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Abstract: Leishmaniasis, a category 1 neglected protozoan disease caused by a kinetoplastid pathogen
called Leishmania, is transmitted through dipteran insect vectors (phlebotomine, sand flies) in three
main clinical forms: fatal visceral leishmaniasis, self-healing cutaneous leishmaniasis, and mucocu-
taneous leishmaniasis. Generic pentavalent antimonials have long been the drug of choice against
leishmaniasis; however, their success is plagued with limitations such as drug resistance and severe
side effects, which makes them redundant as frontline therapy for endemic visceral leishmaniasis.
Alternative therapeutic regimens based on amphotericin B, miltefosine, and paromomycin have
also been approved. Due to the unavailability of human vaccines, first-line chemotherapies such
as pentavalent antimonials, pentamidine, and amphotericin B are the only options to treat infected
individuals. The higher toxicity, adverse effects, and perceived cost of these pharmaceutics, coupled
with the emergence of parasite resistance and disease relapse, makes it urgent to identify new, ra-
tionalized drug targets for the improvement in disease management and palliative care for patients.
This has become an emergent need and more relevant due to the lack of information on validated
molecular resistance markers for the monitoring and surveillance of changes in drug sensitivity
and resistance. The present study reviewed the recent advances in chemotherapeutic regimens by
targeting novel drugs using several strategies including bioinformatics to gain new insight into
leishmaniasis. Leishmania has unique enzymes and biochemical pathways that are distinct from
those of its mammalian hosts. In light of the limited number of available antileishmanial drugs, the
identification of novel drug targets and studying the molecular and cellular aspects of these drugs in
the parasite and its host is critical to design specific inhibitors targeting and controlling the parasite.
The biochemical characterization of unique Leishmania-specific enzymes can be used as tools to read
through possible drug targets. In this review, we discuss relevant metabolic pathways and novel
drugs that are unique, essential, and linked to the survival of the parasite based on bioinformatics
and cellular and biochemical analyses.

Keywords: chemoinformatics; bioinformatics; drugs; inhibitors; drug resistance; PPDK; ascorbate
peroxidase; calcium ion

1. Introduction

Leishmaniasis is a group of vector-borne infectious protozoan diseases endemic to
nearly one hundred countries [1]. Leishmaniasis is considered by the WHO to be a ne-
glected tropical disease and a major international health challenge. In addition to malaria,
it is the deadliest parasitic disease worldwide. Nearly 0.71–1 million new cases and approx-
imately 20,000 to 65,000 deaths are reported annually, predominantly in socioeconomically
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vulnerable communities with limited access to essential medicines. Over 20 different
species of Leishmania are reported to be infective to humans, categorized as Old World
(Mediterranean countries, Asia, and Africa) and New World (America) forms. The dipteran
fly Phlebotomus and its subspecies in the Old World and Lutzomyia in the New World
are proven vectors for human leishmaniasis. The disease globally affects approximately
14 million people, with over one billion people at high risk of infection [2]. A World Health
Organization (WHO)-sponsored epidemiological report indicates that there are nearly
12 million active cases of leishmaniasis. The incidence of cutaneous leishmaniasis is two
to three times more common than visceral leishmaniasis [3,4]. At present, this disease
results in 20,000 to 65,000 deaths reported annually and is included among the 18 most
neglected tropical diseases (NTDs). Approximately one hundred species of these dipteran
insects belonging to the genera Phlebotomus and Lutzomyia are known as the main vectors
involved in biological transmission [4]. Leishmania has a complex life cycle characterized by
the presence of digenetic stages: flagellated promastigotes and flagellated amastigotes [5].
The metacyclic promastigote form in sand flies is responsible for infection in healthy in-
dividuals. The amastigote form is known for its pathogenesis, having a spherical shape
with a rudimentary flagellum. Amastigotes reside, propagate, and persist within the host’s
mononuclear phagocytic cells [6]. Leishmaniasis represents a wide spectrum pathology
ranging from less severe and self-curable cutaneous leishmaniasis (CL) to more severe
and fatal visceral leishmaniasis (VL). The clinical symptoms due to parasitic infections are
classified into three types of disease: cutaneous, mucocutaneous, and visceral leishmania-
sis [5,6]. Cutaneous leishmaniasis is manifested by the development of skin lesions and is
the most common type prevalent in the Middle East. Visceral leishmaniasis, on the other
hand, is distinguished by the occurrence of hepatosplenomegaly, fever, and weight loss,
and is considered as a serious health hazard for the infected individual. Mucocutaneous
leishmaniasis (MCL) is characterized by damage to oral mucous membranes in the nose,
mouth, and throat, which potentiates inflammation and face disfiguration [7]. Recently, a
new subgenus, Mundinia, has been reported, and a member of this group (L. martiniquensis)
causes VL in Southeast Asian regions. L. martiniquensis typically causes VL in humans
and can be treated with amphotericin B as a first-line chemotherapeutic option. It has
been reported that VL caused by L. martiniquensis has a higher relapse rate and occurs in
individuals with HIV infection [8,9].

In addition to two other kinetoplastid pathogens, viz. for Trypanosoma cruzi and Try-
panosoma brucei, the management of leishmaniasis requires integrated and multidisciplinary
strategies that include vector control, enhanced diagnostics, and increased awareness of
new therapies with safe and efficient medicines [10]. There is still no effective vaccine
available, and the control of the disease primarily rests on chemotherapy, the majority
of which is costly and has a wide array of side effects [10,11]. Pentavalent antimonials
(sodium stibogluconate, meglumine antimoniate or generic formulations) have been used
as standard drugs in countries such as India and Nepal for over 60 years and remain
the primary treatment options in many endemic regions despite widespread parasite re-
sistance [12,13]. A single dose of the polyene antibiotic amphotericin B demonstrated a
95% efficiency against visceral leishmaniasis in India [14]. Intravenous administration of
liposomal amphotericin B has become a standard treatment in many countries but remains
expensive, even for single-course treatments [15,16]. Miltefosine, an alkyl-lysophospholipid
analog, was initially developed as an anticancer compound and is considered as a first-line
effective oral drug against Leishmania [17,18]. Miltefosine has been used successfully
for the treatment of VL in India since 2002 and has been incorporated into the visceral
leishmaniasis elimination program for the Indian subcontinent [19]. Despite some success,
miltefosine administration registers considerable resistance, with relapse in nearly 20% of
patients post-treatment [20]. Miltefosine was also found to be effective against cutaneous
and mucocutaneous leishmaniasis in South America, with considerable differences in per-
cent success in therapy programs [21–23]. Recently, the aminoglycoside paromomycin has
been approved for the treatment of VL. The efficacy of paromomycin against VL patients
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has been demonstrated in phase III clinical trials in India [24,25]. However, paromomycin
has also shown shortcomings in efficacy across geographical regions, as demonstrated
by its less than satisfactory trial in Sudan compared to India [26,27]. It is known that
the drugs used act via different cellular and molecular mechanisms, causing a variety of
outcomes including the apoptosis of parasites, but are also widely associated with variable
toxicity and setbacks in sought-after results. These difficulties are further complicated by
the emergence of drug resistance against parasites across the globe that have persisted
alongside conventional chemotherapy practiced in endemic areas. This significantly lowers
the susceptibility to drugs and the emergence of difficult-to-treat resistant variants of the
same species [28–30].

Many investigators have highlighted the need to discover new drug targets em-
ploying the knowledge of parasite biochemistry to develop revolutionary new drugs
by using emerging technologies. Several natural and synthetic drugs as well as repur-
posed drugs have been screened and attempted against free parasites in clinical scenarios.
Anti-leishmanial peptides are one such strategy that has recently gained in importance,
particularly with active promotion strategies by pharmaceutical companies [31,32]. The
commercialization of peptide-based drugs needs to rely heavily on their utility and clinical
success with ease of synthesis, water solubility, sound biocompatibility, selectivity, versatil-
ity, tenability, and low toxicity [33]. Antimicrobial peptides (AMPs) are small molecules
(<100 amino acids long) with positive charges and amphipathic specificities (hydrophobic
and hydrophilic regions). AMPs act by affecting membranes by destabilization/disruption
of phospholipids and induce cell death by increasing the permeability of the cell membrane
and are less likely to be selective to resistant variants [34,35]. AMPs also pass through
the membrane and interrupt or destabilize nucleic acid or protein synthesis and/or com-
promise enzyme (protease) functions or cell membrane synthesis. Thus, AMPs are an
interesting candidate for effective therapeutic success against leishmaniasis [36]. The leish-
manicidal effects of these peptides have been published in recent reports including the
structural characteristics and inevitable challenges [37–39]. In the present work, we have
compiled and analyzed the main advances and trends in drug development against Leish-
mania including contributions from our laboratory for the identification and experimental
evaluation of future therapeutics.

