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Abstract: Ticks and tick-borne pathogens significantly threaten human and animal health worldwide.
Haemaphysalis longicornis is one of the dominant tick species in East Asia, including China. In
the present study, 646 Ha. longicornis ticks were collected from free-ranging domestic sheep in
the southern region of Hebei Province, China. Tick-borne pathogens of zoonotic and veterinary
importance (i.e., Rickettsia, Anaplasma, Ehrlichia, Borrelia, Theileria, and Hepatozoon spp.) were detected
in the ticks using PCR assays and sequence analysis. The prevalence rates of these pathogens were
5.1% (33/646), 15.9% (103/646), 1.2% (8/646), 17.0% (110/646), 0.15% (1/646), and 0.15% (1/646),
respectively. For Rickettsia spp., R. japonica (n = 13), R. raoultii (n = 6), and Candidatus R. jingxinensis
(n = 14) were detected for the first time in the province, while several Anaplasma spp. were also
detected in the ticks, including A. bovis (n = 52), A. ovis (n = 31), A. phagocytophilum (n = 10), and A.
capra (n = 10). A putative novel Ehrlichia spp. was also found with a prevalence of 1.2% in the area.
The present study provides important data for effectively controlling ticks and tick-borne diseases in
the Hebei Province region of China.
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1. Introduction

Ticks are small, blood-sucking arachnids that are found throughout the world [1].
They feed on the blood of mammals, birds, reptiles, and other hosts, and in the process,
can transmit various pathogens that cause disease in humans and animals [2—4]. There
are approximately 124 species of tick found in China. Among them, Ha. longicornis is
distributed in the northeastern, central, southern, and western regions of China [5]. Ticks
are considered to be one of the most competent vectors, as they can transmit at least
15 bacterial, parasitic, and viral pathogens of zoonotic and veterinary importance [6,7].
They have become a significant public health concern due to the number of diseases they
transmit, including Lyme disease, spotted fever, ehrlichiosis, and anaplasmosis [8].

Rickettsiales bacteria, including the spotted fever group of Rickettsia (SFGR), Anaplasma,
and Ehrlichia, are recognized as important tick-borne pathogens [9,10]. Similar to its Asian
neighbor countries, the major vectors of SFGR are Dermacentor silvarum and Ha. longicornis
in China [11,12]. Twenty-one species of SFGR have been identified as pathogenic to
humans worldwide [11]. In mainland China, at least 18 species of Candidatus species of
SFGR have been referred to as human pathogens, and 8 of them have been confirmed:
including R. heilongjiangensis, R. japonica, R. raoultii, R. sibirica, R. monacensis, Candidatus R.
tarasevichiae, R. XY99, and Ca. R. xinyangensis [3,13-20]. In the genus Anaplasma and the
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genus Ehrlichia, which belong to Anaplasmatacae, A. phagocytophilum and E. chaffeensis were
the causative agents of well-known tick-borne diseases: human granulocytic anaplasmosis
(HGA), and human monocytic ehrlichiosis (HME), respectively. In addition, A. bovis, A.
capra, A. ovis, E. ewingii, and E. muris have been reported to cause human infection [21-24].
Haemaphysalis spp. are also an important part of the natural transmission cycle of B.
burgdorferi, a causative agent of Lyme disease [25].

Ticks are the main vector for numerous protozoan pathogens belonging to the phylum
Apicomplexa, including Babesia, Theileria, and Hepatozoon [26]. They can infect a variety of
animal hosts, including mammals and birds [27]. The parasites are transmitted through
the bite of infected arthropods (especially ticks), causing significant illness in hosts. Ha.
longicornis ticks have been implicated in the transmission of Theileria, Hepatozoon, and
Babesia [28,29]. Though Theileria and Hepatozoon agents have not been associated with
human infection in China, they inflict damage to animal husbandry production and wildlife.
Babesia agents are significant emerging threats to animal and human health. Ha. longicornis
ticks can act as vectors of several Babesia species, including human babesiosis agents, such
as Ba. microti and Ba. divergens [30].

Hebei Province is located in northern China and is adjacent to Beijing and Tianjin cities.
The province presents varied landscapes, including rolling hills, forests, and plains. There
are several tick-borne pathogen surveillance projects in the province, mainly concentrated
in the northern regions. Based on the surveillance project for tick and tick-borne pathogens
of the National Institute for Communicable Disease Control and Prevention (ICDC), we
found that Ha. longicornis is the dominant tick species in the province, especially the
ticks that are parasitic on sheep. The present study aimed to investigate the prevalence
and genetic diversity of the bacterial and protozoan pathogens in Ha. longicornis ticks on
free-range sheep in Shijiazhuang City, Hebei Province, China.

