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Abstract: tet(X4) is the critical resistance gene for tigecycline degradation that has been continually
reported in recent years. In particular, pathogenic bacteria carrying tet(X4) are a severe threat to
human health. However, information describing Escherichia coli coharboring tet(X4) with virulence
genes is limited. Here, we isolated an E. coli strain coharboring tet(X4) and the heat-stable toxin gene
astA from a dead piglet. The strain named 812A1-131 belongs to ST10. The genome was sequenced
using the Nanopore and Illumina platforms. The virulence genes astA and tet(X4) are located on the
chromosome and in the IncHI1-type plasmid p812A1-tetX4-193K, respectively. The plasmid could be
conjugatively transferred to recipient E. coli J53 with high frequency. In vivo experiments showed
that strain 812A1-131 is pathogenic to Galleria mellonella and could colonize the intestines of mice. In
summary, pathogenic E. coli could receive a plasmid harboring the tet(X4) gene, which can increase
the difficulty of treatment. The prevalence and transmission mechanisms of pathogenic bacteria
coharboring the tet(X4) gene need more attention.

Keywords: Escherichia coli; tet(X4); astA; complete genome sequence

1. Introduction

Antimicrobial resistance (AMR) has become a global public health problem. The
emergence of multidrug-resistant (MDR) bacteria is threatening human health. Tigecycline
is a third-generation tetracycline known as the last resort to treat MDR bacterial infections
in hospitals [1]. Unfortunately, the tigecycline resistance gene tet(X) has emerged and
spread widely in animal-derived bacteria, which may be accelerated by the overuse and
misuse of tetracycline antibiotics in livestock and poultry [2]. Tigecycline-resistant bacteria
harboring the tet(X4) gene have also been discovered in patients, limiting the antibiotic
treatment and threatening human health [3].

The tet(X) gene family encoding flavin-dependent monooxygenase can degrade all
tetracycline antibiotics, including tigecycline, omadacycline, and eravacycline. In recent
years, plasmid-mediated tet(X4) gene transfer among animal-derived bacteria has caused
wide public concern [4]. Notably, the IncX1, IncX3, IncHI1, and IncQ plasmids carrying
the tet(X4) gene are most common and have been identified in Enterobacteriaceae [5–7].
Escherichia coli harboring tet(X4) have been isolated from multiple sources, including birds,
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retail meat, and the environment, and they have also been found in human clinical sam-
ples [8–12].

E. coli is a common opportunistic zoonotic pathogen. E. coli carrying virulence genes
can cause human and animal diseases, such as gastroenteritis, cholecystitis, urinary tract in-
fections (UTIs), and pneumonia in humans [13,14]. It can also cause severe diarrhea in pigs,
chickens, cattle, and other animals, or even death, especially in newborn animals [15,16].
Diarrheagenic E. coli (DEC) can be classified into six groups according to their virulence
genes: enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), shiga-toxin-
producing E. coli (STEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC),
enteroinvasive E. coli (EIEC), and diffusely adherent E. coli (DAEC) [17]. The eae, stx, elt,
estB, faeG, aggR, ipaH, and Afa-Dr adhesin genes are the main virulence genes in these
pathogens [18,19]. The astA virulence gene encodes a heat-stable toxin that is widespread in
pathogens, such as EAEC, ETEC, STEC, and EHEC [20]. E. coli carrying the astA virulence
gene are associated with diarrhea and the enhanced pathogenicity of other virulence factors.
Such strains can cause severe gastrointestinal disease in animals and lead to economic
losses [21].

Multilocus sequence typing (MLST) is an important method for analyzing specific
bacterial typing based on different housekeeping genes. MLST analysis could be helpful in
understanding the processes of genomic evolution in diverse species and the characteristics
of a specific clone [22]. E. coli ST types are extraordinarily diverse, including ST10, ST48,
ST95, and so on [23]. E. coli ST10, as a non-host-restricted pathogenic bacterium, can
spread in humans and animals [24]. ST10 strains are common among MDR E. coli and
have always carried various virulence genes, including gad (glutamate decarboxylase),
iss (increased serum survival), terC (tellurium ion resistance protein gene), and sitA (iron
transport protein) [25,26]. It should be noted that mcr-1, tet(X4), and blaNDM-5 have been
detected in ST10, which showed that ST10 strains are important carriers for ARGs [27].
Moreover, some ST10 strains belonging to the DEC have been discovered in diarrheal pigs
and patients [4,28]. DEC ST10 carrying ARGs in sick animals and patients would increase
the risk of antibiotic treatment failure.