2. Chemotherapy in Leishmaniasis: Current Drugs, Limitations, and Challenges

The focus of this section relates to the discussion on the currently existing drugs in
use for the treatment of VL. These include pentavalent antimonials, pentamidine, vari-
ous formulations of amphotericin B (AmB), paromomycin, and miltefosine (Table 1 and
Figure 1). These medications are also in use for the treatment of CL and MCL and PKDL.
Treatment of VL considerably varies between the endemic regions spanning from India to
Africa. The WHO approved and recommended regimens for known endemic VL foci are
summarized in Table 1. Approximately 25 drugs or combinations are in use for humans
with leishmaniasis [40–42].

WHO-OMS (2004) declared that liposomal amphotericin B, miltefosine, and paro-
momycin are the most promising drugs for the treatment of leishmanial infections. The
search for potential new drugs and targets has been a very active area of research in the last
couple of decades, with the publication of several important reviews [43–56].
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Table 1. Details of the FDA-approved drugs for leishmaniasis, summarizing the cellular and molecu-
lar targets and limitations including side effects.

Drugs Structure Comments Efficacy Resistance Uses Toxicity Ref.

Meglumine
antimoniate
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A wide range of compounds of multiple families have been identified as potential hits
and leads, and some of which are in clinical trials. Several candidates such as inhibitors
impairing thiol metabolism, sterol, glycolytic, folate and trypanothione metabolism, etc.
are important to consider (Table 2). These drugs and the commonly used chemotherapy
(Table 1) still lack the ability to provide efficient control against Leishmania. Several combi-
nations have been employed in clinical practice [11,64] including less toxic drug delivery
systems (DDSs) such as PLGA nanoparticles or liposomes [55], poly-aggregated forms of
AmpB [65], or amphiphilic antimony [66]. Below, we describe in more detail the current
treatment options including their inadequacies and the need for new chemical entities.



Pathogens 2023, 12, 706 5 of 36Pathogens 2023, 12, x FOR PEER REVIEW 4 of 39 
 

 

 

Figure 1. The biochemical characterization of FDA-approved drugs in Leishmania infection 

including the mode of action against the parasites. 

 WHO-OMS (2004) declared that liposomal amphotericin B, miltefosine, and 

paromomycin are the most promising drugs for the treatment of leishmanial infections. 

The search for potential new drugs and targets has been a very active area of research in 

the last couple of decades, with the publication of several important reviews [43–56]. 

  

Figure 1. The biochemical characterization of FDA-approved drugs in Leishmania infection including
the mode of action against the parasites.

Table 2. Identification of novel antileishmanial drugs specific to biochemical pathways critical for the
survival of Leishmania donovani.

Pathway Drug Target Drug Candidate Mode of
Action Refs.

Sterol Biosynthesis
Pathway

Squalene epoxidase Spiro[indole-3,3′-pyrrolizidine]-2-one DNA topoisomerase
IB inhibitor. [67,68]

HMGR enzyme Mevastatin Hampers HMGR activity. [69,70]
Sterol alpha-14
demethylase Avodart Induces ROS and causes

apoptosis in the parasite. [71]

HMGR enzyme Glycyrrhizic acid Inhibits HMGR enzyme. [72]
Purine Salvage
Pathway mRNA translation 5-fluorouracil

4-thiouracil
Binds to RNA and blocks
cell growth. [73,74]
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Table 2. Cont.

Pathway Drug Target Drug Candidate Mode of
Action Refs.

Glycolytic Pathway GAPDH
Artesunate Inhibits the parasites’

glycolytic enzymes GPDH.

[75,76]
Quinine [75]
Mefloquine [75]

Folate Biosynthesis
Pathway

DHFR

Methotrexate (MTX, 1)
Inhibits DHFR.

[77]
Cycloguanil [77]
Trimethoprim (TMP, 2) [77,78]
ZINC57774418 (Z18)

Inhibits DHFR activity.

[79]
ZINC69844431 (Z31) [79]
ZINC71746025 (Z25) [79]
D11596 (DB96) [79]
3,4-dihydropyrimidine-2-one [80]
5-(3,5-dimethoxybenzyl)
pyrimidine-2,4-diamine [80]

DHFR and PTR1

2-(4-((2,4-
dichlorobenzyl)oxy)phenyl)-1H-
benzo[d]imidazole DHFR-TS/PTR1 inhibitors.

[81]

2-(4-((2,4-
dichlorobenzyl)oxy)phenyl)-1H-
benzo[d]imidazole-1H-
benzo[d]oxazole

[81]

Trypanothione
Pathway TR

Trichloro [1,2-ethanediolato-O,O’]-
tellurate (AS101)

Induces ROS-mediated
apoptosis by binding to
TR cysteine residues.

[82]

β-sitosterol CCL Inhibit TR activity. [83]

Hypusine Pathway Spermidine synthase Hypericin ROS and spermidine
reduction. [84,85]

2.1. Antimonials

Pentavalent antimonials (SbV) have been used in first-line chemotherapy based on
parenteral administration available in the form of stibogluconate since 1945. It has been
a sought-after monotherapy treatment for VL and is still in use against canine leishma-
niasis [86,87]. Trivalent antimony (Sb+3) or emetic tartar was used against treatment for
VL [57] but was later replaced by pentavalent antimony (Sb+5) compounds by Bramachari
and called urea stibamine, which showed less toxicity than Sb+3 and emerged as an effec-
tive therapy against VL (kalazar) in India [88]. Pentavalent antimony is a prodrug that
is converted to trivalent form to be active against the parasite. The interaction between
host and intracellular amastigotes mediates the conversion [89,90]. The mechanism of
action of the drug remains not completely understood and may include biochemical effects
including the inhibition of DNA topoisomerase I, interference with the peculiar glutathione
of trypanosomatids—trypanothione—and glycolytic enzymes [29,88,91,92]. The drug se-
lectively accumulates intracellularly in parasites via modulation of the aqua glyceroporin
AQP1 gene transporter [93–95], the overproduction of thiols, and the overexpression of
ABC transporters (e.g., LABCI4, MRPA) [96–98]. Pentavalent antimony is available in
two different formulations, Glucantime® and Pentostam®, with an effectiveness of ap-
proximately 90% [99]. The main reasons for the restrictive use of antimonials include
side effects/toxicity and the emergence of resistance and therapeutic failures in subconti-
nent countries. Patients receiving antimonials experience local pain with intramuscular
injection and severe side effects including cardiotoxicity, pancreatitis, hepatotoxicity, and
nephrotoxicity [58,100,101] (Figure 1).

2.2. Amphotericin

Amphotericin B (AmB) is a polyene antifungal obtained through the fermentation
of Streptomyces nodosusparenteris used for treating leishmaniasis and acts via differential
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binding to ergosterol from Leishmania membranes [102,103]. AmB is effective against
different species of Leishmania and is also recommended for pregnant women and patients
who are coinfected with human immune deficiency virus (HIV). The success rate of AmB
is above 90%; however, similar to pentavalent antimony, it also presents high toxicity
in addition to its high cost [60]. The absence of ergosterol in mammalian cells makes
its leishmanicidal activity important in clinical use without any significant incidence of
drug resistance. Lipid formulations (liposomal) of amphotericin B viz. AmBisome®,
Amphocil®, and Abelcet® are less toxic than nonliposomal amphotericin B [104–106].
A phase III clinical trial with liposomal amphotericin in Bahia, Brazil for disseminated
leishmaniasis, an emerging form of CL in the Americas, demonstrated a cure rate of 75% at
doses >30 mg/kg [107]. Treatment with liposomal amphotericin B has fewer adverse effects
and is considered more suitable for first-line treatment in Brazil [108]. In a murine model
of VL, the polymeric micelle system and AmBisome® caused significant scale-down in
parasite load, inducing the generation of a pathogen-specific Th1 immune response without
hepatic or renal damage. Treatment with amphotericin B deoxycholate and Glucantime®

caused significant toxicity to the infected animals [109] (Figure 1). Low-price liposomal
AmpB (Fungisome®) and other drug delivery systems (e.g., microspheres of albumin,
niosomes, chitosan, nanodisks, etc.) could be sustainable solutions for low-income regions
of the world [110,111].

