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Abstract: The obligate intracellular bacterial pathogen Coxiella burnetii has been identified in a
few species of marine mammals, some of which are showing population declines. It has been
hypothesized that C. burnetii in marine mammals is a distinct genotype that varies significantly from
the typical terrestrial genotypes. It appears to lack an IS1111. Isolates originating from Australian
marine animals have a distinctly non-Australian profile of multiple-locus variable-number tandem-
repeat analysis (MLVA). Extracted Coxiella DNA of Australian fur seal placental origin was sequenced
using the Novaseq platform. Illumina 150 bp paired-end reads were filtered and trimmed with
Trimgalore. The microbial community present in the sequenced genome was evaluated with Kraken
and Bracken software using the NCBI database. A phylogenetic analysis was performed using
1131 core genes. Core genes were identified using Panaroo and inputted into Iqtree to determine
the maximum-likelihood tree. A second phylogenetic tree was created using Rickettsiella grylii and
using seven housekeeping genes. Results were compared with the C. burnetii Nine Mile RSA439
virulent genome. This new Australian marine mammal isolate of Coxiella (PG457) appears to be a
novel genotype that lacks IS1111 and has a distinct MLVA signature (ms26, ms27, ms28, ms30, and
ms31). The presence of genes for multiple virulence factors appears to give this genotype sufficient
pathogenicity for it to be considered a possible causative agent of abortion in Australian fur seals as
well as a potential zoonotic risk.

Keywords: IS1111; multiple-locus variable-number tandem-repeat analysis (MLVA); abortion; marine
mammal; south-eastern Australia; Australian fur seal; Arctocephalus pusillus doriferus

1. Introduction

Coxiella burnetii is the intracellular, Gram-negative, bacterial causative agent of Q fever.
It has adapted exceptionally well to an obligate intracellular existence within the normally
inhospitable host-protective phagolysosome [1]. The lack of genetic diversity across all
known C. burnetii genotypes is considered evidence of this pathogen only recently emerging
from one of the typical Coxiella-like endosymbionts of ticks [2]. Q fever is known to cause
disease in both humans and other mammals [3]. Ruminants, especially goats and cattle, are
considered some of the most important reservoirs of this zoonotic pathogen, especially in
Australia [4,5]. Historically considered predominantly a disease of workers in the livestock
industry, especially those working in abattoirs, it has recently become a disease concern in
wildlife rehabilitators [5,6]. C. burnetii is also considered an emerging disease in wildlife,
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where it has been shown to cause reproductive failure in multiple species [7]. There is a
considerable paucity of data in wildlife globally and within Australia [5,7]. Concerns over
the impact of C. burnetii in wildlife have recently extended to marine mammals with the
detection of this pathogen in several species of pinnipeds, some of which are undergoing
population declines [8,9]. Beyond the conservation impacts, the presence of this pathogen
in wildlife is also of interest given the potential for wildlife to act as reservoirs of C. burnetii
infection in humans and domesticated animals [10].

Most genotypes that have been isolated from wildlife appear to cluster into genomic
groups I–III, based predominantly on studies from Europe [10]. Despite C. burnetii being
detected in more than 109 wild mammal species, there is still a significant lack of sequencing
data to investigate the importance of this pathogen in wildlife and the zoonotic spillover
risk [7]. It has been hypothesized that wildlife may harbor genetic variations that could
allow for the emergence of further pathogenic variations of the organism [10]. Within an
Australian context, the macropods appear to include some of the best-known potential
reservoir species [11,12]. Most studies in Australian wildlife have focused on serology
and molecular prevalence. There do not appear to be any sequencing data available for C.
burnetii in terrestrial Australian wild mammals, and to the best of the authors’ knowledge,
no genotyping or sequencing data are available for C. burnetii from any marine mammals.

