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Abstract: Clostridium perfringens is the etiological agent for necrotic enteritis (NE) in broiler chickens,
which causes a substantial economic loss of an estimated USD 6 billion annually in the global poultry
industry. Collagen adhesion is involved in the NE pathogenesis in poultry. In this study, the binding
capabilities of chicken C. perfringens isolates of various genetic backgrounds (netB−tpeL−, netB+tpeL−,
netB+tpeL+) to collagen types I–V and gelatin were examined, and the putative adhesin protein
cnaA gene was investigated at the genomic level. In total, 28 C. perfringens strains from healthy and
NE-inflicted sick chickens were examined. The results on collagen adhesin-encoding gene cnaA by the
quantitative-PCR results indicated that netB−tpeL− isolates had much lower copies of the detectable
cnaA gene than netB+ isolates (10 netB+tpeL− isolates, 5 netB+tpeL+ isolates). Most of the virulent C.
perfringens isolates demonstrated collagen-binding abilities to types I–II and IV–V, while some strains
showed weak or no binding to collagen type III and gelatin. However, the netB+tpeL+ isolates showed
significantly higher binding capabilities to collagen III than netB−tpeL− and netB+tpeL− isolates.
The data in this study suggest that the collagen-binding capability of clinical C. perfringens isolates
correlates well with their NE pathogenicity levels, especially for C. perfringens isolates carrying genes
encoding crucial virulence factors and virulence-associated factors such as netB, cnaA, and tpeL. These
results indicate that the presence of the cnaA gene may be correlated with C. perfringens virulence
(particularly for netB+ isolates).

Keywords: Clostridium perfringens; collagen binding; collagen adhesin protein; cnaA; netB; tpeL

1. Introduction

Clostridium perfringens is an anaerobic Gram-positive rod-shaped bacterium, and its
type A and G isolates are the key etiologic factor contributing to necrotic enteritis (NE) in
broiler chickens [1]. NE is characterized by sudden death (clinical form) or underperfor-
mance in growth and feed conversion (subclinical form), which could inflict substantial
economic damage with an estimated annual loss of USD 6 billion to the global poultry
industry [2,3]. NE is a complex and multi-factorial disease [3]. The β-pore-forming toxin
netB is found to be an essential contributing factor to the virulence of pathogenic C. per-
fringens isolates [4–6]. Disease severity can be enhanced by multiple factors, such as using
highly pathogenic netB+tpeL+ isolates expressing the largest TpeL toxin (a size of ~205 kDa),
predisposition to coccidiosis, and nutritional manipulation with the use of cereals rich in
non-starch polysaccharides or animal proteins [3,7].

Bacterial colonization is the first step for infection and plays a critical role in the normal
development, differentiation, function, and regulation of the intestinal mucosal immune
system [8]. Bacteria have evolved various mechanisms to adhere to the surface of organs
in contact with the intestine, such as adhesin, pili, fimbriae, biofilm, and lipopolysaccha-
rides [9]. It is suggested that the strong capability of C. perfringens adherence to extracellular
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matrix molecules promotes virulence in the induction of NE [10]. Furthermore, the ad-
herent capabilities of C. perfringens isolates to collagens may be positively associated with
the pathogenesis of avian NE [11,12]. The putative collagen gene cnaA is located within
pathogenicity locus VR-10B mainly in netB-positive strains [13], and the mutation of cnaA
has abolished NE pathogenesis in an animal model and reduced the capability of bacterial
colonization in the chicken intestinal mucosa [11]. In this study, we characterized the
capability of 28 C. perfringens isolates of laboratory collections in adherence to several
collagens (I, II, III, IV, and V) and gelatins and screened the cnaA gene in bacteria with a
polymerase chain reaction (PCR) and quantitative-PCR (qPCR).

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

Twenty-eight isolates of C. perfringens were used in this study. N10 and N11 were
isolated from healthy chickens, while most others came from collections of NE-afflicted
chickens [14]: nine netB−tpeL− isolates, fourteen netB+tpeL− isolates, and five netB+tpeL+

isolates. The isolates carrying the tpeL gene may induce enhanced NE disease severity. All
strains were characterized for cnaA gene by PCR and qPCR. Of all 28 C. perfringens isolates,
some have been characterized for NE induction in our NE disease model (See Table 1).