2. Materials and Methods
2.1. Study Area and Tick Sampling Protocol

This study was conducted in Shijiazhuang City in the south of Hebei Province to
the east of Taihang Mountains and presents the stepped landform features, including
mountains, hills, plains, and wetlands. We sampled ticks from the ears, periocular, axillary,
and neck of free-ranging sheep (Figure 1) in Pingshan, Luquan, Jingxing, Jingxing Mining
District, Yuanshi, Lingshou, Xingtang, and Zanhuang counties in the spring and autumn
of 2022. Tick species were first identified morphologically using taxonomic keys and then
confirmed by nested PCR amplification and sequencing of the CO1 genes (Table S1) [31,32].

# o O )
/] ; [UE L 2  Cpinahan )
- Cinping)

Shijiazhuang City

4 [Jingxingkuangau |

$Faarshi )
.-Ix. S ()

— ;f :

20 km

Figure 1. Map of the study area. Shijiazhuang City of Hebei Province, China.
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2.2. DNA Extraction

All the ticks were washed with bromogeramine (5%), alcohol, and water, respectively,
for 15 min each. After air-drying, the ticks were individually homogenized, and then
the DNA was extracted following the protocol of the QIAamp DNA Mini Kit (Qiagen,
Germany).

2.3. Detection of Bacteria and Parasites in Ticks

Bacterial pathogens, including Rickettsia spp., Anaplasma spp., Ehrlichia spp., Bartonella
spp., Borrelia spp., C. burnetii, and F. tularensis, were screened using real-time PCR (qPCR)
with the corresponding primers described in Table S1. The tick DNA samples positively
detected in the rickettsia-specific qPCR test (CT value < 38) were further tested using nested
PCR targeting an 1100 bp region of the g/tA gene, a 440 bp region of the 17 kD gene, a
530 bp sequence of the ompA gene, and a 1200 bp region of the rrs gene of SFGR. The
tick DNA samples testing positive for Anaplasmataceae in qPCR (CT value of <38) were
confirmed and preliminarily typed using nested PCR targeting a 500 bp region of the rrs
gene that could amplify both Anaplasma spp. and Ehrlichia spp. A set of genus-specific or
species-specific primers of Anaplasma and Ehrlichia targeting the rrs, gltA, and groEL genes
(heat shock protein) were used for the identification of bacterial species and phylogenetic
analysis. For the putative novel Ehrlichia strains, sequences of ftsZ (cell division protein
gene), conP28 (P28 major membrane protein gene), and dsb (disulfide oxidoreductase)
genes were also obtained with amplification and sequencing. Borrelia-positive samples
were reevaluated by nested PCR targeting the 350 bp ospA (outer surface protein A) gene.

For the detection and characterization of tick-borne protozoan pathogens, nested
PCR was performed using a universal primer set targeting the 185 rRNA gene of Babesia—
Theileria—Hepatozoon [33].

The target amplicons were isolated with the QIAquick PCR Purification Kit (Qiagen,
Hilden, Germany) and then sent to Beijing De’aoping Biotechnology Co., Ltd. (Beijing,
China), for sequencing. The PCR primers are shown in Table S1. The agarose gel elec-
trophoresis images of representative isolates in each pathogen are provided in Supplemen-
tary Data.

2.4. Phylogenetic Data Analysis

For the rrs genes of Rickettsia, Anaplasma spp., and Ehrlichia spp., two overlapping
fragments were first edited and assembled using SeqMan software (DNASTAR, Madison,
WI, USA) to obtain the almost complete gene sequences. Qualified and trimmed sequences
were identified by comparison with the sequences available in GenBank with the Basic
Local Alignment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi accessed
on 28 March 2023). Phylogenetic and molecular evolutionary analysis was performed
using the neighbor-joining method with 1000 replicates for bootstrap analysis in MEGA 7.0
(https:/ /www.megasoftware.net accessed on 28 March 2023).

2.5. Accession Numbers of Nucleotide Sequence

The sequences obtained in this study were deposited into GenBank with the acces-
sion numbers: ticks (0OQ699158-0Q699195), bacteria (0OQ701062-0OQ701079, OQ702255-
0Q702302), and protozoan (OQ695453-0Q695455).