It has nevertheless been hypothesized that C. burnetii in marine mammals is a unique
genotype with key features such as the absence of IS1111 (insertion sequence 1111) [13,14].
A recent isolate of C. burnetii from Australian fur seals (Arctocephalus pusillus doriferus) was
analyzed using multiple-locus variable-number tandem-repeat analysis (MLVA) for three
loci critical to the Australian genotypes (ms24, ms28, and ms33) [15], but only ms28 was
amplified [14]. At present, it is unknown whether the C. burnetii identified in northern fur
seals (Callorhinus ursinus), Steller sea lions (Eumetopias jubatus), Pacific harbor seals (Phoca
vitulina richardsi), harbor porpoises (Phocoena phocoena), and Australian fur seals is the same
organism between all the marine mammals [8,9,16]. Nor is it currently known whether it is
a definitive cause of abortion and reproductive loss or what exactly the manifestations are
of infection in pinnipeds [13,14].

Certain virulence factors are considered essential for the pathogenesis of C. burnetii,
as this intracellular pathogen requires both seamless macrophage invasion and the ability
to survive in the defensive host phagolysosome [17]. Two of the most important systems
genetically encoded for the pathogenesis of C. burnetii are the lipopolysaccharide (LPS)
and the genes affecting the type-4 secretory system (T4SS) [18]. The presence or absence of
the genes encoding the O-antigen is used to distinguish between virulent and avirulent
strains [18]. There is a considerable data deficiency with regard to the presence and absence
of virulence factors in C. burnetii in terrestrial wildlife, and no published data for marine
mammals. When considering the difficulty of studying this organism’s disease ecology
and pathobiology using conventional microbiology and molecular methods, it becomes
apparent that genome sequencing is essential to understanding these processes [1].

The main aims of this study were to use whole-genome sequencing to confirm the
previous identification of C. burnetii in Australian fur seals and to gain insight into the
phylogenetic relationship of this isolate to other pathogenic C. burnetii strains detected
in terrestrial environments. The presence of other well-characterized markers of Coxiella
diagnosis and genetic diversity were also examined alongside a preliminary investigation
into the pathogenic potential of this genotype, as indicated by the presence of previously
characterized C. burnetii virulence factors.

2. Materials and Methods
2.1. Whole-Genome Sequencing and Assembly

Genomic DNA was extracted from an Australian fur seal placental swab sample
collected from Kanowna Island (39◦15′ S, 146◦30′ E) in 2021. The placenta was produced
from a presumed full-term birth at the peak of the normal pupping season for the species.
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No clinical data are available for the dam or the pup. This specimen had previously tested
positive for C. burnetii DNA and undergone molecular typing as previously described [14].

Following library construction, genome sequencing was performed using the Novaseq
platform (Illumina Australia and New Zealand, Melbourne, Australia) by the Australian
Genome Research Facility (https://www.agrf.org.au/, accessed on 18 July 2022). Raw
sequencing data were uploaded to the Short Read Archive (PRJNA962036).

The Illumina 150 bp paired-end reads were filtered and trimmed with Trimgalore
(Version 0.4.5, https://github.com/FelixKrueger/TrimGalore, accessed on 8 November
2022) to identify and remove sequencing adapters and low-quality stretches of bases.
Kraken (Version 2.0.8) [19] and Bracken [20] were utilized for assessment of the composition
of the microbial communities present in the placental DNA extract using the NCBI genome
and nucleotide databases (downloaded 15 April 2021).

Quality-filtered Coxiella reads identified by Kraken were subsequently assembled
using SPAdes v 3.15.0 [21]. Assembled contigs were functionally annotated using Prokka3
(https://github.com/tseemann/prokka, accessed on 8 November 2022) [22]. The assembly
was assessed for completeness using BUSCO7 (Version 3) [23], based on the identification
of universal single-copy orthologs and the bacteria_odb9.

2.2. Phylogenetic Analysis

A phylogenetic tree was constructed using 1131 core genes identified between the
newly sequenced Coxiella PG457 genome and the publicly available genomes of 12 C.
burnetii strains (Table S1). All genomes used in the phylogenetic analysis were re-annotated
using Prokka3 to ensure consistent gene calling in all genomes. The core genes were
identified using Panaroo [24] running in Strict mode with the sequence identity threshold
set to 98% and the alignment option set to “core”. The core gene alignment generated
by Panaroo was inputted into Iqtree [25] to infer a maximum-likelihood tree using the
GTR+I+G model and with 1000 bootstrap replicates. The C. burnetii-only phylogenetic tree
was rooted using the novel Coxiella PG457 sequence.