2.3. Miltefosine

Miltefosine, an alkyl phosphocholine derivative, was discovered as an antineoplastic
agent for the treatment of cutaneous tumors, inducing apoptosis in tumor cells [112]. Milte-
fosine interferes with the cell membrane architecture by hindering phospholipid metabolism
and affecting the synthesis of phosphatidylcholine and phosphatidylethanolamine by re-
ducing intracellular choline [113]. The antileishmanial activity of miltefosine has been
established in vivo and is now considered reliable chemotherapy against leishmaniasis
with a clinical efficacy comparable to that of AmB [19,62,114]. Miltefosine is the only
orally administered drug for treatment with an efficiency index of 95% in a clinical trial in
India [62,63]. Miltefosine is also recommended in Ethiopia and South America [115]. The
critical drawback of miltefosine administration is its long half-life (t1/2) in the organism
(>120 h) plus its teratogenicity. This becomes a hindrance for its use in the fertile life of
women. The efficacy of miltefosine in murine models varies depending on the type of
Leishmania species. Susceptible BALB/c mice infected with L. braziliensis and L. amazonensis
showed recurrence of the disease, which indicates a lack of efficiency of the drug in different
types of leishmaniasis and may require very high doses for treatment [116–118]. Since
miltefosine is taken orally, chances for the development of resistance due to self-medication
habits without prescription are greater in countries such as India. The emergence of milte-
fosine resistance is relatively easy in L. donovani under laboratory conditions [119], and the
loss of clinical efficacy has been reported [20,120,121] and confirmed in the laboratory [122]
(Figure 1).

2.4. Pentamidine

Pentamidine is given intravenously or intramorally in patients who do not respond
to pentavalent antimony [61]. Pentamidine showed high toxicity such as cardiotoxicity,
reduction in blood pressure, and irreversible insulin-dependent diabetes mellitus [55] when
used in VL. The drug binds to kinetoplastid DNA after its entry through arginine and
polyamine transporters [55]. Additionally, the drug reported resistance, which has been
associated with the upregulation of drug efflux, resulted in low levels of aromatic diamines
in the cytosol and mitochondria [46] (Figure 1).

2.5. Paromomycin

Paromomycin (monomycin, aminosidine) is an aminoglycoside antibiotic obtained
from Streptomyces krestomuceticus that acts by interfering with protein synthesis in the
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16S ribosomal RNA ribosome of the target organism and inhibits respiration [123]. Paro-
momycin is effective against a variety of protozoan parasites (Entamoeba, Giardia, etc.) and
its leishmanicidal activity has also been reported [124]. A phase III trial of paromomycin
(15 mg kg−1 (11 mg base) for 21 days showed a 95% cure rate [25] and was approved in
India for VL in 2006. Later, it was reported that the drug was ineffective in curing PKDL [59].
However, the application of paromomycin is plagued by the emergence of resistance when
used in monotherapy despite its low cost and the absence of serious toxicity issues. Current
chemotherapy for leishmaniasis has several limitations including high price, toxicity, onset
of drug resistance, routes of administration, the length of treatment, and clinical failure.
The emergence of severe forms of drug resistance to amphotericin B, miltefosine, etc. have
increased alarmingly, particularly in endemic areas where the incidence of the outbreak
is reported. It has been observed that the drugs are capable of resulting in clinical cure;
however, infected individuals are not cured parasitologically, suggesting the remnants of
the disease in the population. This has been reported in cutaneous and visceral Leishmania
infection and is likely to be linked to the immunocompromised state of patients, where
relapse is common in endemic areas in India and elsewhere. This condition highlights
the impairment of the immune system due to parasite infection, suggesting the lack of
effectiveness of the current drugs in inducing a long-term memory response to eradicate
the disease (Table 1 and Figure 1).

3. Drug Resistance and Significance of Combination Therapy

Drug resistance is a phenomenon when the drug following selection showed reduced
or no potential in its effect with reference to the susceptibility of a pathogen for a less than
satisfactory effect. Clinical isolates of the pathogen have demonstrated natural variations
in drug susceptibility, even in the absence of previous exposure to drugs. Reports from
the Indian subcontinent have shown that parasite resistance originated mainly in areas
of anthroponotic transmission [125]. Zoonotic transmission in the endemic region does
not contribute to the prevalence of resistance, and only recently, unplanned urbanization
may have changed this scenario, resulting in the emergence of drug-resistant parasites
in those regions [126]. The incidence of HIV as a coinfection in leishmaniasis results in
poor treatment outcomes with increased relapse rates and the emergence of potential drug
resistance [127]. Sodium stibogluconate, meglumine antimoniate, or generic formulations
have been the standard drug formulations for many decades in VL patients. In India
and Nepal, the above drugs were rendered obsolete by 1995 due to drastic failure in the
therapeutic efficiencies [128]. Clinical isolates of L. donovani from endemic regions have
shown 3-fold less susceptibility in vitro than isolates derived from patients who respond to
chemotherapy [12].

Drug resistance in Leishmania is due to the reduction in concentration of the drug in the
parasite by decreased uptake mediated by the aquaglyceroporin AQP1, (the primary route
of antimony entry) [129] or by the increased efflux of drug mediated by the ABC transporter
ABCC3 (also known as MRPA) [96]. Antimony-resistant parasites also have increased levels
of thiols (cysteine, trypanothione and glutathione) due to the overexpression/amplification
of genes involved in the synthesis of glutathione and polyamines, the components of
trypanothione, the main intracellular thiol in Leishmania [130–134]. Antimony resistance
also occurs due to the inhibition of drug reduction or inactivation of the active drug [135].
Amphotericin B affects the membrane sterol of the parasite, ergosterol. Amphotericin B
resistance is reported in 20% of Indian patients, where the drug was prescribed for VL
patients refractory to antimonials [136]. Gene amplification in Leishmania alters the drug-
binding affinity to the plasma membrane following modification in sterol composition [137].
Parasites derived from relapsing patients do not show differences in drug susceptibility
in vitro [20], indicating that the reduced clinical efficacy is related to other factors such as
the selection of parasites with increased virulence/infectivity, or inadequate interaction
with the drug due to heterogeneous pharmacokinetics [138,139].
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Miltefosine-treated parasites showed a significant reduction in mitochondrial mem-
brane potential and cytochrome c oxidase activity [140]. Miltefosine binds to the plasma
membrane and is internalized by the endocytic pathway via flippase activity mediated by
the miltefosine transporter (MT) and its noncatalytic subunit Ros3. MT–Ros3 is responsible
for the ATP-dependent accumulation of phosphocholine [117]. Miltefosine is excluded
via exocytosis or by floppase activity, which may be mediated by the member subfamilies
ABCB and ABCG of the ABC transporter [141].

In vitro susceptibility to miltefosine is intrinsically variable among the species type
and clinical isolates of the pathogen [28,142]. Varying susceptibility among the different
species and isolates may be due to fluctuations in the substrate specificity and activity
of the MT–Ros3 machinery, rate of cell proliferation, biochemical targets, metabolism of
the drug, and composition of the plasma membrane [143]. Recent studies suggest that
the wide gap between in vitro susceptibility to miltefosine and treatment outcome in
patients indicates an absence of correlation with the efficacy of the drug in the clinical
setting [20,117]. In vitro miltefosine resistance is developed by increasing the concentration
of the drug [142,144] or by chemical mutagenesis [145], likely associated with the defect
in internalization of the drug, regulated by the MT–Ros3 axis. Following selection with
miltefosine, MT and Ros3 genes underwent mutations, with MT genes showing a higher
frequency of mutations [142,146–148]. MT inactivation induced a resistance phenotype in
animal models of VL and CL, suggesting the importance of MT activity for the efficacy of
miltefosine in vivo [142].

In CL patients, pentamidine has been used but showed toxicity when used in VL
patients. Pentamidine-resistant lines obtained in vitro demonstrated alterations in the con-
centrations of intracellular arginine and polyamines, reduced pentamidine accumulation in
the mitochondria, and augmented drug efflux [149], likely mediated by the ABC transporter
PRP1 [150]. In addition, functional cloning using Cos-Seq identified a hypothetical protein
that mediates the reduction in resistance to pentamidine by promastigotes [151].