All C. perfringens strain collections were maintained as stock cultures in 25% glycerol
and stored in a –80 ◦C freezer in the laboratory [15–17]. C. perfringens strains were grown
anaerobically at 37 ◦C in chopped meat glucose (CMG) medium (Anaerobe Systems,
Morgan Hill, CA, USA), and then in BYC medium containing 3.7% brain heart infusion
medium (BHI Broth, RPI, Research Products International, Mt. Prospect, IL, USA), 0.5%
yeast extract (Fisher Scientific, Hampton, NH, USA), 0.05% L-cysteine (Sigma-Aldrich,
St. Louis, MO, USA), and 0.1% sodium thioglycolate (Sigma-Aldrich). The bacteria were
incubated at 37 ◦C under anaerobic conditions (AnaerPack® System, MGC, Mitsubishi Gas
Chemical Co., Inc., Tokyo, Japan) overnight.

Table 1. Sources and background information of Clostridium perfringens collections.

Strain Source netB tpeL Reference

13 Soil − − This study
CP1 Field NE − − [16]
CP2 Field NE − − [16]

CP15 Field NE − − [16]
CP23 Field NE − − [16]
JGS Field NE − − [16]

LLY_N10 Healthy chickens − − [16]
LLY_N11 Healthy chickens − − [16]

SM101 Food poisoning − − [17]
C11 Field NE + ± [15]

tpeL15 Field NE + + [15]
tpeL17 Field NE + + [15]
tpeL18 Field NE + + [15]
tpeL19 Field NE + + [15]

C1 Field NE + − [15]
C2 Field NE + − [15]
C3 Field NE + − [15]
C5 Field NE + − [15]
C6 Field NE + − [15]
C7 Field NE + − [15]
C8 Field NE + − [15]
C9 Field NE + − [15]

C10 Field NE + − [15]
C12 Field NE + − [15]
C13 Field NE + − This study
C14 Field NE + − [15]
C16 Field NE + − [15]
Del1 Field NE + − [16]

Note: “−” = negative in PCR, “+” = postive in PCR, “±” = weakly positive in PCR.



Pathogens 2023, 12, 778 3 of 12

2.2. Preparation of Genomic DNA from C. perfringens

Five mL of BHI Broth was inoculated with each strain of C. perfringens and incubated
at 37 ◦C under anaerobic conditions overnight. An amount of 1.5 mL of the culture
was centrifuged at 8000× g for 2 min in a microcentrifuge, and the pellet was collected.
Then, 100 µL of 200 mg/mL lysozyme was added to each tube, mixed thoroughly, and
incubated at 37 ◦C for 30 min. Samples were vortexed well, and then incubated at 37 ◦C
for an additional 15 min; 467 µL of TE buffer was added, and the pellet was resuspended
by repeated pipetting. Then, 30 µL of 10% SDS and 3 µL of 20 mg/mL proteinase K
(Sigma-Aldrich) were added to give a final concentration of 100 µg/mL proteinase K
in 0.5% SDS. Samples were mixed thoroughly and incubated at 37 ◦C for 1 h. Then,
100 µL of 5 M NaCl was added and mixed thoroughly, followed by adding 80 µL of
cetyltrimethylammonium bromide (CTAB, Sigma-Aldrich) /NaCl solution for a 10 min
incubation at 65 ◦C. An approximately equal volume (0.7 to 0.8 mL) of chloroform/isoamyl
alcohol (Sigma-Aldrich) was added and mixed thoroughly, and samples were centrifuged
for 5 min. Aqueous and viscous supernatants were transferred to new tubes. An equal
volume of phenol/chloroform/isoamyl alcohol (Sigma-Aldrich) was then added, extracted
thoroughly, and centrifuged for 5 min. The supernatant was transferred to a fresh tube,
and a volume of 0.6 of isopropanol was added to precipitate the nucleic acids. DNA was
washed with 70% ethanol to remove residual CTAB, and DNA was centrifuged for 5 min
at room temperature. The supernatant was carefully removed, and the pellet was briefly
air-dried. The pellet was redissolved in 100 µL of TE buffer.

2.3. PCR for Detection of CnaA

All C. perfringens strains were screened for the presence of cnaA using PCR. Primers were
designed using the cnaA gene of strain EHE-NE 18 (Accession number KT749987.1) (Table 2).
Primer sequences were as follows: forward primer 5′-GGTGGATGGGCAACATTTAC-3′,
reverse primer 5′-CCTTGCTTGGATTCACCAGT-3′, with an expected product size of 220
bp. PCR was performed using GoTaq green master mix (Promega, Madison, WI, USA).
PCR conditions were used as follows: 95 ◦C for 3 min; followed by 35 repeats of 95 ◦C for
30 s, 55 ◦C for 30 s, and 72 ◦C for 3 min; followed by 72 ◦C for 5 min.

