of both N. gonorrhoeae and
antimicrobial resistance, the AGSP has been sparingly evaluated. This gap presented in
systematic evaluation offers a compelling opportunity to advance and demonstrate the
system’s capabilities and effectiveness.

Therefore, this paper aims to demonstrate a modified STM methodology to be used
to assess the Australian N. gonorrhoeae surveillance as a case study to demonstrate the
robustness of the methodology. The objectives are to (1) construct a scenario tree for the
Australian N. gonorrhoeae surveillance system, (2) calculate an overall system sensitivity
value, and (3) evaluate the representativeness of the system.

2. Materials and Methods

This study was based on the Australian N. gonorrhoeae surveillance system—the
Australian Gonococcal Surveillance Programme (AGSP). The AGSP collects N. gonorrhoeae
data from a laboratory network across Australia and reports the associated antimicrobial
susceptibility data and the isolate [12]. The objective of the surveillance system is to monitor
the trends of antimicrobial resistance of N. gonorrhoeae over time to different classes of
antibiotics. Further details of the surveillance system are established within surveillance
reports and literature [12–14].

2.1. Core Methodology for Scenario Tree Building
2.1.1. Modified Scenario Tree Modelling Methodology and Structure

STM is a structured stochastic approach in decision analysis to investigate the prob-
ability of a particular outcome of interest to occur given an sufficient comprehension of
the preceding sequence of scenarios involved in generating the outcome of interest [10].
Previous applications of STM within the context of infectious diseases and pathogenic
surveillance have primarily investigated freedom from disease [15–18]. To achieve cer-
tainty in the freedom of such disease, the paradigm championed has been to construct
a series of plausible scenarios for which the presence of disease is not captured [15–18].
In modifying the STM methodology to solely focus on capturing the events in which the
pathogen is detected through surveillance and excluding procedures where the disease
is not captured, enables the utilization of a tool that can effectively assess the function of
disease surveillance that has yet to be used.
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A foundational step to building the scenario tree is to identify the key decision points
and outcomes of the system [10]. These are independent events which lead to the specified
desired outcome. Thus, the probability of all events occurring is given by the product of all
independent events within the scenario. Relevant Australian N. gonorrhoeae surveillance
literature was reviewed to identify the key outcomes of the scenario tree [14,19,20]. Ex-
pert and key stakeholder consultation with clinicians, in the space of sexual testing and
surveillance, was conducted to identify the components and pathways of the surveillance
system. To understand the intricacies of how an individual is processed by the surveillance
system, topics of discussion included providers of testing, test types, and differences in
testing between groups. The scenario tree was then mapped using a tree diagram repre-
senting the decision points with the relevant outcomes as per the Martin, Cameron, and
Greiner [10] procedure.

Nodes were then classified based on what they described. Definitions for each of the
types of nodes can be found in Table 1. Figure 1 provides a general overview of STM.

Table 1. Scenario tree modelling node classifications with their respective definitions.

Node Definition

Antimicrobial Resistance Detection Node
Refers to the points at which N. gonorrhoea
antibiotic resistance is detected. Given as a

dichotomous event.

Category Node Category nodes refer to proportions of a
population that fall on a given pathway.

Detection Node Detection nodes are points at which N. gonorrhoea
is detected. Given as a dichotomous event.

Infection Node Infection nodes refer to the reported proportion of
infections for the specified group.
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Figure 1. General overview of the scenario tree model (STM).

2.1.2. Collection of Data for Parameters

Following the identification of key nodes in the scenario cascade, data is to be collected
for the parameterisation of the model. Targeted grey and academic literature searches were
used to identify epidemiological studies to evaluate the likelihood of each decision point.
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In the absence of literature-based data the STM methodology allows for the use of expert
opinion to obtain a likelihood estimate [10].