In a routine antimicrobial resistance surveillance, we isolated an E. coli strain cocarry-
ing the resistance gene tet(X4) and the virulence gene astA from a piglet of unknown cause
of death. We tested the AMR of the strain and analyzed the genome characterization after
whole-genome sequencing to elucidate the transmission mechanism of the tet(X4) gene and
the virulence. The virulence of strain 812A1-131 was detected by in vivo experiments in
Galleria mellonella and mice. This strain may pose a threat to other animals and humans.

2. Materials and Methods
2.1. Pathogen Detection

An anal swab of a dead pig (of unknown cause of death) at 18 days of age was sent
from a farm. The RNA in the feces was extracted according to the instructions for the
Column Stool RNAOUT kit (Yaji biological Co., Ltd., Shanghai, China). The RNA was
immediately subjected to reverse-transcription PCR (Vazyme Biotech Co., Ltd., Nanjing,
China) using the primer Oligo dT. Then, the RT-PCR amplified procedure and the detection
primers for porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis
virus (TGEV), and porcine rotavirus (RV) were used as described in a previous study [29].

2.2. Bacterial Isolation and Identification

The swab was put into a sterile tube containing 5 mL BPW (Hangzhou Microbial
Reagent Co., Ltd., Hangzhou, China) to enrich the bacteria and incubated at 37 ◦C at
200 rpm for 12–18 h. The bacterial solution was scribed onto MacConkey agar with a
disposable inoculating loop and statically incubated at 37 ◦C for 12–18 h. A single colony
on the McConkey agar plate was inoculated on eosin methylene blue (EMB) agar and
Luria–Bertani (LB) medium and incubated overnight at 37 ◦C. The culture mediums were
purchased from Beijing Land Bridge Technology Co. Ltd., Beijing, CHN. The strain was
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identified by PCR using the primers described in a previous study [30]. The stain was
named 812A1-131 and preserved in a cryovial containing 1 mL of 25% glycerol at −80 ◦C.

2.3. Antimicrobial Susceptibility Testing

The broth dilution method was used to determine the minimum inhibitory concen-
tration (MIC) of strain 812A1-131 according to the Clinical and Laboratory Standards
Institute (CLSI) recommendations. E. coli ATCC25922 was used as a quality control, as
previously described [31]. A total of 13 antibiotics were selected for antimicrobial suscepti-
bility testing, including ampicillin (AMP), amoxicillin/clavulanic acid (A/C), cefotaxime
(CTX), meropenem (MEM), amikacin (AMK), gentamicin (GEM), colistin (COL), ceftiofur
(CEF), ciprofloxacin (CIP), trimethoprim/sulfamethoxazole (SXT), tetracycline (TET), tige-
cycline (TIG), and florfenicol (FFC). The antibiotics were purchased from Biofosun, Fosun
Diagnostics, Shanghai, China.

In short, the concentrated antibiotic solutions were diluted, and 100 µL volumes
were added to 96-well plates by double dilution according to the CLSI instructions. Then,
2–5 single colonies of E. coli were scraped from a fresh LB agar plate and adjusted to
0.5 McFarland standard inoculum (1.5 × 108 CFU/mL) using saline solution. The suspen-
sion was added to MH nutrient broth at a ratio of 1:200, and then 100 µL of diluent was
added to each well. The 96-well plate containing the antibiotics and bacterial suspension
was placed in an incubator at a constant temperature of 37 ◦C for 16–18 h.

The MIC values of tigecycline were verified by the agar dilution method and E-test
assay (Tang et al., 2022). E. coli ATCC 25922 was used as a quality control. Briefly, serial
dilutions of bacterial suspensions (10−1~10−6) were inoculated onto LB agar plates with
different concentrations of tigecycline and subsequently incubated at 37 ◦C for 12 h [32].