Paromomycin causes alterations in the fluidity of the membrane, lipid metabolism, and
mitochondrial activity. One paromomycin resistance gene has been identified in Leishmania
encoding a hypothetical protein containing leucine-rich repeats conferring resistance to
pentamidine [151]. Paromomycin susceptibility showed considerable heterogeneity in
clinical isolates of different species of the parasite [152]. Incidence of treatment failure in
leishmaniasis is a complex problem that may be caused by inappropriate handling of the
drugs, patient-to-patient variability in susceptibility to the parasites, and the everlasting
emergence of new isolates. In addition, pharmacokinetics and the immune response to
individual drugs also play a pivotal role. The presence of Leishmania RNA virus 1 (LRV-1)
in the Viannia subgenus poses an additional problem by subverting the host immune
response by altering the effect of the drugs [153,154]. In light of the steady emergence of
resistance against all antileishmanial drugs, a consensus on adopting combination therapy
has been considered the preferred treatment option against fatal VL and others.

Combination Therapy

Adopting a combination regimen will ideally reduce the dose of individual drug and
the duration of the treatment and may bring about higher compliance and lower toxicity.
The combination therapy in leishmaniasis may determine the best possible options and may
assure its efficacy in clinical use for the available WHO-approved drugs used mainly by VL
patients from the Indian subcontinent and Africa. Combination schemes include pentava-
lent antimonial plus paromomycin and AmB plus miltefosine. The first combination was
tested in Africa by considering the widespread prevalence of antimonial resistance in Asia.
Phase 2 and 3 trials in VL patients conducted in Bihar, India have assessed the combination
of liposomal AmB (single dose) plus miltefosine administered for 7, 10, or 14 days [155].
A single-dose liposomal AmB and a 10-day course of intramuscular paromomycin or a
combination of miltefosine and paromomycin for 10 days were tested in VL patients [156].
All of these blends were well-tolerated and demonstrated high cure rates of ~95% with a
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follow-up of 6–9 months. These combinations have advantages including reduced cost and
time for therapy schedule, amount of administered drug, less toxicity, and the development
of drug-resistant pathogens. VL patients coinfected with HIV have comorbidities, high
fatality rates, and increased drug toxicities [157]. Protease inhibitors available against treat-
ment for HIV patients have shown leishmanicidal activity in vitro [158]. A retrospective
treatment strategy for HIV–Leishmania coinfected patients with liposomal amphotericin
B plus miltefosine showed a positive outcome in the scheme [159]. This includes a lower
relapse rate compared with monotherapy with liposomal AmB [160].

4. Structure- and Ligand-Based Drug Design: Antileishmanial Drug Discovery
4.1. Structure-Based Drug Design (SBDD)

Combinatorial chemistry and high-throughput screening (HTS) have enabled the
large-scale screening of compound libraries that include significant chemical diversity in
a relatively short period [161,162]. According to sources, new medications on the market
have decreased as a result of disappointing findings in various stages of clinical trials [163].
As a result, cost-effective methods for exploring and finding novel medications based
on in silico or computational methods have evolved [164]. Protein structures generated
by NMR or X-ray crystallography investigations are used in this method. In addition, a
computationally based homology method can be used to model proteins using a variety
of servers and tools. Then, for virtual screening of the protein active site pockets, small
libraries of inhibitor molecules or lead compounds were produced. For this screening
method, a number of docking tools are available, which aid in the discovery of the best
hit compound by analyzing the compound’s binding affinity. According to Lipinski’s rule,
compounds with a low binding affinity and no drug-like properties are discarded, while
those with good interaction and high binding affinity are manufactured in laboratories
by chemical vendors. These compounds have now been approved for use in biological
systems [165]. SBDD has become a valuable tool for drug discovery and development in
the field of medicine. Computational techniques and software could be used to improve the
prediction of novel medications and synergistic pharmaceutical combinations to increase
the treatment efficacy, avoid drug resistance, and lower dosage to avoid drug toxicity. There
is some information and discussion regarding the SBDD strategy against trypanosomatides.
The resources for studying leishmaniasis are listed in Table 3 and Figure 2. SBDD was
utilized to find a pyrazolopyrimidine-class medication that was effective against Leishmania
CDK12 (Cyclin-Dependent Kinase 12).

Table 3. The major computational tools used in the in silico analysis for the identification of novel
leishmanicidal compounds derived from the available databases.

S. No Resources Descriptions Weblink Ref.

1. TriTrypDB
For Leishmania and Trypanosoma, an
integrated genomic and functional
genomic resource is available.

http://tritrypdb.org (accessed
on 8 December 2022) [166]

2. LeishCyc L. major biochemical
pathway database.

http://biocyc.org/LEISH/organism-summary?
object\protect$\relax\protect{\begingroup1
\endgroup\@@over4}$LEISH (accessed on
7 December 2022)

[167]

3. L. amazonensis
genome DB

The genome of L. amazonensis has
been sequenced and annotated.

http://bioinfo08.ibi.unicamp.br/leishmania
(accessed on 6 December 2022) [168]

4.
GeneDB
(Kinetoplastid
Protozoa section)

Annotations and sequences of
5 Leishmania species were curated.

http://www.genedb.or (accessed on
8 December 2022) [169]

5. EuPathDB For eukaryotic pathogens, there is
a pathogen genomics resource.

http://eupathdb.org (accessed on
9 December 2022) [170]

6. LmSmdB Regulatory pathways and
biological networks of L. major.

http://www.nccs.res.in/LmSmdb (accessed on
9 December 2022) [171]

http://tritrypdb.org
http://biocyc.org/LEISH/organism-summary?object\protect $\relax \protect {\begingroup 1\endgroup \@@over 4}$LEISH
http://biocyc.org/LEISH/organism-summary?object\protect $\relax \protect {\begingroup 1\endgroup \@@over 4}$LEISH
http://biocyc.org/LEISH/organism-summary?object\protect $\relax \protect {\begingroup 1\endgroup \@@over 4}$LEISH
http://bioinfo08.ibi.unicamp.br/leishmania
http://www.genedb.or
http://eupathdb.org
http://www.nccs.res.in/LmSmdb
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Table 3. Cont.

S. No Resources Descriptions Weblink Ref.

7. LeishMicrosatDB
Repeat sequences from six
Leishmania species are included in
a database.

http://biomedinformri.com/leishmicrosat
(accessed on 11 December 2022) [172]

8. TrypsNetDB

Protein interactions and
annotations for trypanosomatid
parasites that have been
experimentally verified as well
as predicted.

http://trypsNetDB.org (accessed on
5 December 2022) [173]

9. LeishDB Noncoding RNAs and coding
gene reannotation in L. braziliensis.

http://www.leishdb.com (accessed on
7 December 2022) [174]

10. List of putative
anti-leishmanials

Lead compounds and drug targets
with predicted antileishmanial
activity.

https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4247209/(accessed on 6 December 2022) [175]

11. L. major metabolic
network

Genome-scale metabolic network
of Leishmania major (iAC560).

https://www.ebi.ac.uk/biomodels/MODEL150
7180059 (accessed on 10 December 2022) [176]

Pathogens 2023, 12, x FOR PEER REVIEW 12 of 39 
 

 

 

Figure 2. The application of various computational tools and strategies including OMICS, SBDD, 

and immunoinformatics for the rational design of novel therapeutics against Leishmania. 

Table 3. The major computational tools used in the in silico analysis for the identification of novel 

leishmanicidal compounds derived from the available databases. 

S. 

No 
Resources Descriptions Weblink Ref. 

1. TriTrypDB 

For Leishmania and Trypanosoma, an integrated 

genomic and functional genomic resource is 

available. 

http://tritrypdb.org (accessed on 8 

December 2022.) 
[166] 

2. 

 
LeishCyc L. major biochemical pathway database. 

http://biocyc.org/LEISH/ 

organism-summary? 

object¼ LEISH (accessed on 7 

December 2022) 

[167] 

3. 
L. amazonensis 

genome DB 

The genome of L. amazonensis has been 

sequenced and annotated. 

http://bioinfo08.ibi.unicamp.br/leis

hmania (accessed on 6 December 

2022) 

[168] 

4. 

GeneDB 

(Kinetoplastid 

Protozoa section) 

Annotations and sequences of 5 Leishmania 

species were curated. 

http://www.genedb.or (accessed 

on 8 December 2022) 
[169] 

Figure 2. The application of various computational tools and strategies including OMICS, SBDD, and
immunoinformatics for the rational design of novel therapeutics against Leishmania.