A second phylogenetic tree using the 12 C. burnetii genomes plus Rickettsiella grylli (Ac-
cession number: GCF_000168295.1) and the Coxiella endosymbiont of Rhipicephalus microplus
(accession number: GCF_002930125.1) was generated using a concatenated alignment of
seven housekeeping genes (total length of 32,302 bp) (Table S2). The tree was created
with Iqtree (accessed on 31 January 2023) using the GTR+I+G model on the concatenated
alignment and rooted using R. grylli.

2.3. Comparative Analysis

The draft genome assembly of the novel Coxiella PG457 was examined for the presence
of (i) Coxiella IS1111 transposase sequences, (ii) MLVA gene sequences, and (iii) previously
described Coxiella virulence factors. IS1111 sequences were screened for by a combination
of read mapping to the C. burnetii Nine Mile RSA439 (NZ_CP018005.1) genome, BLAST
searching of the genome assembly, and by use of the IS1111 element search tool available
in Coxbase (https://coxbase.q-gaps.de/webapp/analysis/is1111, accessed on 28 January
2023) [22]. MLVA screening utilized the Coxbase MLVA typing tool (https://coxbase.
q-gaps.de/webapp/analysis/mlva, accessed on 28 January 2023). BLAST was used to
determine the presence of specific Coxiella virulence factors in the Coxiella PG457 draft
genome assembly.

3. Results
3.1. Description of Novel Australia Coxiella Draft Genome Assembly

The properties of the assembled draft genome for Coxiella PG457 are presented in
Table 1. De novo assembly of the Coxiella-like quality filtered reads resulted in a genome
scaffold of 1.9 MB comprising 204 contigs. Automated annotation resulted in 2327 predicted
coding sequences (CDS). The assembled Coxiella PG457 draft genome had a G + C content

https://www.agrf.org.au/
https://github.com/FelixKrueger/TrimGalore
https://github.com/tseemann/prokka
https://coxbase.q-gaps.de/webapp/analysis/is1111
https://coxbase.q-gaps.de/webapp/analysis/mlva
https://coxbase.q-gaps.de/webapp/analysis/mlva
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of 42% with three rRNA operons and 43 tRNAs. BUSCO analysis of the C. burnetii PG457
draft genome’s completeness revealed a score of 92.6% [1].

Table 1. Coxiella PG457 draft genome assembly statistics.

Criteria Statistic

Number of scaffolds 201
Number of contigs 204

Scaffold sequence length 1.907 MB
Maximum scaffold length 115,883 KB
Maximum contig length 105,116 KB

Percentage of sequence in scaffold > 50 60.15%

To confirm the presumptive identity of the Coxiella-positive sample sequenced, the
full-length 16S rRNA sequence was extracted from the assembled Coxiella draft genome
and compared with available sequences in the NCBI database using nucleotide BLAST.
This analysis revealed 99.7% identity to the full-length 16S rRNA sequences of a range of C.
burnetii strains, including the C. burnetii Nine Mile RSA439 reference genome (CP035112.1),
thus identifying this Coxiella strain as belonging to the species C. burnetii. Henceforth,
this strain is referred to as C. burnetii PG457. Additionally, PG457 was analyzed with
JSpeciesWS (https://jspecies.ribohost.com/jspeciesws/, accessed on 5 May 2023) for a pair-
wise comparison (ANIbMA and ANImMA) and Tetra correlation search to two reference
strains of C. burnetii to ensure the 16s rRNA nucleotide BLAST did not produce erroneous
results (Table S3).

An all-versus-all BLAST comparison of C. burnetii PG457 against the completed
genome of C. burnetii Nine Mile RSA439 also demonstrates that PG457 is assembled with
a high level of completeness and synteny (Supplementary Figure S1). C. burnetii PG457
shares > 90% sequence identity, and limited evidence for genome rearrangement and
unique genomic regions, compared with the C. burnetii reference strain.