2.4. Whole-Genome Sequencing (WGS) and Bioinformatics Analysis

Whole-genome sequencing is a valuable way to analyze ARGs and virulence fac-
tors and has been used in the diagnosis of animal pathogens [33–36]. The genome of the
tigecycline-resistant strain was extracted using the Generay DNA kit (Generay, Shang-
hai, China). WGS was performed using the Illumina HiSeq and Nanopore sequencing
platforms. Unicycler v.0.4.3 was used for assembly, and RAST (https://rast.nmpdr.org/
(accessed on 17 January 2023)) was used for gene annotation [37]. The Center for Genomic
Epidemiology (https://cge.cbs.dtu.dk//services/ (accessed on 17 January 2023)) was used
to analyze ARGs with ResFinder 4.1 [38]. PlasmidFinder 2.1 and VirulenceFinder 2.0 were
used to predict plasmid replicon and virulence genes [39]. The serotype was predicted
by SerotypeFinder 2.0 (https://cge.cbs.dtu.dk/services/SerotypeFinder/ (accessed on
17 January 2023)) [40]. BacWGSTdb was used to observe the geographical distribution of
closely related plasmids and, based on the cgMLST strategy to generate a phylogenetic
tree, analyze the relationship between resistance genes of similar strains [41]. The plasmids
were visualized using BRIG [42].

2.5. Conjugative Transfer

The sodium-azide-resistant E. coli strain J53 was used as the recipient, and the tet(X4)-
positive strain 812A1-131 was used as the donor. E. coli J53 is sensitive to tigecycline, as
demonstrated in previous studies [5]. Strain 812A1-131 was sensitive to sodium azide and
could not grow in LB agar plates containing sodium azide (100 mg/L). The bacteria were
cocultured at two temperatures, 37 ◦C or 28 ◦C, for 16 h. The mixed culture was diluted to
10−1~10−6 using PBS, and 10 µL of the above diluted solution was inoculated on LB agar
plates containing tigecycline and sodium azide. The LB agar plates were incubated at 37 ◦C
for 12~16 h [31]. Single colonies of transconjugants were randomly selected, and the tet(X4)
gene was verified by PCR [5].

https://rast.nmpdr.org/
https://cge.cbs.dtu.dk//services/
https://cge.cbs.dtu.dk/services/SerotypeFinder/
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2.6. S1-PFGE and Southern Blotting

The tet(X4) strain was embedded and subsequently lysed using SeaKem Gold Agarose
(Lonza Rockland, Inc., Maryland, MD, USA), with Salmonella H9812 as the marker, as
described previously [32]. The treated DNA fragments were then separated at 14 ◦C for
18 h in 0.5× Tris-borate EDTA buffer. A pulse-field electrophoresis system (CHEF Mapper,
Bio-Rad Laboratories, California, CA, USA) was used with a voltage of 6 V, an electric field
angle of 120◦, and a pulse time of 2.2 to 63.8 s. After the gel was removed at the end of the
procedure, the gel blocks were stained and observed with a gel imager. The tet(X4)-specific
probe was labeled according to the instructions of the DIG High Prime DNA marker and
assay starter kit (Roche Diagnostics GmbH, Mannheim, Germany).

2.7. The Galleria mellonella Model and the Mouse Infection Model

To evaluate the virulence of 812A1-131, the Galleria mellonella infection model was
used to conduct in vivo experiments. E. coli 649A1 containing the stx2 gene was used as the
virulent control and stored in the laboratory. Sterilized PBS served as a blank control. The
inactivated 812A1-131 strain (incubated at 65 ◦C for 30 min) and the avirulent strain DH5α
were used as the negative controls to assess the virulence of the live strain 812A1-131 [43].
Larvae with symmetrical physiques were evenly divided into the PBS control group, the
experimental group, the highly virulent control group, and the avirulent control group. Ten
larvae were set in each group, and the larvae were injected with 10 µL PBS or 106 CFU/mL
bacterial inoculum, as previously described [44]. The death of larvae in each group was
recorded every 6 h and observed for 48 h. GraphPad software was used for the plotting
and statistical analysis of the data.