2.2. Parameterisation of Inputs for the Scenario Tree Model

Parameterisation of nodes was then completed for implementation. Parameterisation
of the nodes followed the procedures outlined by Martin, Cameron, and Greiner [10].
Nodes were fit with probabilistic distributions based on their expected behaviour. Where
ranges in epidemiological data were specified without a given expected value, the node was
fit as a uniform distribution. For parameterising expert opinion, estimates were obtained
for a minimum, mean, and maximum probability and by using a Program Evaluation and
Review Technique (PERT) distribution [10]. Static values for proportions and point esti-
mates were used elsewhere. All model inputs used with sources, descriptions, assumptions,
and limitations are within the Supplementary File S1.

2.3. Implementation of the Scenario Tree Model
2.3.1. Core Assumptions of the Model

STM methodology has two main assumptions. The first assumption assumes perfect
specificity of diagnostic testing in surveillance (a nominal probability of 1) and that there
are no false positives [10]. The second assumption presumes a closed system in which all
uncertain cases of N. gonorrhoea are resolved and a definitive diagnosis is made without the
loss of individuals within the specified system to follow up or treatment as to not disrupt
the sequence of specified scenarios [10].

2.3.2. Model Outputs

The use of STM will allow for the ascertainment of the surveillance systems’ sensitivity.
First, the individual components must be calculated by the equations described by Martin,
Cameron, and Greiner [10]:

CSej = 1−
x

∏
x=1

(1− SeCi) (1)

where x represents the length of components identified in the relevant pathway for AMR
detection and SeCi denotes the sensitivity of the ith compartment of the scenario tree
derived from parameter inputs.

The CSej values calculated can then be aggregated to provide an overall estimate of the
surveillance systems representativeness. This can be evaluated in the following equation:

SSeUi = 1−
j

∏
j=1

(
1−CSej

)
(2)

where j represents the number of category components in capturing AMR prevalence,
SSeUi represents the overall sensitivity of the surveillance system branch, and CSej denotes
the component surveillance at the jth stratum.

Following the calculation of surveillance system branches, aggregation of all SSeUi
values allows for the calculation of the overall surveillance system sensitivity. This process
follows the calculation outlined in Equation (3):

SSe =
n

∑
i=1

SSeUi (3)

where SSe is the total surveillance system sensitivity across all branches of the surveil-
lance system.

To evaluate detection capacity for the system subcomponents, the probability of at
least one pathogen detected given a set number of individual samples probability of non-
detection, given by the complement of the probability of detection, over the period for
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which the number of individual samples were collected for surveillance was calculated
with Equation (4).

Pr(≥ 1Positive Unit Detected|Infected) = 1−
(
1−CSej

)n (4)

where CSej is the sensitivity of pathogen detection for a given surveillance system compo-
nent and n is the number of independent samples processed within a specified timeframe.
An underlying assumption is that the processes test a representative group of independent
n units. The number of required samples to be processed was derived from the 2020 Aus-
tralian Gonococcal Surveillance Programme Annual Report [13]. The specified time-period
was generalised to a single year using the annual proportion of isolates tested at 7222. The
report stratifies the origin of isolates with associated antimicrobial susceptibility data into
male and female at 5598 isolates and 1580 isolates, respectively [13].

2.3.3. Simulation of the Model

The model was constructed in R 4.2.2 using the mc2d [21] package for statistical dis-
tributions. The model has been supplied within the Supplementary File S2. Following
construction, the model was run to capture 100,000 samples using a Monte Carlo simu-
lation with a fixed seed. With the large sample size, the sensitivity of the N. gonorrhoeae
AMR surveillance system could be normally approximated. Simulation parameters were
specified to produce 95% confidence intervals with the mean N. gonorrhoeae sensitivity
estimates for gonococcal and antibiotic resistance detection.

2.4. Modifications to Core Scenario Tree Modelling Methodology

Scenario tree modelling has yet to be demonstrated in the context of an AMR surveil-
lance system. The core paradigm of STM has been centred in providing evidence to suggest
freedom from a disease through continued surveillance. However, as N. gonorrhoeae and
AMR are both endemic, this conflicts with the core paradigm. Consequently, key elements
of the methodology must be changed to reflect the nature of the diseases.