Lead compounds from the series proved appropriate and successful in a mouse
model of infection when dosed orally twice a day for 10 days at 25 mg/kg, displaying
equivalent efficacy to the front-line treatment miltefosine and decreasing parasite levels by
99% [177]. In one of the investigations, LASSBio-1386, an N-acylhydrazone derivative, was

http://biomedinformri.com/leishmicrosat
http://trypsNetDB.org
http://www.leishdb.com
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247209/(accessed
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247209/(accessed
https://www.ebi.ac.uk/biomodels/MODEL1507180059
https://www.ebi.ac.uk/biomodels/MODEL1507180059
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discovered to reduce the proliferation of L. amazonensis promastigotes while generating
low cytotoxicity in macrophages. After in vitro treatment with LASSBio-1386, both the
percentage of Leishmania-infected macrophages and the number of intracellular parasites
were reduced. Furthermore, in vivo treatment of BALB/c mice infected with L. amazonensis
resulted in a reduction in lesion size, parasite load, and histological architecture when
compared to the controls. Molecular dynamics and docking studies were used to evaluate
possible molecular interactions, and studies were performed on phosphodiesterase B1
of Leishmania (PDB code: 2R8Q) and LASSBio-1386. According to the computational
research, LASSBio-1386 appears to work against Leishmania by altering leishmanial PDE
(phosphodiesterase) activity [178]. Furthermore, new computational analyses are constantly
being undertaken to find and propose new chemotherapy drugs [179–182].

This suggests that a computational method can assist in speeding up the develop-
ment of novel anti-trypanosomatid drugs. This highly impactful approach potentiates
the enhanced performance of the pharmaceutical industry in synthesizing better drugs
across multifarious therapeutic horizons and has become a boon for increasingly com-
plex disease management. Integration of computational tools into the research pipeline
is an important innovation tool for finding new therapeutics. Chemoinformatics tools
are classified as structure- and ligand-based drug design (SBDD and LBDD) approaches.
SBDD methods use the 3D coordinates of molecular targets to study and optimize ligand–
receptor interactions [183] and show the 3D architecture of numerous drug targets using
X-ray crystallography. SBDD offers high affinity interactions with the targets by molecular
docking, employing structure-based virtual screening (SBVS) where potential ligands are
evaluated by virtue of their binding mode and energetics [184]. Structure–activity relation-
ships (SAR) from these experiments could optimize the receptor–ligand affinity and other
properties. Several macromolecular targets in Leishmania have been investigated for drug
discovery. These include topoisomerases and proteases (cysteine proteases), tubulin, folate
metabolism-related proteins, kinases, phosphodiesterases, and enzymes that participate
in trypanothione and purine salvage pathways [185]. Ligands for these targets provide
high-quality information for drug design.

Several other SBDD-based drug design attempts have been made to discover new
targets against Leishmania. This includes a wide variety of pathways and biomolecules
targeting the survival and physiological functions of parasites in host–parasite interactions.
The list includes pteridine reductase 1 (PTR1), which is involved in the pteridine salvage
pathway and folate metabolism [186]. Following molecular docking analysis using the
crystal structure of L. major PTR1, active compounds were identified to have high-affinity
interactions with the dihydropyrimidine and chalcone moieties of the enzyme catalytic site
and leishmanicidal effects against promastigotes.

Cysteine proteases are recognized as another key enzyme responsible for parasite
survival and the invasion of host cells [187]. Cathepsin-L-like endopeptidase CPB2.8 is a
promising drug target in leishmaniasis. Benzimidazole derivatives displayed leishmanici-
dal potential against L. infantum amastigotes with binding potential to the catalytic site of
CPB2.8 [188].

A novel quinalidine derivative has been identified as a suitable inhibitor against the
mitochondrial enzyme NADH dehydrogenase (NDH2), which catalyzes electron transfer
from NADH to ubiquinone and is another interesting candidate. Using homology modeling
and pharmacophore-based virtual screening, novel NDH2 inhibitors in L. infantum have
been screened for anti-leishmanial potential for in vivo studies in VL [189,190]. Quinalidine
derivatives exhibit leishmanicidal activity in the nanomolar range against axenic cultures
of both axenic amastigotes and promastigotes of L. infantum. SBVS of 53 leishmanial
proteins including molecular dynamics simulations was performed for conformational
structure following the screening of databases using the IBM World Community Grid [182].
An assembly of four proteins with high affinity interactions with the compounds in the
database with the most favorable binding energy occurred in the L. major dihydroorotate
dehydrogenase (LmDHODH) enzyme. LmDHODH mediates the oxidation of dihydrooro-
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tate in the pyrimidine synthesis pathway [191]. Ten top-scoring LmDHODH inhibitors
were screened, selected, and assessed for in vitro leishmanicidal activity. Four of them were
active against L. panamensis intracellular amastigotes, having leishmanicidal effects similar
to that of the reference drug AmB. Furthermore, this drug did not show significant toxicity
against human macrophages, indicating its potential for further development and future
experimental studies including animal model studies.

Topoisomerase 1 of L. donovani (LdTop1) is another molecular target in the SBDD
study [192]. Topoisomerase 1 causes single-strand breaks in DNA, enabling changes in
topology, and is essential for cellular processes such as gene replication and transcrip-
tion [193]. A series of LdTop1 inhibitors were identified by scaffold hopping and bioisos-
teric manipulations. Camptothecin and edotecarin are known Top1 inhibitors used as
the standard starting inhibitors for constructing the molecular design. Six compounds
were selected against LdTop1 by performing molecular docking studies using the crystal
structures of LdTop1 and the human ortholog. Leishmanicidal activity was demonstrated
against L. donovani promastigotes without any toxicity toward mammalian cells. The
structure of the ternary complex 5-LdTop1-DNA, predicted by molecular docking anal-
ysis, revealed key structural aspects of the novel analogs with leishmanicidal activity
without affecting the host cell cytotoxicity. Tryparedoxin peroxidase of Leishmania has
been determined to be a suitable molecular target in SBDD, and the enzyme decreases hy-
droperoxides produced by infected macrophages. Thus, the enzyme is critically important
for parasite survival [194]. Molecular docking analysis using the X-ray structure of the
enzyme of Leishmania major (LmTXNPx) selected and designed a series of N,N disubsti-
tuted 3-aminomethyl quinolones with leishmanicidal properties that can be considered as
suitable drug candidates against leishmaniasis.

4.2. Ligand-Based Drug Design

In cases where the X-ray 3D structure of the receptor is unavailable, a ligand-based
design model is adopted to predict drug candidates. This methodology depends on
information on the structure, molecular properties, and activity of the small molecules [195].
LBDD offers the construction of chemometric models that correlate molecular characteristics
(molecular descriptors) with pharmacokinetic and pharmacodynamic parameters (target
properties). Quantitative structure–activity and structure–property relationships (QSAR
and QSPR, respectively) are derived to identify molecular characteristics that have a close
relationship with the target property [196]. The LBDD protocol in combination with SBDD
methods has been reported in drug discovery for leishmaniasis. LBDD uses QSAR and
QSPR models for predicting activity and ADMET parameters and searches for novel
compounds via ligand-based virtual screening (LBVS).

5. Design of Novel Drug Targets: Experience from our Laboratories

We studied four important cellular and biochemical pathways relevant to biochemical
signaling events in Leishmania. These are associated with metabolic pathways that can be
attractive targets for structure-based and ligand-based drug discovery approaches toward
the development of novel antileishmanial therapeutics. We used the SBDD approach to
identify putative inhibitors. In vitro and in vivo validations were performed to provide
an effective platform for the evaluation of their efficiency for future antileishmanial drugs
with minimal side effects. The major difficulties in SBDD application are the lack of tertiary
or quaternary structures of many leishmanial proteins, which may play critical roles in
numerous metabolic pathways related to housekeeping and parasite survival (Table 4 and
Figure 3).
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Table 4. List of novel drugs explored by chemoinformatics against Leishmania donovani.

Drug Structure Pathway Target Protein Mode of Action Ref.

Z220582104
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CID 6064500 

 

Β-Galf synthesis 

Role in 
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UDP-

galactopyranose 
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Glucose synthesis
and alanine influx

Pyruvate
phosphate
dikinase (PPDK)

Inhibits the pyruvate
phosphate dikinase enzyme
that helps in
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• Mannogen synthesis
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• ATP formation
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5.1. Pyruvate Phosphate Dikinase Inhibitor against Leishmania donovani

The identification of new and potentially effective inhibitors against the essential
enzymes of parasites could offer new options for the treatment of VL [197].