The mouse infection model test was performed as described in a previous report [45].
Ten 5-week-old SPF ICR male mice (Hangzhou Qizhen Laboratory Animal Technology Co.,
Ltd., Hangzhou, China) were weighed (about 25 g per mouse) and randomly divided into
two groups, with five animals in each group. The bacterial solution (109 CFU in 100 µL)
or PBS containing 20% sucrose were injected into the stomachs of the mice. To obtain the
highest number of E. coli, the mice were weighed and euthanized by cervical dislocation
after 6 h, as previously described [46]. The ileum, cecum, and colon parts were collected.
Moreover, the tissue was vigorously cleaned and ground with PBS. The homogenate was
diluted 1000 times using PBS, and 100 µL was coated on a MacConkey plate (containing
2 µg/mL tigecycline) at 37 ◦C for 16 h. Then, colony counting was performed.

3. Results
3.1. Pathogen Detection and Bacterial Isolation

PEDV, TGEV, and RV were not detected in the dead pig. The cause of the pig’s death
could not be determined. An E. coli strain was successfully isolated and identified by PCR.

3.2. Antimicrobial Susceptibility

Antimicrobial susceptibility testing showed that strain 812A1-131 was only sensitive to
meropenem and trimethoprim/sulfamethoxazole and showed an intermediate reaction to
colistin (Table 1). It was resistant to tigecycline, with an MIC of 16 µg/mL. The agar dilution
method and E-test were used to further verify its resistance to tigecycline (Figure 1). Strain
812A1-131 is a multidrug-resistant (MDR) strain that is resistant to 10 different antibiotics
from nine classes (AMP-A/C-CTX-AMK-GEM-CEF-CIP-TET-TIG-FFC).

Table 1. MIC and AMR genes of strain 812A1-131.

IDs Antibiotics
812A1-131

MIC (µg/mL) ARGs

1 Ampicillin >128 R blaTEM-1B, blaTEM-141,
blaTEM-206, blaCTX-M-55,
blaOXA-10, blaCTX-M-14

2 Amoxicillin/clavulanic acid >128/64 R
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Table 1. Cont.

IDs Antibiotics
812A1-131

MIC (µg/mL) ARGs

3 Cefotaxime >8 R blaCTX-M-55, blaCTX-M-14
4 Meropenem 1 S /
5 Amikacin >64 R rmtB
6 Gentamicin >32 R aac(3)-IV, rmtB
7 Colistin 1 S /
8 Ceftiofur >32 R

9 Ciprofloxacin >8 R qnrS1, parC, gyrA
10 Trimethoprim/sulfamethoxazole >0.5/9.5 R sul2
11 Tetracycline >64 R tet(X4), tet(A)
12 Tigecycline >16 R tet(X4)
13 Florfenicol 128 R floR

R: resistance; S: susceptibility; /: no AMR gene. The results are based on CLSI guidelines.
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Figure 1. The antimicrobial resistance of strain 812A1-131 to tigecycline. (A) The growth of strain
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131. E. coli ATCC 25922 was used as the control.