Table 2. Primer sequences and target genes used in the qRT–PCR analysis.

Target Gene Primer Sequences (5’-3’)

16S rRNA
F-GGGGGTTTCAACACCTCC
R-GCAAGGGATATCAAGTGT

cnaA
F-GGTGGATGGGCAACATTTAC
R-CCTTGCTTGGATTCACCAGT

2.4. qPCR for Detection of cnaA

Genomic DNA (gDNA) was assessed using a NanoDrop spectrophotometer (Nan-
oDrop One; Thermo Fisher Scientific, Waltham, MA, USA) at 260/280 and 260/230 nm to
measure its concentrations and to check its purity. Each sample of gDNA was diluted to a
concentration of 50 ng/µL in RNase-free water (Thermo Fisher Scientific), and followed by
qPCR analysis with 5 µL of cDNA using SYBR Green qPCR Master Mix (PowerTrack, Ap-
plied Biosystems, Waltham, MA, USA) in triplicates using Applied Biosystems QuantStudio
3 Real-Time PCR Systems (Life Technologies, Carlsbad, CA, USA). The gDNA was ana-
lyzed with the following PCR conditions: denaturation at 95 ◦C for 10 min, followed by
amplification at 56 ◦C for 1 min for 40 cycles. The oligonucleotide primer sequences used
for 16S rRNA and cnaA genes are listed in Table 2. The relative expression level of each
gDNA was normalized to the control gene 16S rRNA using the 2−∆∆Ct method [15].
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2.5. Adhesion Assay

Bacterial adherence to five types of collagens and one gelatin was conducted as
previously described and repeated in triplicates [12]. Collagens (types I, II, III, IV, and
V) were all purchased from Sigma: collagen I from rat tail; collagen II from bovine nasal
septum; collagen III from human placenta and Bornstein and Traub type III (Sigma Type
X); collagens IV and V both from human placenta and gelatin (gelatin from porcine skin,
gel strength 300, type A). Nunclon Delta-Treated, Flat-Bottom Microplates (Thermo Fisher
Scientific) were coated with collagens (1 µg/well for collagens III and V; 2 µg/well for
collagens I, II, and gelatin; and 0.031 µg/well for collagen IV) in 50 µL of phosphate-
buffered saline (PBS, Quality Biological Inc., Gaithersburg, MD, USA) overnight at 4 ◦C and
blocked using 200 µL of PBS plus 0.5% (w/v) bovine serum albumin (BSA) (Sigma-Aldrich)
(PBSA) for 2 h at 4 ◦C and rinsed three times with 200 µL of PBSA.

Single C. perfringens colonies were suspended in 100 µL of sterile PBSA, spread onto
BHI-supplemented C. perfringens-specific nutrient agar plates, and incubated overnight to
produce a confluent layer. Bacteria were harvested from the agar surface in PBSA. Cells
were pelleted by centrifugation at 3000× g for 2 min and washed three times with 5 mL of
PBSA. The suspension was adjusted to an optical density (OD) of around 0.8 at 600 nm.
Cells were added to wells in 50 µL aliquots and incubated at room temperature for 2 h
with agitation, followed by rinsing three times with 200 µL of PBSA. C. perfringens were
stained with 0.5% (w/v) crystal violet for 5 min. After rinsing three times with 200 µL of
PBSA, 50 µL of solution of ethanol:acetone (1/1, v/v) was added to each well to destain
adherent C. perfringens, and the OD value at 562 nm was measured. Wells incubated with
bacteria but no collagen, and collagen-coated wells to which no bacteria were added, were
used as blank and negative controls, respectively. Values from the adhesion assay were
background-corrected by subtracting the blank value from the test sample absorbance
values for that particular strain. Any values that were less than zero were adjusted to zero.
All assays were repeated in biological triplicates.

2.6. Statistical Analysis

Statistical analysis was undertaken using GraphPad Prism 5 (GraphPad, San Diego,
CA, USA). Mean treatment group values were compared using one-way analysis of variance
followed by a Dunnett post hoc test. Differences were considered statistically significant at
p ≤ 0.05. All the data were expressed as mean ± standard error of the mean.