3.2. Phylogenetic Analysis of C. burnetii PG457

To understand the phylogenetic relationships of the novel C. burnetii strain sequenced
in this study to other C. burnetii strains isolated in Australia, Europe, and the North
America from human and animal hosts, a phylogenetic tree was constructed using an
alignment of 1131 concatenated core genes extracted from 12 publicly available C. burnetii
genomes (Figure 1). This analysis revealed that C. burnetii PG457 clustered away from other
sequenced C. burnetii strains, forming its own distinct lineage from terrestrial C. burnetii
strains isolated in Australia as well as those from the rest of the world.

To gain a broader understanding of these genetic differences, we expanded the phylo-
genetic analysis to include a Coxiella-like organism, a Coxiella endosymbiont of Rhipicephalus
microplus. A phylogenetic tree constructed using a concatenated alignment of seven Coxiella
housekeeping genes revealed that, relative to Coxiella-like organisms, the C. burnetii PG457
strain is distinguishable but nevertheless is closely related to other well-characterized C.
burnetii strains (Figure 2).

https://jspecies.ribohost.com/jspeciesws/
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3.3. Identification of Previously Described C. burnetii Features in the Genome of C. burnetii PG457

Having established the identity of the C. burnetii isolate, preliminary genomic analysis
was performed to detect the presence of common molecular marker genes and/or markers
of C. burnetii pathogenicity.

3.3.1. Coxiella IS1111 Insertion Sequence

The IS1111 transposase sequence is a multicopy genetic element widely targeted for
the PCR detection and differentiation of C. burnetii strains [26]. To detect IS1111 sequences
in the C. burnetii PG457 draft genome assembly, C. burnetii PG457 reads were mapped
to the C. burnetii Nine Mile RSA439 genome (NZ_CP018005.1). No reads were found to
align with any of the 20 IS1111 transposase sequences present in the C. burnetii reference
genome [1]. BLAST searching of the C. burnetii PG457 genome with IS1111 sequences
also failed to detect any of this particular transposase sequence. As a final search strategy,
the C. burnetii PG457 genome assembly was imported into the IS1111 element search tool
(https://coxbase.q-gaps.de/webapp/analysis/is1111, accessed on 28 January 2023) [27].
No IS1111 sequences were identified. Together, these results suggest that the IS1111
transposase is absent from the C. burnetii PG457 genome.

3.3.2. C. burnetii MLVA Gene Targets

The C. burnetii MLVA typing scheme, consisting of a panel of 17 MLVA loci, is one of
many used for fine-detailed genetic differentiation of C. burnetii strains [28]. To identify the
presence of MLVA loci, the C. burnetii PG457 draft genome assembly was inputted into the
Coxbase MLVA typing tool (https://coxbase.q-gaps.de/webapp/analysis/mlva, accessed
on 28 January 2023). Compared with the C. burnetii Nine Mile RSA439 genome, only five
loci (ms26, ms27, ms28, ms30, and ms31) could be detected in the C. burnetii PG457 draft
genome assembly (Table 2).

Table 2. Detection of C. burnetii MLVA loci in the C. burnetii PG457 and C. burnetii Nine Mile RSA439
genome using the Coxbase MLVA search tool (https://coxbase.q-gaps.de/webapp/analysis/mlva).

Strain Locus
Characteristic MS01 MS03 MS20 MS21 MS22 MS23 MS24 MS26 MS27 MS28 MS30 MS31 MS33 MS34

C. burnetii PG457 Product length N.D. a N.D. N.D. N.D. N.D. N.D. N.D. 132 263 132 306 142 N.D. N.D.
Flank length N.D. N.D. N.D. N.D. N.D. N.D. N.D. 104 249 112 205 106 N.D. N.D.
Repeat size N.D. N.D. N.D. N.D. N.D. N.D. N.D. 9 6 6 18 7 N.D. N.D.