3. Results
3.1. Tick Sampling and Identification

A total of 646 adults ticks (29 fully engorged ticks, 131 partially engorged, and
486 unfed ticks) were collected from free-ranging sheep in the Shijiazhuang City in the
south of Hebei Province (Figure 1). All collected ticks were identified as Ha. longicornis
based on morphology. CO1 gene sequences of the collected ticks were acquired by amplify-
ing and sequencing (Table S1) those sharing 99-100% identity with the sequences of Ha.
longicornis from GenBank (MK450606).
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3.2. Tick-Borne Pathogens Detected

For the detection of bacterial pathogens using the PCR assays, Rickettsia spp., Anaplasma
spp., Ehrlichia spp., and Borrelia spp. were detected in the ticks, while Bartonella spp., F.
tularensis, and C. burnetii were not detected (Table 1). Among a total of 646 Ha. longicornis
ticks, 33 (5.1%) ticks were positive for Rickettsia spp., including 13 (2.0%) ticks that were
infected with R. japonica, 6 (0.9%) ticks with R. raoultii, and 14 (2.2%) ticks with Ca. R.
jingxinensis, while 103 (15.9%) ticks were infected with Anaplasma spp., including 52 (8.0%)
ticks infected with A. bovis, 31 (4.8%) ticks with A. ovis, 10 (1.5%) ticks with A. capra, and
10 (1.5%) ticks with A. phagocytophilum. In addition, eight (1.2%) ticks were infected with
Ehrlichia spp. Borrelia burgdorferi was detected in only one tick.

Table 1. Prevalence of tick-borne pathogens in 646 Haemaphysalis longicornis ticks collected from

sheep in Hebei, China.

Pathogen Species Prevalence (%) *

Rickettsia 5.1%

R. japonica 2.0%

R. raoultii 0.9%

Ca. R. jingxinensis 2.2%

Anaplasma 15.9%

A. bovis 8.0%

A. ovis, 4.8%

A. phagocytophilum 1.5%

A. capra 1.5%

Ehrlichia 1.2%

Ca. E. luquansis 1.2%

Borrelia 0.15%

B. burgdorferi 0.15%

Theileria 17.9%

T. luwenshuni 17.9%

Hepatozoon 0.15%

H. felis 0.15%

* Total infection comprises cases of coinfection with tick-borne pathogens.

Based on the amplification and sequencing of piroplasms’ 185 rRNA gene, 110 (17.9%)
ticks were infected with T. luwenshuni, and only 1 (0.15%) tick was infected with H. felis,
but Babesia spp. were not detected among the collected ticks.

Co-infection with two or three tick-borne pathogens within an individual tick was
detected in 42 (6.5%) of the ticks tested. Two (0.3%) ticks were co-infected with Anaplasma
spp. and Rickettsia spp., seven (1.1%) ticks were co-infected with Rickettsia spp. and Theileria
spp.), twenty-seven (4.2%) ticks were co-infected with Anaplasma spp. and Theileria spp.,
and only one tick was co-infectedwith Ehrlichia spp. and Hepatozoon spp.

3.3. Phylogenic Analysis of Different Tick-Borne Pathogens

Rickettsia: Phylogenetic analysis based on the rrs, gltA, ompA, and 17 kD genes showed
that three Rickettsia spp. identified in the ticks clustered together with R. japonica, R. raoultii,
and Ca. R. jingxinensis (Figure 2). The sequences of rrs, gltA, ompA, and 17 kD genes for R.
japonica and rrs, gltA, and ompA for R. raoultii were identical to R. japonica (CP047359) and
R. raoultii (CP019435). The 17kD gene of the obtained R. raoultii strain was 99.42% similar
to R. raoultii (CP019435). For the samples HBSJZ]X40, HBS]ZJK16, and HBSJZPS105, which
clustered closely with Ca. R. jingxinensis, the rrs, ompA, and gltA gene sequences obtained
from the ticks showed 100% identity, and the 17 kD gene sequence showed 99.28-99.76%
identity to Ca. R. jingxinensis (MH932038) or Ca. R. longicornii (KY617773).
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Figure 2. Phylogenetic analysis of Rickettsia strains based on the nucleotide sequences of 17 kD
(440 bp), rrs (1200 bp), gltA (900 bp), and ompA (500 bp) found in ticks using the maximum likelihood
method with 1000 bootstraps: (a). 17 kD gene; (b). rrs gene; (c). gltA gene; (d). ompA gene.