3. Results
3.1. PCR for Detection of CnaA

Fifteen of 28 C. perfringens strains tested showed thick bands for the cnaA gene (iso-
late tpeL19 not shown in Figure 1), among which all were netB+ isolates, including five
netB+tpeL+ isolates (C11, tpeL15, tpeL17-19), while thirteen isolates had relatively thin
bands for cnaA by PCR (Figure 1): strains 13, C9, C14, C16, CP1, CP2, CP15, CP23, Del1,
JGS, N10, N11, and SM101, among which most were netB−tpeL−, and four netB+tpeL−

isolates (C9, C14, C16, Del1). The PCR screening results for the cnaA gene within the
genomes of these C. perfringens strains are summarized in Table 1.

3.2. Quantitative Polymerase Chain Reaction (qPCR) for cnaA Gene Detection

Twenty-eight C. perfringens isolates were tested for cnaA presence by qPCR, among
which 15 of them showed higher signals (high copy numbers of cnaA), and the remaining
13 of the isolates were negative (Figure 2), which is correlated well with the regular PCR
result (Figure 1 and Table 3). No significant differences were found in the copy numbers of
the cnaA gene between netB+tpeL+ and netB+tpeL− (p > 0.05). However, significant differ-
ences were observed either between netB−tpeL− and netB+tpeL−, or between netB−tpeL−

and netB+tpeL+ (p < 0.001). Generally, there is a positive association between cnaA gene and
netB gene expression except for a few samples (C5C8), which agrees with our previously
published data on netB and tpeL gene expression [15].
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Figure 2. Detection of cnaA gene copies from C. perfringens isolates shown as the relative gene copies
by qPCR. The gDNA was extracted, and the relative gene copy numbers of cnaA in real-time PCR
were estimated by qPCR and normalized based on relative 16S rDNA levels. The data were analyzed
by one-way ANOVA, and means were calculated using Duncan’s multiple range test. Each bar
represents the mean ± SEM (n = 3). *** represents p ≤ 0.001.

Table 3. Results of comparison of C. perfringens isolates for cnaA gene detection by PCR and qPCR.

GENOTYPE netB−tpeL− netB−tpeL+

ISOLATE ID 13 CP1 CP10 CP15 CP23 JGS N10 N11 SM101 C11 tpeL15 tpeL17 tpeL18 tpeL19

cnaA PCR + + + + + + + + + ++ ++ ++ ++ ++

cnaA qPCR − − − − − − − − − +++ +++ +++ +++ +++

GENOTYPE netB+tpeL+

ISOLATE ID C1 C2 C3 C5 C6 C7 C8 C9 CP10 CP12 CP13 CP14 CP16 Del 1

cnaA PCR ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ + + +

cnaA qPCR +++ +++ +++ +++ +++ +++ +++ − +++ +++ +++ − − +/−

Note: +++ (strong expression), ++ (intermediate expression), + (weak expression),− (very weak or no expression).
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3.3. Adhesion Assay

The 28 C. perfringens isolates were tested for their abilities to bind to collagens, and
results show that C. perfringens isolates showed variable levels of binding to collagens. The
majority of the virulent isolates were capable of binding well to collagen types I, II, IV, and
V, while most of the isolates bound poorly to collagen type III and gelatin (Figure 3). The
netB−tpeL− isolates showed the significantly stronger capabilities of binding to collagen
type II than the netB+tpeL− (p < 0.05) and the netB+tpeL+ isolates (p < 0.01). Interestingly,
out of eight isolates binding potently to collagen type III, five isolates came from netB+tpeL+

isolates (C11, tpeL15, tpeL17-19) (OD562 ≥ 1.0). The netB+tpeL+ isolates demonstrated the
significantly superior binding capabilities to collagen type III than either the netB−tpeL−

(p < 0.001) or the netB+tpeL− isolates (p < 0.0001). The netB+tpeL+ isolate tpeL15 bound
firmly to the collagen types I~V and gelatin.
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Collagens (types I, II, III, IV, and V) and gelatin were coated on Nunclon Delta-Treated, Flat-Bottom
Microplates overnight at 4 ◦C and blocked using PBS plus 0.5% (w/v) bovine serum albumin. Bacterial
cells were added to wells and incubated at room temperature for 2 h with agitation, followed by
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p ≤ 0.05, 0.01, 0.001, and 0.0001, respectively.