Pyruvate phosphate dikinase (PPDK) is critical for the entry of alanine into intracellular
amastigotes. The mammalian glucogenic precursor L-lactate is used by amastigotes during
the synthesis of its storage carbohydrate mannogen in adverse conditions facilitated by
PPDK [199]. PPDK catalyzes the reversible conversion of PPi, AMP, and phosphoenolpyru-
vate (PEP) into Pi, ATP, and pyruvate, respectively [200]. In mammals, the glycolytic
pathway contains pyruvate kinase (PK) instead of PPDK for glucose synthesis. Thus, the
absence of PPDK in humans and its indispensable role in Leishmania makes this enzyme
an attractive target for antileishmanial drug design [201]. Drugs against L. donovani PPDK
(LdPPDK) could be economically affordable, have less chance to develop resistance, and
deliver better antileishmanial effects. We identified a putative inhibitor with ID Z220582104
and compared it with miltefosine for antileishmanial activity against free promastigotes
and intracellular amastigotes (Table 4). Z220582104 was found to be safe, tolerant, and non-
toxic to mammalian cells, even at very high concentrations but significantly leishmanicidal
against both forms of the pathogen. However, PPDK is less effective than miltefosine [179]
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(Figure 3). PPDK is also considered as a potential target for developing herbicides and a
target enzyme for designing new drugs [202].
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5.2. UDP-Galactopyranose Mutase of Leishmania Is a Drug Target

β-Galactofuranose (β-Galf) constitutes the cell surface matrix component of Leishmania
and plays an important role in the pathogenesis of the parasite [203]. UDP-galactopyranose
mutase (UGM) converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-
Galf), which acts as a precursor for β-Galf synthesis. UGM is absent in humans; thus,
the enzyme is a potential target for antileishmanial drugs [204]. The 3D protein struc-
ture of L. major UGM (LmUGM) has been homology modeled by adopting Trypanosoma
cruzi UGM (TcUGM) as a template. Three compounds (6064500, 44570814, and 6158954)
from the PubChem database among the top hits were selected that occupied the UDP
binding site of LmUGM, indicating a possible inhibitory role. In vitro antileishmanial
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activity was evaluated with the top ranked inhibitor 6064500 against promastigotes of L.
donovani. Furthermore, at similar concentrations, the drug exhibited significantly higher
levels of tolerance to mammalian cells than the standard drug miltefosine. Enamine (Pub-
Chem id: 6064500) showed concentration-dependent leishmanicidal activity against free
promastigotes of L. donovani with an IC50 value equivalent to 50 µg/mL [197] (Figure 3).

5.3. Targeting Ascorbate Peroxidase of Leishmania

Oxidative stress is a host defense mechanism in macrophages that protects infected
cells from pathogens by upregulating antioxidant moieties. Macrophages produce ox-
idative molecules (e.g., H2O2) that kill the parasites (Leishmania donovani), which in turn
detoxifies the effects of H2O2 via a unique redox enzyme called ascorbate peroxidase (APX).
Leishmania is deficient in catalase and glutathione (GSH) peroxidase, and thus H2O2 re-
moval or detoxification is performed by the tryparedoxin pathway [205]. Overexpression
of APX in Leishmania major (Lm-APX) protects against oxidative stress [206–208]. APX is
important for parasite survival, and its absence in mammalian (human) hosts makes it an
ideal target that could be used for therapeutic purposes. Blocking L. donovani APX (Ld-
APX) in the ligand binding site by a novel inhibitor may alter the parasite’s oxidative stress
potential for escape mechanisms. The crystal structure of Ld-APX is unavailable in the
Research Collaboratory for Structural Bioinformatics (RCSB); thus, Ld-APX was modeled
and screened using the ligand library prepared for the ascription of novel drug candidates.

Docking and MD simulation studies identified the inhibitor ZINC96021026, which is
identical to the drug ML-240 that inhibits p97 ATPase activity with an approximate IC50
value of 100 nM [209]. ML-240 also inhibits p97-dependent degradation of proteasome
substrates with an approximate IC50 of 900 nM [210]. AAA-ATPase p97 plays an important
role in the protein homeostasis of eukaryotic cells by accentuating the degradation of
ubiquitinated proteins by the proteasome and the maturation of autophagosomes [211,212].
ML-240 induces caspase 3 and 7 activation in SW403 and HCT15 cells and blocks tumor
cell proliferation. ML-240 antagonizes p97 ATPase activity and was studied via high-
throughput screening (HTS) of the NIH Molecular Libraries Small Molecule Repository
(MLSMR) database. Our in silico observations indicated that ML-240 inhibits the ascorbate
peroxidase enzyme of Leishmania. MD simulation studies showed that ML-240 is an
inhibitor of APX and greatly reduced the health and growth of the promastigotes. Similar
to miltefosine, ML-240 induced a concentration-dependent reduction in the viability of
promastigotes. In addition, ML-240 was also potent in restricting the long-term survival and
growth of the parasites. ML-240 significantly prevents the replication of amastigotes in RAW
264.7 cells and human monocyte-derived macrophages, in addition to downregulating the
intensity of parasitism, defined as the phagocytic index. ML-240 treatment significantly
alters the promastigote ultrastructure and downregulates the ATP levels. L. donovani-
infected BALB/c mice treated with ML-240 significantly curtailed the splenic and liver
parasite burden in a concentration-dependent manner. The efficiency of ML-240 treatment
was on par with that of the reference drug miltefosine, which is widely used as a frontline
drug candidate against kala azar (leishmaniasis). Based on these computational data and
in vivo animal model studies, we proposed a new inhibitor, ZINC96021026 (ML-240), for
evaluation as an antileishmanial agent (Figure 3).

5.4. Screening of Novel Inhibitors against Calcium ion Channels of Leishmania

In Leishmania, Ca2+ ions regulate several vital functions including attachment and en-
try inside macrophages. Human calcium channel inhibitors have a significant effect on the
growth and survival of Leishmania in vitro. This suggests that the L. donovani Ca2+ ion chan-
nel (Ld-CC) is a potential drug target. Ld-CC regulates the Ca2+ ion concentration, which
controls several functions including flagellar motion, mitochondrial oxidative metabolism,
and entry inside host macrophages. Homology modeling of Ld-CC and docking studies of
the ligand library of three datasets of 542 compounds of National Cancer Institute (NCI)
diversity were performed for screening studies. ZINC17287336 and ZINC29590262 were
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selected as the best energy conformers, showing the highest binding affinity for the target
(Ld-CC). The ligands interact with the residues in the active site of the Ld-CC pocket,
indicating that the docked conformations are acceptable. Moreover, these two ligands have
relatively higher binding affinity than nifedipine and verapamil, which are reported as in-
hibitors of calcium channels in humans with mild anti-leishmanial activity. ZINC29590262
showed better binding and affinity toward Ld-CC than the human voltage-dependent
alpha-1C subunit of the L-type calcium channel. This ligand showed >40% binding affin-
ity with Ld-CC compared with human-VDCC, suggesting leishmanicidal potential [198]
(Figure 3). The role of a secondary messenger such as the Ca2+ ion regulates a wide range
of cellular processes in all eukaryotic organisms [213]. The mitochondrion of the parasite
(Leishmania spp.) constitutes 12% of the total volume, forming an electrochemical gradient
to provide a driving force for Ca2+ entry [214]. Homeostatic disturbance in intracellular
Ca2+ ions may lead to lethal morphological defects, leading to apoptosis and cell death [214].
Calcium channel blockers (CCBs) are a class of compounds that are used for hypertension
and other heart ailments in humans. Targeting calcium channels could be an effective
strategy for exploring new drug development strategies against Leishmania. The docking
study indicates that the designed inhibitors interact with the active site residues inside
the pocket of the channel, which could hinder the entry of Ca2+ ions into the parasite and
thereby jeopardize intracellular Ca2+ ion homeostasis and deter parasite survival in the
host. Many compounds have attracted the attention of researchers and have undergone
clinical trials with the aid of structure-based drug design (SBDD) [215].