In adapting STM to the context of AMR surveillance, a synthetic population with active
N. gonorrhoeae infection and resistance was generated. Generated scenarios then focused
solely on the events necessary for detecting and capturing N. gonorrhoeae. Specifically,
omission of design prevalence, adjusted risk, and simulation of prolonged surveillance
to prove freedom from disease [10] were replaced for epidemiological estimates of the
current proportions captured by surveillance. Final calculations for system sensitivity
followed the summation of the probabilities of capturing the disease as opposed to the
probabilities of failure. The proposed paradigm in which STM is to be applied to the N.
gonorrhoeae AMR surveillance system focusses on the probability for which an individual
carrying a resistant organism is detected through the defined sequence of the model. In
the interpretation of the system sensitivity values output by Equations (1) and (2), scenario
tree modelling will produce an expected proportion of infected individuals captured by
the surveillance system.

2.5. Sensitivity Analysis of the Scenario Tree Model

The sensitivity analysis process followed two stages. The first stage was parameter
importance, whereby sensitivity analysis was completed in ModelRisk [22] using the
sensitivity analysis function with a reimplemented model to determine the influence
of variables. The model has been supplied in the Supplementary File S2. The second
stage examined the effect on overall system sensitivity by manually altering variables in
permutations to simulate a systematic change (i.e., policy and intervention) and facilitate
the identification of leverage points. For this study, thematic areas in the model will be
identified based on common characteristics and have probabilities altered at values of
0.1, 0.5, and 0.99. To further identify key leverage points, ModelRisk’s [22] sensitivity
analysis tool will allow for the determination of individual parameter influence on the
model output.
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3. Results
3.1. Scenario Tree Model for the Surveillance System

The scenario tree maps in Figures 2 and 3 illustrate the pathways for diagnosing
N. gonorrhoeae and determining its antibiotic resistance status. Using the STM methodology
and procedures the AGSP was found to encompass 16 distinct dichotomous branches for
detecting gonococcal infection and antibiotic resistance. These 16 pathways represent the
subcomponents of the surveillance system.
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coccal Surveillance Programme (AGSP) to capture N. gonorrhoea and antibiotic resistance in Australia.

There were four distinct category nodes that encompassed thematically grouped
branches by the intricacies of N. gonorrhoeae infection. The category identified the stratifica-
tion of infected individuals by biological sex and clinical symptom status. This grouping
considers the differential risk factors of sex and whether an individual is symptomatic. The
second category is based on the differential risk of health-seeking behaviours of infected
individuals. The dividing factor of health-seeking behaviour was contingent on an indi-
vidual’s sex. The third category identifies the differential risk of initiating clinical testing.
The dependencies of this node were biological sex of the individual and the respective
healthcare setting. The final division identified convergence of all pathways through diag-
nostic laboratory testing to confirm the presence of N. gonorrhoeae and determine antibiotic
resistance with antibiotic susceptibility data.

The results of the STM indicated that for health-seeking behaviours there were four
main locations for STI testing as indicated by the literature [23] and expert opinion. This
includes general practice (GP) clinics, sexual health clinics, community health clinics, and
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testing in tertiary care. Physiological differences by sex were determined to influence the
individual interpretation of symptoms. Because of the differences in symptom presentation,
the probability inputs for health-seeking behaviours would be influenced. This resulted in
two separate pathways for males and females.

The diagnostics embedded within laboratory components of the scenario tree are
presented within Figure 3. No significant differences were substantiated within the given
parameters by biological sex. The processes described highlighted a dependency on
clinician-initiated testing for the ascertainment of N. gonorrhoea and antibiotic resistance
status. In determining antibiotic resistance status and obtaining epidemiological reports,
the sequence of events evident within the scenario tree indicated a dependency on antibiotic
susceptibility testing data being present.
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(AGSP) to capture N. gonorrhoeae. Depicted in the figure are the parameters for clinician behaviours
and laboratory testing.