4. Discussion

C. perfringens is a complex pathogen, causing histotoxic infections, enteritis/enterocolitis,
and enterotoxemias with this virulence versatility attributable mostly to its ability to
produce various potent toxins [18], which results in the intestinal tissue damage associated
with NE, exposure of extracellular matrix molecules (ECMM, such as collagen types I–III
and V), and basement membrane or substances in the lamina propria (collagen type IV
being the major component) [10]. Other than toxins, other C. perfringens virulence factors
and their contribution to NE need to be better investigated. Furthermore, C. perfringens
pathogenicity depends upon the colonization to persistently proliferate/survive in vivo,
and this colonization process normally consists of nutrient acquisition for growth/survival
(for example, by the production of sialidases NanI) and adherence [18]. In addition to
sialidases, adhesins play important roles in the C. perfringens colonization stage for the
pathogenesis of C. perfringens prior to secreting a panoply of toxins in the tissues.

It has been reported that the levels of virulence of C. perfringens strains are related
to their binding abilities to collagen types II, IV, and V [10,12]. In the initial colonization
stage, C. perfringens readily adheres to the damaged tissue where many extracellular matrix
proteins, including abundant collagens and fibronectin (Fn) proteins, are presented in the
damaged tissue [12]. Eimeria pre-exposure, which damages gut tissues and enhances the
development of NE, acts as an essential predisposing factor in chickens [3,19].

Interaction between C. perfringens, tissue collagens, and cnaA as a pilus component of
C. perfringens contributes to enteritis in chickens and pigs by promoting the adhesion to
damaged intestinal tissue [10,12,20]. Inactivation of the pilus genes resulted in the inhibition
of pilus production, highly reducing the capability of C perfringens to bind collagen and
initiate disease [11,12,21]. It is also implied that fibronectin is a possible extracellular matrix
glycoprotein that facilitates host–pathogen contact for C. perfringens to invade and colonize
the gut [18,22,23]. In the present study, the majority of C. perfringens isolates came from
cases of avian NE, and some of them, including the netB−tpeL− isolates, were capable of
inducing NE when chickens were pre-exposed to coccidiosis. Within the virulent netB+
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isolates of C. perfringens, their abilities to adhere to collagen types I, II, IV, and V may be
correlated with the presence of a putative collagen adhesin cnaA gene. Therefore, this
study demonstrated a direct association between the virulence of C. perfringens strains
and their abilities to adhere to immobilized collagens and between the virulence and the
cnaA gene copies. Our results were in line with the observations obtained from other
researchers [10,12]. Interestingly, most C. perfringens strains did not directly bind well to
collagen type III or gelatin, although they bound to collagen types I, II, IV, or V. Possibly, the
loss or reduced expression of fibronectin proteins on these isolates may impact the collagen
binding ability. It has been reported that C. perfringens may firmly bind to collagens in
the presence of fibronectin, therefore enhancing adherence and colonization [18]. This
hypothesis merits further investigation. Mutations of three pilin structure subunits (cnaA,
fimA, and fimB) have been reported to lead to the loss of filamentous structures; reduce
the capabilities of C. perfringens’s binding to collagen types I, II, and IV; and result in
attenuation of their pathogenicity in a chicken NE challenge model [21]. Understanding
the roles of these virulence-associated factors in NE pathogenesis may help scientists to
design optimal strategies to efficiently disrupt the colonization of C. perfringens during the
early infection stage. Chickens immunized subcutaneously three times with either CnaA or
FimB (another pilin structure subunit) showed significantly reduced NE lesions against
pathogenic C. perfringens challenge [24]. In our laboratory, immunization with CnaA alone
or in combination with other toxoids/virulence factors conferred partial protection against
virulent C. perfringens challenge [25].