Anaplasma: Four Anaplasma species (A. bovis, A. ovis, A. phagocytophilum, and A. capra)
were identified in the ticks. A. bovis detected in the current study were classified into three
genotypes in the phylogenetic tree based on the rrs, gltA, and groEL genes. The sequences
of the three genes shared 99.77-100% identity with A. bovis strains from other provinces of
China. All rrs gene sequences of A. ovis obtained in this study were identical to each other,
and the isolates were closely related to A. ovis isolates from goats (MG869525) and sheep
(KX579073) in China. Sequences of the gltA and groEL genes for the three A. ovis isolates
showed 99.97% and 99.51 to 100% intersequence identities, since they are still closely related
to A. ovis strains in Shannxi Province (g/tA: MG869310 and MG869296; groEL: MG869402
and OM648130). The partial rrs gene sequences of A. phagocytophilum identified in sheep
were 99.83 to 99.91% identical to the isolates derived from Ha. longicornis (KF569915) and
goat (KR002115). The gltA and groEL sequences were closely related to A. phagocytophilum
strains reported in China (KP076361 and KX388358), with similarities of 99.12% and 99.28%.
For the two isolates of A. capra, the rrs, gltA, and groEL sequences had 99.91 to 99.93%,
100%, and 99.86% identity with those of reported A. capra strains (MH762076, KX987362,
and MG869399), respectively (Figure 3).
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Figure 3. Phylogenetic analysis of Anaplasma strains based on the nucleotide sequences of rrs
(1400 bp), gltA (400 bp), and groEL (330 bp) genes found in ticks using the maximum likelihood
method with 1000 bootstraps: (a). rrs gene; (b). gltA gene; (c). groEL gene.

Ehrlichia: PCR detection indicated that eight ticks were infected with Ehrlichia spp. The
sequences of nearly complete rrs genes showed 100% identity to E. sp. NS101 (AB454074)
or E. chaffeensis isolate X1 (KX505292) and 99.60% identity to other strains of E. chaffeensis
(query cover: 100%; E-value: 0.0). However, the partial g/tA and groEL sequences of the
Ehrlichia spp. share 86.17 to 86.28% and 94.33% identity with the E. chaffeensis strains
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(Query cover: 100%, E-value: 0.0). The obtained groEL sequences were 98.26% similar to
E. sp. NS101, but the gltA gene records were absent for the NS101 strain. Although these
strains were closest to the Candidatus Ehrlichia zunyiensis found in Guizhou Province in the
phylogenetic trees of the gltA and groEL genes, the identity similarity was only 97.33% and
96.47% for the two single genes. The sequences of partial ftsZ, conP28, and dsb genes of the
Ehrlichia spp. were also obtained and deposited in Genbank. The dsb and ftsZ genes of the
Ehrlichia strains detected in the present study had 85 to 85.33% (query cover: 100%; E-value:
0.0) and 88.31 to 88.57% (query cover: 99%; E-value: 0.0) identity to E. chaffeensis (Figure 4).
We therefore propose that they represent a novel species, and we name it “Candidatus
Ehrlichia luquansis” according to the site where they were detected.
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Figure 4. Phylogenetic analysis of Ehrlichia strains based on the nucleotide sequences of rrs (1250 bp),
groEL (1109 bp), gltA (800 bp), dsb (300 bp), and ftsZ (400 bp) genes using the maximum likelihood
method with 1000 bootstraps: (a). rrs gene; (b). gltA gene; (c). groEL gene; (d). dsb gene; (e). ftsZ gene.

Borrelia: Based on the ospA gene, one tick sample shared complete nucleotide identity
with Borrelia. Phylogenetic analysis based on the ospA gene showed that the Borrelia strain
clustered together with B. burgdorferi (JN413009) (Figure 5).
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47y Borrelia burgdorferi HBSJZPS131
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Figure 5. Phylogenetic analysis of the Borrelia strain based on the nucleotide sequences of the ospA
(500 bp) gene found in ticks using the maximum likelihood method with 1000 bootstraps.