3.3. Whole-Genome Sequencing and Sequence Analysis

The strain 812A1-131 has a genome consisting of one chromosome and three plasmids.
The chromosome size was 4,665,801 bp, and the GC content was 50.9%. The MLST analysis
showed that the strains belonged to E. coli ST10. There are three plasmids located in 812A1-
131 that were named p812A1-tetX4-193K, p812A1-69K, and p812A1-65K. The plasmid
p812A1-tetX4-193K has a size of 193,145 bp and a GC content of 46.21%, and it contains
two types of replicons (IncHI1A and IncHI1B(R27)). p812A1-69K has no known replicon
and is 69,262 bp with a 51.89% GC content. The size of p812A1-65K is 65,072 bp, and it
contains the IncFIA(HI1)- and IncY-type replicons. In addition, the size of plasmid p812A1-
tetX4-193K was verified using S1-PFGE, which was consistent with the whole-genome
sequencing analysis (Figure 2).
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Sixteen antimicrobial resistance genes (ARGs) were identified in 812A1-131, of which
six were located on p812A1-tetX4-193K: tet(X4), blaTEM-1B, lnu(G), aadA22, qnrB, qnrS1,
and floR. The plasmid p812A1-65K contains seven ARGs: fosA3, aph(4)-Ia, aac(3)-IV, sul2,
tet(A), blaCTX-M-14, and floR. In addition, rmtB, blaTEM-141, blaCTX-M-55, and blaTEM-1B were
located on the plasmid p812A1-69K (Table 1). A total of 16 virulence genes were identified,
including astA, hha, hlyE, traT, yehA, and traJ. These virulence genes are related to heat-
stable toxins, hemolysin, outer membrane protein virulence factor, and invasion of the
blood–brain barrier, respectively. Strains with close homology (<1000 SNP) from different
hosts of ST10 types were screened from the NCBI database. These strains were identified
in humans, cows, pigs, chickens, and the environment. The phylogenetic tree showed
that strain 812A1-131 is relatively independent compared to the others (Figure 3). Some
strains carried multiple ARGs, but the tet(X4) gene was rare. Except in strain 812A1-131, the
tet(X4) gene was also found in strain ECSW_09, which was identified from pigs (Figure 3).
Moreover, these strains contained several virulence genes, alsA, csg, hlyE, nlpl, and traC
(Figure 4).

3.4. Conjugative Transfer of 812A1-131

The recipient strain E. coli J53 was able to grow on an LB agar plate containing sodium
azide and tigecycline after coculture with strain 812A1-131, confirming conjugative transfer.
The tet(X4) gene was located in the transconjugants, which was verified by PCR. This
result indicated that, by conjugation, strain 812A1-131 could transfer the plasmid harboring
the tet(X4) gene to recipient bacteria. The conjugative transfer frequencies were different
between different temperatures, being lower at 37 ◦C (1.87 ± 0.89 × 10−5) than at 28 ◦C
(4.71 ± 5.64 × 10−3).
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3.5. Genetic Environment Analysis of p812A1-tetX4-193K

The complete sequence of plasmid p812A1-tetX4-193K was obtained by sequencing.
The highly similar plasmids (coverage > 97%, identity > 99%) compared with p812A1-tetX4-
193K from different hosts were screened using BLAST from the GenBank database (Figure 5).
They were all IncHI1-type plasmids that were identified from Enterobacter hormaechei
(pGX4-8L (CP071877)), Citrobacter sp. (pSZ6R-tetX4 (MW940627)), Morganella morganii
(pTQ28-tet(X4) (ON390816)), Enterobacter cloacae (pTECL_2-190k-tetX4 (MZ773210)), and
Klebsiella pneumoniae (pTKPN3-186K-tetX4 (MZ773211)). These strains were isolated from
swine feces, swine nasal swabs, and so on. pGX4-8L had the highest similarity to p812A1-
tetX4-193K, and the other plasmids were found to lack a segment in the comparisons
with p812A1-tetX4-193K (Figure 5). It is worth noting that these five plasmids came from
different species in China. The IncHI1 plasmid has a higher risk of spreading the tet(X4)
gene between bacteria.
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3.6. Pathogenic Testing of Strain 812A1-131 in Galleria mellonella and Mouse

Strain 812A1-131 and the highly virulent E. coli strain 629A1 killed 80% and 100% of
Galleria mellonella at 20 h, respectively. All Galleria mellonella died by 24 h after infection
with strain 812A1-131. However, only 10% of Galleria mellonella died in the PBS or avirulent
groups by 20 h. The fatality rate of strain 812A1-131 was significantly higher than that of
the PBS and avirulent strains (Figure 6). The mice were subjected to gavage to observe the
bacterial colonization ability. The change in weight was not significantly different between
the different groups. E. coli 812A1-131 was isolated from the ileum, cecum and colon. The
numbers of colonies were 2.58 × 103, 2.79 × 108, and 7.11 × 106 CFUs/g, respectively. This
strain preferred to colonize the cecum and colon.
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4. Discussion

Although tigecycline has not been used in breeding, reports of tigecycline-resistant bac-
teria carrying tet(X4) genes in animals have increased. This may be due to the widespread
use of tetracycline in food animals. E. coli is an essential host of tet(X4) resistance genes.
Notice that the host range of tet(X4) genes is increasingly extensive, and tet(X4) has even
been found in pathogenic bacteria [47,48]. The risk of tigecycline therapy failure is increased
when an MDR pathogen harboring tet(X4) infects humans. In this study, one E. coli strain
belonging to ST10 carrying the tet(X4) resistance gene and the astA virulence gene was
isolated from a dead piglet.