The present study investigated the capability of collagen binding and cnaA gene level
among the virulent and less virulent clinical C. perfringens isolates and evaluated any associ-
ation between the capability to bind to collagen types I–V/gelatin and NE pathogenicity in
chickens. For simplicity, three C. perfringens groups were assigned: netB−tpeL−, netB+tpeL−,
and netB+tpeL+. The netB−tpeL− group also contained the avirulent isolates (such as N10
and SM101, demonstrated by Eimeria maxima/C. perfringens challenge studies) and clin-
ical NE strains. Our results showed that the avirulent isolates (N10 and SM101, netB−)
demonstrated a weak binding activity to collagen types III, V, and gelatin compared to the
other virulent isolates in the same group or other group. There were variable capabilities
of binding to these collagens among different groups. Interestingly, the netB−tpeL− group
had statistically significant capabilities of binding to collagen II than the netB+tpeL− and
netB+tpeL+ groups. The reason why the netB− C. perfringens isolates bind more potently to
collagen II than netB+ isolates (netB+tpeL− and netB+tpeL+) is not completely understood.
The lower binding activities to collagenase type II in C. perfringens type G isolates may be
associated with a high frequency of collagenase variant type II gene fragments that encode
a truncated collagenase with the missing N-terminal part of the collagenase unit [26]. The
absence of the NetB toxin in netB− isolates may lead to the upregulation of the production
of the collagen II binding protein that compensates for the loss of NetB or less interference
with their binding to collagen II. Interestingly, among the eight isolates that showed the
potent binding capability to collagen III (OD562 ≥ 1.0), five out of eight isolates came
from netB+tpeL+ isolates. All five netB+tpeL+ isolates showed statistically significant potent
capabilities of binding to collagen III than the tpeL− (netB+tpeL− and netB−tpeL−) groups.
This unique characteristic may be related to the presence of the tpeL+ gene. The TpeL
protein, a member of the large clostridial toxin (LCT) family [27,28], is reported to promote
the disease severity of NE in chickens [3,15], while NetB is a pore-forming toxin that has
been shown to disrupt the integrity of cell membranes [4]. The presence of both TpeL
and NetB toxins may cause more severe tissue damage and superior binding to collagen
type III. The isolate netB+tpeL+ tpeL15 was the outstanding isolate that firmly bound to all
collagen types and gelatin. In our previous genomic study [17], netB+tpeL+ isolate tpeL17
shared the same fibronectin-binding protein with other strains (Del1, N11, SM101, Strain
13), and shared the same fimbrial adhesion protein with other virulent isolates (Del1 and
N11 isolates). The reason why the netB+tpeL+ C. perfringens isolates potently bound to
collagen type III merits further investigation.
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Adhesin CnaA protein may play an important role in bacterial interaction with col-
lagens and colonization, and our PCR and qPCR results demonstrated that more copies
of cnaA gene were readily detected in a majority of the netB+ virulent isolates (netB+tpeL−

and netB+ tpeL+), but much less in netB−tpeL− isolates. The association of higher copies
of the cnaA gene with netB+ strains suggested that the product encoded by this cnaA gene
may have a synergistic effect with NetB toxin in the NE pathogenesis. Furthermore, the
sandwich ELISA assay in another pilot study using CnaA-specific monoclonal antibodies
enabled us to detect cnaA gene expression at the protein level in various C. perfringens
overnight culture supernatants [29], especially in few clinical virulent isolates, includ-
ing the well-characterized pathogenic N11 (28.5 ng/mL), Del1 (20.1 ng/mL), and tpeL17
(6.6 ng/mL) isolates. N11, a netB−tpeL− strain isolated from healthy chicken gut from our
previous study, induced necro-hemorrhagic enteritis lesions in combination with Eimeria
maxima pre-exposure [16,30,31]. It appears that the concentrations of CnaA proteins in the
supernatant of these pathogenic C. perfringens isolates may be associated with the bacterial
growth rate (N11 > Del1 > tpeL17) as well, and the generation of the higher levels of toxins
(for example, NetB and TpeL secreted by tpeL 17 isolate) may slow down the growth rate,
therefore affecting the CnaA production in the supernatant (unpublished data). Further
investigations may be warranted to better define the complex association among growth
rate, toxin productions, genotypes, and pathogenicity. The collagen adhesin-like proteins,
as an important virulence factor also developed by many other pathogenic Gram-positive
bacteria to promote bacteria–host interaction [32,33], may be useful targets utilized to
control multiple bacterial infections at the critical steps of initiation and persistence.

5. Conclusions

We have demonstrated that clinical isolates of C. perfringens are capable of binding to
collagen types I and III-V, compared to avirulent isolates. The netB+tpeL+ isolates potently
bound to collagen type III. All the collection isolates carrying the cnaA gene with higher
copy numbers were mainly netB+ isolates. The collagen adhesin cnaA gene plays an
important role in the adherence of C. perfringens to collagen types during the bacterial
colonization stage in poultry. Our results suggest that the collagen binding capability
correlates positively with their NE pathogenicity levels, especially for C. perfringens isolates
carrying crucial virulence factors and virulence-associate factors such as NetB, CnaA,
and TpeL.
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