Protozoan: Two sequences of the 185 rRNA gene exhibiting 99.98% intersequence
identities were identified as belonging to Theileria strains in the ticks. As shown in Figure 6,
the 18S rRNA gene sequences of the Theileria strains detected in this study showed 99.3%
to 100% identity to T. luwenshuni (MH208630) that was detected in the Rh. microplus ticks in
China and had 99.79 to 99.86% identity to T. luwenshuni (JX469515) from small ruminants
in China. Sequencing and BLAST analysis revealed that a sequence of the 185 rRNA gene
was highly similar to the gene of H. felis isolated from wildcats (Felis silvestris) in Hungary
(OM256568 and OM256569) and from an Asiatic lion in India (ON075470 and KX017290)
with 98.68% and 99.85% identities, respectively.
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ONO075470 Hepatozoon felis Gujrat
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100

A
0.0100

Figure 6. Phylogenetic analysis of the Theileria and Hepatozoon strains based on the nucleotide
sequences of the 185 rRNA (1431 bp) gene found in ticks using the maximum likelihood method with
1000 bootstraps.
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4. Discussion

Ha. longicornis, also named the Asian longhorned tick, is a human-biting Ixodidae
tick species native to East Asia, especially in eastern China, Japan, and Korea. However,
the distribution regions of the ticks have expanded to Australia, New Zealand, and the
USA [7,34]. In China, Ha. longicornis is the most prevalent tick species, distributed through
at least 17 provinces [31], and it is regarded as an important vector of infectious diseases
threatening human and animal health, due to its broad host range, diverse vegetation
habitats, and multiple pathogens associated with a wide spectrum of human and animal
diseases [35]. In this study, SFG Rickettsia (R. japonica, R. raoultii, and Ca. R. jingxinensis),
Anaplasma spp. (A. phagocytophilum, A. bovis, A. ovis, and A. capra), Ehrlichia spp., B.
burgdorferi, T. luwenshunni, and H. felis were identified in Ha. longicornis ticks which were
collected from free-ranging sheep in eight counties along the eastern side of the Taihang
Mountains in southern Hebei Province.

Ha. Longicornis were reported as vectors of several Rickettsia spp. (R. raoultii, R. japonica,
R. heilongjiangensis, Ca. R. tarasevichiae, Ca. R. jingxinensis, Ca. R. jiaonani, and Ca. R.
hebeiii) in China [6]. In the present work, R. japonica, R. raoultii and Ca. R. jingxinensis
were first detected in the ticks of Hebei Province in the present surveillance. R. japonica was
the causative agent of Japanese spotted fever (JSF). The pathogen was first described in
Japan and human cases were found in Japan, South Korea, the Philippines, Thailand, and
China [15,36,37]. In recent years, human JSF cases have been found in Zhejiang, Anhui,
Hubei, and Henan provinces of China [38-40], and two fatal cases occurred in Hubei
province [15]. R. japonica has been detected in ticks from many provinces in northern,
eastern, central, and northeastern China [6,41]. R. raoultii, a causative agent of tick-borne
lymphadenopathy in humans was first described in the D. nuttalli ticks in Siberia and the
Rhipicephalus pumilio ticks in the Astrakhan region in 1999 [42]. Human infections with R.
raoultii were first confirmed in Spain and have since been reported in several provinces of
China [43,44]. Although Dermacentor ticks were considered to be the dominant vectors
of R. raoultii, it was also detected in other ticks, including Ha. erinaceid, Ha. concinna, Ha.
ginghaiensis, and Ha. longicornis [45,46]. Ca. R. jingxinensis is a novel Rickettsia species with
potential pathogenicity that has been reported to be widespread in China and co-circulates
in various ticks [47]. To date, no human cases of SFGR infection have been reported in
Hebei Province, but the presence of R. raoultii and R. japonica suggests a risk of Rickettsial
infection in local residents. A putative novel Rickettsia spp., named Ca. R. hebeiii was
previously reported in ticks with a minimum prevalence of 0.7% in the ticks in the province,
but it was not detected in the present study [48]. Ticks and the pathogens that they carry
can exhibit temporal variations, with changes in their distribution and prevalence occurring
over time.

A high diversity of Anaplasma spp. were found in the Ha. longicornis ticks in this study.
The presence of A. phagocytophilum, A. bovis, A. ovis, and A. capra was detected in the ticks,
and the infection rate of A. bovis (8.0%) and A. ovis (4.8%) were the highest, suggesting that
A. bovis and A. ovis were the dominant species of the genus Anaplasma, which is prevalent
in Ha. longicornis ticks in Hebei Province. Interestingly, most A. ovis strains were detected in
ticks collected in Pingshan county, indicating the potential differences in the geographical
distribution of A. ovis, as it was not detected in the ticks from the adjacent counties, even
though the adjacent regions have similar ecological environments. A. bovis was initially
found as a pathogen of cattle but has been reported to be present across a broad host
range [21]. Three genotypes of A. bovis were found in the present study, demonstrating its
diversity in the ticks of Hebei province. A. ovis is widely distributed in North America,
Asia, Africa, and Europe [49]. Sheep and goats are the main hosts, and livestock infection
can lead to the loss of the local pasturage economy. A. capra, a zoonotic pathogen, was also
detected in the present study, with a minimum infection rate of 1.5%. In addition, A. bovis
and A. ovis can also cause human infection. Though the prevalence of A. phagocytophilum
was 1.5% in the ticks, lower than that of others, it is a well-known tick-borne pathogen
causing HGA. HGA cases and a high prevalence of antibodies to A. phagocytophilum in local
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residents were found in different regions of China [50-52]. Attention should be paid to the
risks of HGA for local residents in Hebei Province.