ST10 is a common E. coli sequence type that has been widely isolated from the envi-
ronment, animals, and even humans [49]. E. coli ST10 is a potential food-borne pathogen
that threatens human health and has been identified in the food chain [50,51]. There has
been no direct evidence of the direct transmission of E. coli ST10 to humans through contact
or the food chain [52]. However, previous studies have shown that the ST10 E. coli strain
from the environment has a genome closely related to the strain from humans. The same
ST10 was observed in human patients, pig feces, and pork samples [27,53]. This result
suggested that ST10 has a broad host range and is a zoonotic pathogen. Moreover, ST10
strains are usually multidrug-resistant (MDR) bacteria [54]. The ST10 strain of E. coli has
resistance to seven types of antibiotics, including colistin, and was isolated from Polish
poultry [55]. MDR ST10 E. coli resistance to imipenem and colistin was identified in young
clinical patients [56].

ARGs can be located on chromosomes or mobile genetic elements (MGEs) of bacteria.
MGEs can help to rapidly spread ARGs that include integrons, transposons, insertion
sequences, and plasmids [57]. Plasmids were the most common MGEs for transferring
ARGs within the same family of bacteria. The tet(X4) gene was identified in an IncHI1
plasmid in this study. The IncHI1 plasmid is usually larger than 180 kb, and it always
carries various ARGs and heavy-metal resistance genes [58]. It has a wide host range and
has been widely isolated from various Enterobacteriaceae bacteria, especially Salmonella [59].
This plasmid plays an important role in tet(X4) transmission and has become the second
most-prevalent plasmid for transferring the tet(X4) gene. The p812A1-tetX4-193K plasmids
from the dead piglet were similar to those from the nonpathogen in different regions.
This result indicated that the tet(X4)-positive IncHI1 plasmid is widespread and could
transfer horizontally between bacteria in humans, animals, food, and the environment [60].
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Furthermore, IncHI is a common plasmid type carrying the colistin resistance gene mcr [61].
It carries the risk of coharboring the tet(X) and mcr genes, which would be a serious threat
to human health.

The emergence of pathogens with important AMR genes and virulence factors seri-
ously threatens public health. Pathogenic K. pneumoniae carrying virulence genes hvKp
and tet(X4) were isolated from pork samples and caused 100% death in mice 12 h after
inoculation [62]. Foodborne pathogens can infect humans, threatening human health [63].
The coexistence of the virulence factor tdh and the AMR gene mcr-1 was also discovered
in Vibrio parahemolyticus [64]. Pathogenic E.coli (UPEC) containing the blaNDM gene has
caused multiple typical urinary tract infections in patients [65]. This result indicated that
bacteria coharboring resistance genes and virulence factors are widespread, limiting antibi-
otic treatment. The astA gene has been identified in various DEC strains with outbreaks
of diarrhea [66–69]. This study indicated that the astA gene might increase the strain’s
virulence. The difficulty of treatment is increased when a pathogen acquires the tet(X4)
gene. Therefore, monitoring the coexistence of resistance genes with virulence factors
in bacteria is very important. Furthermore, limiting the use of tetracycline antibiotics in
livestock and poultry may help reduce the spread of resistant bacteria. People should avoid
contact with live animals and choose processed meats instead.

In conclusion, an E. coli strain coharboring tet(X4) and astA was isolated from a dead
piglet in routine antimicrobial resistance surveillance. The 812A1-131 strain infection could
lead to the death of Galleria mellonella, which indicates that astA might have virulence
potential. The IncHI1 plasmid transferred tet(X4), which is increasingly common. The
acquisition of tet(X4) by pathogenic bacteria would increase treatment difficulty in humans
and animals, and the bacteria coharboring virulence and AMR genes need attention.

5. Accession Numbers

The whole-genome sequence of E. coli 812A1-131 has been submitted to GenBank with
the accession numbers CP116046-CP116049.
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