5.5. Molecular and Cellular Aspects of Novel Drug Design

Widespread drug resistance against Leishmania severely impacts health care in areas
where the disease is endemic. The need and urgency of new therapeutics against Leishmania
need to involve the efficiency of leishmanicidal properties against newly developed clinical
isolates and optimization of the compound for monitoring clinical trials. Chemotherapy is
considered as the main treatment option against leishmaniasis, although it is plagued with
ever-increasing drug resistance. The development of new therapeutics against Leishmania
is a pressing need. A number of metabolic pathways are essential for parasite survival and
are considered prospective drug targets. Enzyme targets for biochemical characterization
and their usage for drug targeting have not been extensively explored. Biosynthetic
pathways including sterol, glycolytic, DNA topoisomerase, redox metabolism, polyamine
biosynthesis, folate, proteases, mitogen activated protein kinase, etc. have been investigated
to find new drug targets against trypanosomatid parasites including Leishmania [216]. In
addition to the above-mentioned pathways, several other pathways are also critical for
parasite survival. Phosphoenol pyruvate carboxykinase, pyruvate phosphate dikinase,
UDP-galactopyranose mutase, etc. are essential for parasite survival. Many such enzymes
are parasite specific, indicating that they are not present in the mammalian (human) host
and thus offering added advantages in drug design. Resistance mechanisms against the
currently used drugs include alteration in drug reduction/activation, reduced uptake, and
heightened efflux/sequestration of the active molecules. In addition, the amplification of
genes and the enhanced activity of the repair mechanisms following drug-induced damage
also play roles in the induction of resistance. Thus, new drugs with specific microbicidal
properties could free and protect the body’s physiology and immune system from cycles
of failure that always pose serious challenges in therapeutic success. The absence of any
viable vaccine candidate or alternative therapy against protozoan parasitic disease makes
it a more urgent need for the current situation.

UDP-galactopyranose mutase (UGM) is another target and has been explored as a
possible platform for antileishmanial drug targets. β-Galf is absent in humans and present
in many human pathogens such as Mycobacterium tuberculosis, Leishmania spp, Trypanosoma
spp, and Aspergillus fumigatus (Af ) as a major cell surface component [217,218]. UGM
is accountable for the virulence of these pathogens [219]. β-Galf biosynthesis requires
UGM, and the enzyme is absent in the human host and is an attractive drug target against
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Leishmania spp. In Aspergillus fumigatus, UGM deletion leads to the loss of virulence and
inhibits growth, resulting in defects in cell wall morphology [220,221]. UGM deletion
increased the sensitivity of A. fumigatus toward antifungal drugs [220,221]. Targeted
deletion of UGM from L. major resulted in the loss of establishment of infection in BALB/c
mice [222]. Specific inhibitors against mycobacterial UGM such as synthetic aminothiazoles
have been reported to inhibit microbial growth [217]. UGM inhibition of Brugiamalayi also
significantly disrupts in vitro as well as in vivo antifilarial activity [223]. UDP binding to
UGM induces conformational changes in the enzyme. This change causes movement of
the loop, which resides opposite the substrate binding site, leading to closure of the active
site and preventing diffusion of the substrate. This structural property may help in the
inhibitor design against UGM [218].

In kinetoplastids including Trypanosoma, Leishmania, etc., catalase and glutathione
(GSH) peroxidase are not present, and the absence of hydroperoxidase in these pathogens
is based on the tryparedoxin pathway for regulating oxidative stress [224,225]. APX is a
key constituent in the glutathione ascorbate cycle. Glutathione maintains a reducing atmo-
sphere inside the cells and imparts a reduced state upon many cellular components [226].
A single copy of the APX gene of L. major plays a pivotal role in H2O2 detoxification, which
is generated due to endogenous processes following external interferences that include
the oxidative burst of parasite-infected macrophages or the drug metabolism of the para-
site [227]. Ascorbate biosynthesis in kinetoplastids occurs in the glycosomal compartment.
Treatment of catalase and peroxidase (heme-containing enzymes) with aminotriazole or
sodium azide hinders the removal of H2O2 from amastigotes [225]. Overexpression of APX
in L. major promastigotes enhanced the tolerance to oxidative stress-induced apoptosis.
APX overexpression in the mitochondria of L. major (Lm-APX) protects the pathogen from
oxidative stresses such as mitochondrial dysfunction, senescence in the cell, and alteration
in cellular redox equilibrium [228]. APX gene knockdown in parasites subjected to continu-
ous exposure to oxidative stress generates higher intracellular H2O2 content [228]. Ablation
of the APX gene in L. major caused secondary effects in lipophosphoglycan (LPG) and
metacyclogenesis with reference to gene expression, instigated by an alteration in the redox
equilibrium of the parasites. The APX inhibitor ML-240 is a valosin-containing protein
(VCP), and p97, a member of the AAA-ATPase protein inhibitor family, could be a potential
candidate for leishmanicidal activity. The AAA-ATPase protein family is also involved in
cellular functions including endoplasmic reticulum-associated degradation (ERAD), Golgi
membrane reassembly, cell division, DNA repair, and autophagy [229,230]. Thus, targeting
APX of L. donovani selectively alters the ultrastructure of the parasites and arrests ATP
levels, unlike miltefosine, which also causes significant damage to the host cells.

The advantage of PPDK-specific inhibitors against Leishmania is their lack of toxicity
toward human cells at very high concentrations, although they are less effective than
miltefosine. PPDK was previously investigated as a logical candidate for the design and
development of potential herbicides and new drugs [202,231]. An in silico study on PPDK
was aimed at finding a brand-new inhibitor that is toxic to parasites but tolerant toward
mammalian cells. PPDK fits well in the exploration of new therapeutics since it has different
catalytic mechanisms for the glycolytic pathway.

As a result, SBDD is now a useful instrument for the creation of new drugs in the
field of medicine. To boost treatment effectiveness, avoid drug resistance, and administer
less medication to prevent drug toxicity, computational approaches and software could
be utilized to improve the prediction of innovative pharmaceuticals and synergistic phar-
macological combinations. This article discusses the SBDD Leishmania parasite defense
technique. Studies on molecular dynamics and docking point to a cellular and molecular
interaction between the medication and a key parasite protein. This shows that a compu-
tational approach may help hasten the creation of new anti-trypanosomatid medications.
Figure 4 shows the molecular interaction between the newly identified inhibitors with
important enzymes and the calcium ion channel of Leishmania. We also documented the
few data that have explored drugs based on SBDD against leishmaniasis (Table 5). The



Pathogens 2023, 12, 706 19 of 36

proteins were downloaded from RCSB PDB and presented in a cartoon model, while in-
hibitors were collected from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/
(accessed on 2 Decemeber 2022)) and shown in a 2D model using the ChemSketch tool
(https://www.acdlabs.com/ (accessed on 1 December 2022)). To find potential Leishmania
braziliensis N-misristoyltransferase (LbNMT) inhibitors, a hierarchical virtual screening
method based on the pharmacophore model, molecular docking, and molecular dynamics
was used. PyMol is a structure visualization tool. We generated 3D images of proteins after
downloading their structure from the RCSB-PDB database.
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Table 5. List of proteins and drugs explored by the structure-based drug design against different
Leishmania species. The cartoon model of the protein structure was generated using the PyMol tool and
shown in different colors. The 2D structures of the compounds were generated by ChemSketch 3D.

S. No Leishmania
Spp. Target Proteins Structure of the Protein Compound Ref.

1. Leishmania
major

N-myristoyl
transferase

(PDBID: 5A27)
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of a natural product data collection containing 800 different chemical entities was 

conducted against the crystal structure of the Leishmania infantum trypanothione reductase 

(PDB ID: 2JK6). The different potential orientations that inhibitors can achieve in the active 
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inhibitor interactions [234]. This opportunity to find natural compounds with potential 

anti-leishmanial action has been made possible by this computational approach. 

Computational methods were also used to target certain Leishmania pathways and 
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antimalarial drugs and various glycolytic enzymes such as pyruvate kinase, 
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dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase have been discovered 

through molecular docking analysis. Another pathway study recommended important 

enzymes such as trypanothione reductase (TR), a key player in redox homeostasis, and 

tryparedoxin peroxidase. The active site of these enzymes exhibits an elective binding 

profile for ligands, according to the molecular docking data [75,233,235–237] (Figure 4). 
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According to the docking, ZINC35426134 binding is thought to stabilize the enzyme.
As a result, the chosen molecule may interact with the suggested target, which supports
the SBDD strategy [232]. To find prospective lead compounds, in silico virtual screening
of a natural product data collection containing 800 different chemical entities was con-
ducted against the crystal structure of the Leishmania infantum trypanothione reductase
(PDB ID: 2JK6). The different potential orientations that inhibitors can achieve in the
active site of trypanothione reductase have been deduced from the foot printing of protein–
inhibitor interactions [234]. This opportunity to find natural compounds with potential
anti-leishmanial action has been made possible by this computational approach. Com-
putational methods were also used to target certain Leishmania pathways and associated
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enzymes. One of the vital processes for Leishmania survival and pathogenicity is the gly-
colytic pathway. Intriguing interactions between various FDA-approved and antimalarial
drugs and various glycolytic enzymes such as pyruvate kinase, triosephosphate isomerase,
glucose-6-phosphate isomerase, glycerol-3-phosphate dehydrogenase, and glyceraldehyde-
3-phosphate dehydrogenase have been discovered through molecular docking analysis.
Another pathway study recommended important enzymes such as trypanothione reductase
(TR), a key player in redox homeostasis, and tryparedoxin peroxidase. The active site of
these enzymes exhibits an elective binding profile for ligands, according to the molecular
docking data [75,233,235–237] (Figure 4). The interest in bioinformatics with respect to the
cellular and molecular interactions has increased. The bioinformatics-based structure-based
drug design (SBDD) approach has gained attention and has benefitted the search for novel
drugs against leishmaniasis.