3.2. Scenario Tree Model Outputs from the Australian Gonococcal Surveillance Programme
3.2.1. Overall System Sensitivity Outputs

The STM simulation results for the AGSP in detecting N. gonorrhoeae and antibiotic
resistance can be seen in Table 2. The complete model in R can be examined in the
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Supplementary File S2. The distributions for the simulations with 95% confidence intervals
are depicted in Figure 4. Sensitivity explicitly refers to the expected proportion of infected
individuals captured by the surveillance system. The parameter space for sensitivity is
between 0 and 1, denoting the percentage infected individuals detected. The results of the
STM in the surveillance system has demonstrated the AGSP was sensitive to the detection
N. gonorrhoeae at an expected sensitivity of 0.624 (95% CI; 0.524, 0.736). The sensitivity
value was greater than the mean sensitivity of the antibiotic resistance surveillance system,
which was 0.144 (95% CI; 0.106, 0.189). For gonococcal detection, the system was observed
to produce the greatest maximum of 0.848. The lowest sensitivity observed was the
minimum of antibiotic resistance at 0.08. The range of values observed in the detection of
N. gonorrhoeae imply the system is expected to capture approximately 62.4% of the infected
population, with the confidence interval also supporting the potential for detection to be
between 52.4% and 73.6% of the true population. Furthermore, in the context of ascertaining
antibiotic resistance, the model anticipates 14.4% of the infected individuals to have their
susceptibility status identified and reported to the surveillance system. The confidence
interval produced supports the range to be between 10.6% and 18.9%. The two distributions
differ by the inclusion of the antibiotic resistance detection parameters, antimicrobial
susceptibility (AST) data, and sensitivity of culture. The effect of the parameters caused the
narrowing of the distributions resulting in a smaller confidence interval.

Table 2. Summary output statistics for the scenario tree model.

System Component Minimum Lower 95% CI Mean Median Upper 95% CI Maximum

Gonococcal detection 0.457 0.524 0.624 0.625 0.735 0.848
Antibiotic resistance status 0.08 0.106 0.144 0.143 0.189 0.23
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3.2.2. System Sub-Component Sensitivity Outputs

The system component sensitivities are the sensitivities of the individual subcompo-
nents that constitute the overall system. Subcomponents are the branches of the scenario
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tree model. The system component sensitivities for gonococcal detection and antibiotic resis-
tance are presented in Figure 5. Raw outputs can be viewed in the Supplementary File S1.
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Figure 5. Sub−system component sensitivity (CSe) on a logarithmic scale. (A) depicts the component
sensitivities by sex, symptom status, and health service for the determination of antibiotic resis-
tance. (B) Depicts the component sensitivities for gonococcal detection by sex, symptom status, and
health service.

The greatest surveillance system component sensitivity was observed within symp-
tomatic males attending general practices. The lowest observed component sensitivity was
within asymptomatic females presenting to tertiary care. Overall trends across N. gonor-
rhoeae infection and resistance indicate across all surveillance system components, with the
exception of tertiary care settings, the surveillance system consistently detects a greater
proportion of males as compared to females. This pronounced disparity in gender repre-
sentation within the system subcomponents raises concerns regarding the potential for
sex-based reporting bias to be present within the system. In observing the presence of
symptoms, the model indicates a greater proportion of individuals captured would be
symptomatic in nature as compared to asymptomatic. Sexual health clinics as a component
of surveillance have been shown to exhibit high sensitivity to asymptomatic populations
as compared to other settings which positions them as an optimal healthcare setting for
asymptomatic detection. Other notable trends highlight that general practice yields the
highest system subcomponent sensitivity across biological sex. Asymptomatic females
had a higher probability of being detected than asymptomatic males for both gonococcal
infection and antibiotic resistance.
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3.3. Sensitivity Analysis
3.3.1. ModelRisk Sensitivity Analysis