A putative novel species of the genus Ehrlichia was detected in the ticks in the present
study. The highest degree of identities of rrs, gltA, groEL, dsb, and ftsZ amplified from the
novel species in the ticks were 100%, 96.47%, 98.26%, 85.33%, and 88.57%, respectively,
compared with those from known Ehrlichia species. The species was close to Ca. E. zunyien-
sis which was detected in Berylmys bowersi in Guizhou Province, China, and Ehrlichia sp.
NS101, which was identified in deer in Japan. Similarly, the rrs genes of these species were
most closely related to that of E. chaffeensis, but other test genes were not. There may be a
cluster of Ehrlichia spp. with similar rrs genes, but which are diverse in genomes widely
distributed in East Asia. This result suggests that multiple genes should be analyzed in
the genotyping of the Ehrlichia species. The potential pathogenicity of the Ehrlichia species
needs to be further studied.

B. burgdorferi was also detected in the Ha. longicornis ticks with a low prevalence (0.2%)
in the present study. Ixodes persulcatus and Ha. japonica ticks are recognized as the primary
vector of B. burgdorferi in northern China [25]. In a previous study, 17.14% of L. persulcatus
and 10% of Ha. japonica ticks were positively detected in PCR targeting the B. burgdorferi
gene, but all of the Ha. longicornis ticks were negative [53]. However, B. burgdorferi strains
were isolated from Ha. longicornis ticks in Beijing, which is surrounded by Hebei [54]. Our
results indicated that the Ha. longicornis ticks in the investigated sites can serve as a vector
of B. burgdorferi.

T. luwenshuni and H. felis were detected in the Ha. longicornis ticks using PCR targeting
Babesia, Theileria, and Hepatozoon 18sSRNA, with a 17.9% and 0.15% prevalence, respectively.
T. luwenshuni can be transmitted by Ha. ginghaiensis and Ha. longicornis ticks, which are
mainly reported in northwestern regions of China. Our results agree and suggest that Ha.
longicornis acts as a vector of T. luwenshuni. The pathogen can cause theileriosis that affects
domestic and wild ruminants, including sheep, goats, cattle, and deer. T. luwenshuni is
transmitted to animals through the bite of infected ticks, causing a range of symptoms,
including fever, anemia, and weight loss in livestock, especially goats and sheep, and even
causing death in serious cases. An Ha. longicornis tick was shown to be positive for H.
felis, a pathogen to felids. It can infect hosts via the bite of ticks or infected prey. Our
study provides evidence that Ha. longicornis may be a biological vector of H. felis in Hebei
Province and poses threats to wild felids and domestic cats with field contact.

The present study does have limitations. The PCR-positive detection of pathogens in
the collected parasitic ticks from sheep cannot differentiate whether the pathogens” DNA
templates were from infected ticks or sheep blood that was degraded in tick guts. The
investigation of tick-borne pathogens in local sheep and free ticks should be carried out in
further studies.

5. Conclusions

In summary, we identified numerous bacterial and protozoan pathogens in Ha. longicor-
nis ticks from free-ranging domestic sheep in Hebei Province. R. japonica and R. raoultti, the
agents of spotted fever, were first detected in the province. A high diversity of pathogens be-
longing to Anapasmatacae, including a putative novel Candidatus Ehrlichia spp., were found
harboring in Ha. longicornis ticks. In addition, it was determined that protozoan pathogens
that can infect wild and domestic animals were found with a high prevalence. The results
indicate that tick-borne diseases are a threat to public health and animal husbandry in
the region. Due to the constantly changing climate, environment, and human activities
affecting the prevalence of ticks and their vector pathogens, surveillance of tick-borne
pathogens is required for developing new control strategies.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/pathogens12060763/s1, Table S1. Primers for the am-
plification of sequences of ticks and tick-borne pathogens [13,33,53,55-71]; Supplementary Data. The
electrophoretic detection of amplification of tick-borne pathogens PCR products on agarose gel.
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