Repeat number N.D. N.D. N.D. N.D. N.D. N.D. N.D. 3 2 3 5 5 N.D. N.D.
C. burnetii RSA439 Product length 248 227 402 210 246 157 344 150 276 150 306 150 262 210

Flank length 176 142 96 136 174 90 135 104 249 112 205 106 193 175
Repeat size 16 12 33 12 11 7 7 9 6 6 18 7 7 6

Repeat number 4 7 9 6 6 9 29 5 4 6 5 6 9 5
a N.D. = Not detected.

3.3.3. Putative C. burnetii Virulence Factors

To gain a preliminary insight into the pathogenesis of this marine C. burnetii strain,
we examined the C. burnetii PG457 draft genome assembly for the presence of previously
characterized C. burnetii virulence factors. This included searches for components of
systems used to interact with the host cell during a C. burnetii infection as well as virulence
factors that can be used to differentiate pathogenic and nonpathogenic C. burnetii strains
(Table 3). All but one of the genes (adaA) searched for could be found in the C. burnetii PG457
draft genome assembly, including genes associated with the synthesis of Coxiella O-antigen,
a component of the C. burnetii lipopolysaccharide, as well as structural components and
effectors of the T4SS involved in manipulation and survival in the host cell. This suggests
that C. burnetii PG457 is likely to be virulent, both for Australian fur seals and for terrestrial
mammals, including humans.

https://coxbase.q-gaps.de/webapp/analysis/is1111
https://coxbase.q-gaps.de/webapp/analysis/mlva
https://coxbase.q-gaps.de/webapp/analysis/mlva
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Table 3. Preliminary analysis of the previously described Coxiella virulence factors in the C. burnetii
PG457 draft genome assembly.

Gene/Gene
Product Product Description and Function

Detected in
C. burnetii

PG457?

Nucleotide
Identity to C.

burnetii RSA439
Gene

Percentage
Gene

Coverage

Nucleotide
Identity to C.

burnetii Cb175
Gene

Percentage
Gene

Coverage

tadA
Type 2 and Type 4 family secretion system ATPase,

TadA; predicted involvement in Coxiella
adherence [29]

Yes 96.2% 99% 96.2% 100%

O-antigen/LPS

O-antigen ligase family protein, membrane
transport (lptA,B,C); synthesize components of the

Coxiella lipopolysaccharide unique to virulent
strains [30]

Yes 95.4% 100% 95.43% 100%

ompA Outer Membrane Protein A;
Coxiella invasin [31] Yes 96.8% 100% 96.8% 100%

mceA
Mitochondrial Coxiella effector protein A;

effector targeting host cell mitochondria during
Coxiella infection [32]

Yes 97.6% 100% 97.6% 100%

dotA
Type IV secretion system protein, DotA; structural

component of the Dot/Icm Type IV secretion
system complex [33]

Yes 94.6% 100% 94.6% 100%

dotB
Type IV secretion system protein, DotB; structural

component of the Dot/Icm Type IV secretion
system complex [33]

Yes 96.6% 99% 96.57% 99%

adaA

Coxiella burnetii-specific acute disease antigen,
adaA; outer membrane protein, originally thought
to differentiate strains causing acute and chronic Q

fever [34]

No − − − −

4. Discussion

C. burnetii infections in wildlife have been speculated to be a conservation risk while
also posing a threat of spillover infections to humans and domesticated animals [7]. In the
current study, we sequenced the genome of a C. burnetii strain detected in an Australian fur
seal to gain insight into its relationship with terrestrial C. burnetii strains but also to begin
to understand the potential for this pathogen to cause disease in wildlife hosts.

Preliminary phylogenetic analysis of the core genes identified in the whole genome
assembly suggests that this previously reported [9,14,35] bacterium is a strain of C. burnetii.
However, it is genetically distinct from other pathogenic C. burnetii strains detected in
humans and other terrestrial animals both in Australia and elsewhere. While genetically
distinct from those strains, the genome of C. burnetii PG457 contains all of the basic genetic
hallmarks of previously described C. burnetii genomes, including a similar estimated (i)
genome size (1.9–2.1 Mb range) and G + C content (42.4–42.9%) [36] and (ii) number of
stable rRNA and tRNA genes. Unfortunately, the sequenced genome of PG457 is not
circular. The BUSCO analysis revealed that 7.4% of the sequenced genome is fragmented
or missing. It is unknown to what extent this would affect downstream analysis. It is
conventionally assumed that sequenced genomes need to have a minimum N50 of 1Mb
to ensure no errors occur in the annotation, allowing for conserved genome synteny [37],
which the assembled genome of PG457 meets and exceeds.