The full sensitivity analyses as produced by ModelRisk (VoseSoftware version 6.1.94)
can be viewed in the Supplementary File S2. The sensitivity analysis depicting the influence
of each parameter on the sensitivity value in the overall model can be seen in Figure 6.
Among the evaluated parameters, the presence of AST data as a model parameter has
emerged as the most influential factor in ascertaining antibiotic resistance status. Increasing
the variable to the maximum specified value had the most pronounced effect on system
sensitivity. This was followed by symptomatic male healthcare access and laboratory
diagnostics such as culture and diagnostic test sensitivity. Parameters concerning males
were observed to exert a greater influence on the overall system sensitivity as compared to
parameters concerning females. As a generalisable trend, parameters pertaining to females
exerted a near negligible effect on the overall system sensitivity for antibiotic resistance.
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3.3.2. Modification of Parameters Identified from Sensitivity Analysis

ModelRisk’s sensitivity analysis identified AST, health service access, and clinician
testing as influential parameters for modification due to their influence of surveillance
system sensitivity when modified. Figure 7 illustrates the result of modifying identified
parameters at 0.1, 0.5, and 0.99 in various permutations to simulate both detrimental
and supplemental activity to increase influence. Supplementary File S2 presents the raw
results of input parameter modification at values of 0.1, 0.5, and 0.99 for overall system
sensitivity. Notably, the greatest increase in overall system sensitivity was observed when
the parameters of AST, health service access for symptomatic and asymptomatic patients,
and clinician testing were set to 0.99. The findings suggest that, given all asymptomatic and
symptomatic patients were screened with AST testing completed, it would be expected that
85% of the infected population would have their resistance status ascertained. Conversely,
modification of parameters at values of 0.1 significantly lowered overall system sensitivity.
Computing system sensitivity with values of the AST parameter set at 0.5, and 0.99 was
observed to result in the greatest increase caused by a single parameter. An increase in
system sensitivity for antibiotic resistance detection was observed when modifying AST
data in any permutation from the values of 0.5 and above. Non-significant impacts on
overall system sensitivity were observed in joint modifications of health service access and
clinician testing.
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3.4. Estimation of Detection Capability

The detection capacity measured by the number of samples required for absolute
certainty of detecting an exotic antibiotic resistant serotype is presented in Figure 8 for each
system component. It was observed that the lowest number of samples needed to detect an
exotic serotype in the symptomatic populations in general practice settings was observed
in symptomatic males who attended general practice clinics, with an estimated 49 isolates
required for exotic serotype detection. Given the epidemiological reports notifications for
N. gonorrhoeae in Australia [24], the model would strongly support the notation that the
initial detection of an exotic serotype would be detected from a general practice clinic, as-
suming comprehensive serotyping. For the asymptomatic population, the values produced
far exceed the notifications currently presented within N. gonohorreae epidemiological re-
ports [24], suggesting an implausibility for an exotic serotype to first be detected within
a tertiary healthcare context. The greatest number of units required was observed in the
tertiary care setting for both males and females. The results suggest that the number of
samples required for testing varies inversely with symptomatic status. Specifically, fewer
samples are required to be drawn from males with symptoms as compared to females,
while for asymptomatic status the number of samples needed to be drawn from females is
lower as compared to males.

Figure 9 displays the annualised probability of each surveillance system sub-component
to detect an exotic, resistant N. gonorrhoeae serotype over a single year. The results demon-
strate that the highest and most consistent annualised probabilities of detecting an exotic
serotype are observed within the symptomatic male population, regardless of healthcare
service. Conversely, the symptomatic female population displays uniformly lower prob-
abilities across surveillance system components. Notable findings include the lowest
annualised probability, which was found in asymptomatic males receiving tertiary care.
Sexual health clinics emerged as a reliable and consistent healthcare setting for detecting N.
gonorrhoeae infections for both asymptomatic and symptomatic populations as indicated by
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the relatively low number of isolates required in both contexts. It is to be acknowledged
that this implication is contingent on timeliness being defined over an annualised period.
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4. Discussion

The improvement of surveillance for N. gonorrhoeae and its resistance is imperative to
furthering the efficacy of disease control endeavours. At the time of publication, this study
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showcases a novel application of STM to systematically deconstruct and evaluate an AMR
surveillance system. The modelling process has highlighted aspects of surveillance data
generation that have not been considered previously through the inclusion of differential
risk due to sex, health-seeking behaviour, and clinician behaviour as critical steps within
the process. Interestingly, this subverts the conventional AGSP structural conceptualisa-
tion as a solely laboratory-based network [12] by identifying the antecedent events for a
potential sample to be generated. Indeed, this result would suggest the existence of further
complexity that has not previously been acknowledged but is pertinent to how samples
are generated. Utilisation of this information may encompass the construction of auxiliary
systems to better understand the intricacies of sample generation for greater confidence in
reported surveillance figures.

The system sensitivity outputs of the model indicate an underestimation of prevalence
for both gonococcal and antibiotic resistance detection. The finding of underestimation
presents insignificant novelty in the discussion of N. gonorrhoeae surveillance [25]. How-
ever, this study presents an objective quantification of underestimation. This study has
demonstrated that, in a simulated population of infected individuals, there exists con-
siderable difference in the proportion of captured N. gonorrhoeae infections and resistant
isolates. A structural criticism to be argued from the system sensitivity outputs suggest
the inappropriateness of a clinical system for the detection of antibiotic resistance. The
substantially greater system sensitivity of gonococcal detection through the exclusion of
AST data as a parameter emphasises the unsuitability of structuring antibiotic resistance
ascertainment as an optional additional step on an ad hoc testing regime. Potential changes
in implementing routine testing may enhance surveillance by increasing the number of
isolates with associated AST data, and thus increasing sensitivity. For instance, influenza-
like illness surveillance carried out by the Australian Sentinel Practice Research Network
(ASPREN) has implemented a standardised protocol for collecting swab samples from
presentations on a designated day [26]. Indeed, this modification is feasible but requires
further examination of laboratory capacities to implement such changes.

An interesting result revealed by the system sub-component sensitivities is the pres-
ence of biased sampling. The observed trend of higher sensitivities in diagnostic com-
ponents related to males, as compared to females, and in symptomatic individuals, as
compared to asymptomatic individuals, can be interpreted as greater proportions being
detected through these pathways. This would indicate that sampling for isolates would
inherently present greater probability for the sample to originate from a symptomatic male.
For detection of N. gonorrhoeae infection, this result is in line with broader epidemiological
literature suggesting greater prevalence amongst men [27,28]. However, there are conces-
sions to be made regarding the probability of resistance susceptibility. In the discussion
of antibiotic resistance, there is a growing body of literature which may suggest gender
influences an individual’s susceptibility to resistance [29–31]. Thus, there is an argument
to acknowledge the bias presented. Enhancement of the epidemiological understanding
can be conducted by utilising supplementary systems to the surveillance structure such
as surveys. However, there is a clear need for additional research to delineate pragmatic
benefits in implementing these systems.

The sensitivity analyses provide potential leverage points for enhancement of the
surveillance system. The parameter for AST data was found to be the most influential in
the model’s sensitivity outputs. Hence, identifying interventions to increase the number of
samples with associated AST will substantiate greater sensitivity of the system. Moreover,
as indicated by the manual sensitivity analysis, the modification of clinician behaviour and
AST data yielded substantial increases in overall system sensitivity for antibiotic resistance
detection. Both steps are related in their clinician-initiated nature. From a pragmatic
perspective, a viable strategy is to focus on effecting systematic change amongst clinicians.
This population group is most feasible, as clinical guidelines represent a readily available
tool to influence behaviours [32]. The results of guideline modification may substantiate
a greater proportion of samples having a parallel culture initiated for resistance status.
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Overall, this would result in greater system sensitivity and improve confidence in figures
reported by the surveillance system.