There are exceptionally few reports of C. burnetii lacking the IS1111 transposase, in-
cluding only one in humans [35], and sequencing data are not available. Sequencing of
C. burnetii strain PG457, which lacks IS1111, illustrates the potential evolutionary relation-
ships between some of the Coxiella-like endosymbionts that lack this insertion sequence and
C. burnetii. This is the first sequencing of a C. burnetii that lacks the IS1111 gene. Previous
marine mammal studies reporting poor or absent amplification of the IS1111 may very well
have been reporting on the same genotype as in this current study [13,14]. This insertion
sequence is a multicopy and is often used to differentiate isolates from one another [26].
The genome sequence of this current isolate further supports the hypothesis that the IS1111
transposase is absent from marine mammal strains. The apparent absence of the IS1111
could relate to the missing MLVA loci ms23 and ms33, as these are loci that notoriously
contain recognition sites for IS1111 [38,39].

A very distinct MLVA signature appears to be present in this novel isolate. The use
of MLVA is considered highly discriminatory between different C. burnetii genotypes [40].
Typical Australian genotypes of C. burnetii have the presence of IS1111, and additionally,
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three critical MLVA loci, namely ms24, ms28, and ms33 [15]. Previous studies of C. burnetii
in Australian fur seals have shown strong evidence that only ms28 is present in these
isolates [14,41]. Based on the MLVA-associated genomic grouping, this novel isolate
appears to cluster outside of any of the currently accepted genomic groups and any of those
represented in Australia [38]. We propose that an MLVA signature for marine mammal
isolates of C. burnetii will consist of ms26, ms27, ms28, ms30, and ms31. This assumption,
made from the currently available genome sequence data, needs to be verified in samples
from other marine mammals and in silico.

Although the exact pathogenic manifestations of C. burnetii in marine mammals are
still to be fully illustrated, it is apparent from the initial sequencing data of C. burnetii in
Australian fur seals that certain key virulence factors appear to be present in the genome
that are shared with pathogenic terrestrial genotypes. Conventionally, genomic groups
I and IV contain the most pathogenic genotypes of C. burnetii [38], but the inability to
group this novel isolate into any of these previously described genomic groups makes it
more difficult to infer pathogenicity. Ideally, the use of a guinea pig model might better
illustrate the true pathogenic ability of this marine mammal isolate because it is considered
one of the gold standard models to infer pathogenicity [42]. In human cases of Q fever,
it appears that certain SNP (single nucleotide polymorphism) genotypes are more likely
to cause disease [17], but this has not been determined for PG457. The presence of the
tadA, O-antigen, ompA, mceA, dotA, and dotB genes at 94.6–97.6% with the Nine-Mile
strain would suggest a strong presence of the LPS and T4SS [18]. This potentially indicates
the ability of this novel isolate to induce significant pathology in marine mammals and
probably pose a zoonotic risk to persons working with these animals.

Ideally, this novel genome sequence needs to be compared with those of northern-
hemisphere marine mammals to determine the evolutionary relatedness of these various
strains. Further surveillance is needed to determine if any horizontal transmission can
occur between marine mammals and terrestrial mammals. If it is possible to culture C.
burnetii from Australian fur seals, potentially a full genome could be sequenced and a viable
inoculum made available, to determine its virulence in guinea pigs. If virulent, it is possible
that this bacterium has been playing a role in declining marine mammal populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens12070893/s1. Figure S1: Whole genome alignment of
the Coxiella burnetii PG457 (bottom) and C. burnetii Nine Mile RSA439 reference genome (top). Red
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