The detection capability of the system to capture exotic serotypes over an annualised
period has been demonstrated to be feasible, given sufficient isolates are provided. In the
discussion of the surveillance system’s detection capability, a pertinent topic is the detection
of exotic multi-drug resistant N. gonorrhoeae. A relevant example has been documented
by Whiley, et al. [33] whereby the simultaneous isolation of an exotic ceftriaxone and
azithromycin resistant gonorrhoeae strains in symptomatic patients has been documented.
The model demonstrates that, if surveillance prioritises detection, given the volume of
notifications remains constant as presently reported, there exists substantial confidence in
detecting exotic serotypes. This finding does not consider the aspect of timeliness required
when adjusting clinical management guidelines if an exotic species is detected. Additional
evaluation of laboratory sample processing capabilities would be required to substantiate
the finding for detection capacity.

Strengths and Limitations

The primary strength of this study is encompassed by the novelty of the assessment
methodology. This study has employed an objective stochastic modelling approach to
evaluate the surveillance system. The integration of diverse data sources facilitates a deeper
understanding of the intricacy involved in data generation. The approach demands a
more comprehensive examination of surveillance beyond the superficiality of the system.
Furthermore, the model inputs and outputs are easily readable. Leverage points can easily
be identified through the sensitivity analysis. Model inputs can then be modified to imitate
the effects of public health policy and inform future strategies. From there, evaluation of
surveillance strategies could be further extended to include cost-effectiveness which has
been demonstrated previously in the relevant literature.

There are limitations to consider in the model and design of this study. The model
is not exhaustive and lacks stratified parameterization for health-seeking and clinician
behaviours based on social and economic determinants implicated in N. gonorrhoeae in-
fections [34]. This resulted in an incomplete characterization of N. gonorrhoeae diagnosis
and limits the specificity of the findings. Future research should aim to incorporate more
comprehensive and stratified parameterization based on further epidemiological data to
improve the accuracy and explanatory power of models. Despite this limitation, the model
has accommodated for uncertainty within the parameters to support its generalisability.
Moreover, identified leverage points within the sensitivity analyses provide a linearised
view of the parameters. In the presented application of STM, it is to be acknowledged
that the assumptions of perfect specificity are idealistic and will influence interpretability
of the sensitivity outputs produced. Estimates for surveillance sensitivity may be greater
than in real contexts. To further mitigate the influence, adjustments for specificity, based
on data, will be required. In appreciation of the complexity, leverage points identified
are at a macroscopic level. The model has an inability to properly represent the dynamic
relationships between variables that may exist. As such, the model only identifies general
areas for improvement. For targeted action, approaches which can incorporate the dynamic
relationships would be more appropriate.

5. Conclusions

This study presents a novel application of scenario tree modelling to evaluate antibiotic
resistance surveillance systems. The methodology is robust and can be readily adapted
to related disease contexts for antibiotic resistance. Overall, the evaluation of the AGSP
using the STM methodology has yielded mixed findings. This study indicated an adequate
detection capability of the surveillance system over an annualised period to capture an
exotic N. gonorrhoeae serotype given the current notification. The model has substantiated
evidence that may challenge the appropriateness of clinical testing systems in effectively
monitoring antibiotic resistance. Coupled with the identification of systematic bias, the
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work presented has wider implications concerning the representativeness and subsequent
interpretation of surveillance reports. The estimation of antibiotic resistance prevalence may
be substantially underestimated without further examination. This study provides evidence
to advocate for the implementation of a systematic testing routine for N. gonorrhoeae samples
as a strategy to enhance surveillance sensitivity and improve the representativeness of the
system. Alternatively, this study highlights targeting clinician behaviour to increase the
proportion of samples that have initiated culture as another strategy to improve sensitivity.
Further research in improving the specificity of the model may elucidate greater insights to
the findings presented within this study.
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