6. Future Perspectives

Understanding drug sensitivity and resistance is critical to safeguarding the efficacy
of existing treatment options and to introduce new drugs in the future. Drug resistance is a
critically important issue in leishmaniasis. Chemotherapy in leishmaniasis is plagued with
drug resistance, which is evident from the less than desired clinical success rates, emergence
of resistance, widespread toxicity, and/or cost of current drugs, suggesting an urgent need
for new effective alternatives. Additionally, new effective preclinical studies in experimental
animal models representing the various forms of the disease manifestations are needed. It is
extremely important to study the appropriate animal models to test novel drug candidates.
Preclinical evaluation should be agreed upon and compared with the works of other
investigators. The adoption of combination therapy is important for extensive clinical tests
of combination schemes to introduce quantitative and qualitative changes in therapy. The
goal for new effective drug development needs result-oriented collaborative research in
leishmaniasis, specifically in VL, due to its alarming record of fatality. The development of
new, modern, cost-effective species-specific diagnostic methods needs to be explored for
wide accessibility for cutaneous and visceral forms of the disease.

Proposed actions to select preclinical candidates for the treatment of VL.
1. Stronger need to find a broader range of active molecules, either new or repurposed,

against Leishmania. Repurposed drugs need to be ‘true-and-tried’ with possible better
outcomes in clinical management. New small molecules are desired as anti-leishmania
drug candidates with reference to their effectiveness and low toxicity as well as their low
market price.

2. Identification of multitarget drugs with a strong assurance of success. New drug
discovery poses some challenges due to the complexity of having to validate action on the
various targets. The application of computational chemistry is important for the initial
screening and for application in multitarget quantitative structure analysis relationship
analysis to predict the activity of a compound with a single model.

3. Validation of mean throughput systems (MHSs) and high throughput systems
(HTSs) by means of a revision of the targets and parasite stages including the relevant
parasitic stage (i.e., intracellular amastigotes) and validated molecular or pathway tar-
get. Avoidance of irrelevant targets by combining automatic and phenotypic screening
is necessary.

4. Application of machine learning (ML) and artificial intelligence (AI) as novel
approaches to overcome challenges, viz., the cost of developing new drugs, systemic
toxicity, and evolving drug resistance with reference to the current regime of antileishmanial
chemotherapeutics. Attention should be given to the growth of computer processing and
the development of advanced algorithms. ML algorithms and AI can be instrumental in
various applications of drug discovery and improve the current process and understanding
of the cause and prevention of failure in clinical trials and regulatory approval.

5. ML and AI could screen millions of compounds to predict the optimal binding that
potentially inhibits the function of parasites Leishmania or Trypanosoma, presenting proper
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PK/PD properties to enter clinical trials. DNDi and other PDPs sought to proceed on the
scale required for drug discovery.

6. ML can be employed to address the drug resistance issue that has emerged in NTD
pathologies. Protein transporters (P-gp, ABC transporter, etc.) play an important role in
less than optimum uptake or enhanced efflux of the drug from the pathogen and initiate
drug resistance. Computer-aided algorithms may identify the parasite-specific motifs of
the responsible protein transporters in Leishmania, facilitate the allosteric modulation of
drug transporters, and subsequently reduce parasite resistance.

7. Appropriate and high-content transparent evaluation of the safety and toxicity in
suitable models is necessary. Evaluation of the selectivity index ex vivo (against amastig-
otes) and toxicity in vivo (maximum tolerated dose in a standard animal model) needs to be
performed. Ethical requirements and scientific evidence should be implemented for in vivo
preclinical trials performed in surrogate or advanced models that need supervision from
specialists (e.g., veterinarians) with expertise in the pathophysiology of animal models.

8. Stringent evaluation of the effective concentration (EC) is needed. EC90 instead of
EC50 is appropriate to reduce the number of potential hits to be tested for leishmanicidal
potential in vitro and ex vivo. A combination of stringent EC90 and unbiased, transparent
experimental animal studies should be adopted to reach further conclusions.

9. PK/PD characterization of new inhibitors/drugs including administration routes
and the inclusion of standard animal models (e.g., mice, hamsters) and nonrodents (e.g.,
dogs) must be preceded by preliminary pharmacological characterization (e.g., snapshot
method) to determine the major pharmacological parameters (AUC, availability, half-life,
excretion rate, biodistribution of the molecule, etc.). The evaluation of new molecules for
in vivo antileishmanial efficacy without mandatory scientific or ethical justification may
be risky and potentially nonbeneficial. Collaboration between medicinal chemists and
pharmacists, immunologists, and physiologists may improve the selection of a suitable
molecule for optimal presentation.

10. Socioeconomical and anthropological issues cannot be ignored in drug discovery
aspects of NTDs. Human-driven environmental occurrences including deforestation, cli-
mate change, and migration contribute greatly to the dissemination of diseases such as
leishmaniasis including alterations in the sylvatic and domestic cycles of parasites. This
also increases resistance events and the possibility of encountering exotic strains with
unknown pathophysiology. The use of standard drugs such as miltefosine in combination
with newly characterized parasite-specific exclusive drugs may be a pathfinder in this kind
of scenario.

7. Conclusions

New drug discovery in leishmaniasis is rooted in trial-and-error strategies based
purely on phenotypic screenings and occasional testing in animal models of the disease.
Despite significant advancements in therapeutics, understanding of the more intricate
molecular aspects of the disease including parasite biology and cellular and molecular
mechanisms of host–parasite interactions still baffles the entire spectrum of health care
professionals. This paradigm reflects many unknown issues regarding trypanosomatids,
specifically their drug resistance and antigenic variation potential, which is likely to be
related to the cellular and molecular aspects of the disease. With the advent of the genome
project in early 2000, followed by the development of a wide array of computational
software and databases, the exploration of new drugs against parasitic diseases including
trypanosomatids has gained momentum. The role of pharmaceutical companies, not-for-
profit organizations, and academic or research institutions have together brought scientific
and technological developments in the areas of genomics, proteomics, and structural
biology targeting NTDs including leishmaniasis. The contribution of data banks and
virtual platforms viz. Sanger Institute’s GeneDB, TDR Targets Database (WHO), etc. have
been made available and organize the data of the Leishmania species, emphasizing particular
gene sequences and functions connecting diverse protein and small molecule libraries. The
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TDR Targets Database algorithm can generate privileged combinations of novel molecular
targets and compounds for experimental evaluation. LmSmdB (Leishmania major and
Schistosoma mansoni database) is a comprehensive database that uses computation to
account for biological networks and regulatory pathways. It streamlines and simplifies
the procedure for integrating the chemicals, genes, and protein structure in order to model
a disease network and assist in the selection of a molecular target. Another database,
LeishMicrosatDB (Leishmania Microsatellite Database), helps in the genome-wise mining
and distribution of microsatellites throughout the parasite genome. The purpose of this is
to give parasitologists a platform to comprehend the characterization, mapping, phylogeny,
and evolutionary analysis of genomes. The database can assist scientists choose markers
at specific intervals across the chromosomes, which can be useful for immunoinformatics
investigations and diagnostics. These details produce a crucial understanding of parasite
diversity and molecular machinery, which is a critical factor for developing broad-spectrum
antileishmanial drugs. DeepMind created an artificial intelligence (AI)-based system called
AlphaFold. Based on the arrangement of the amino acids in a protein, it predicts the three-
dimensional structure of the protein. This tool is also gaining interest in target structure
prediction and making contributions to drug design [238,239].

This information generates a key understanding of interspecies variability and molec-
ular machinery in parasites, which is a critical factor for developing broad-spectrum
antileishmanial drugs. The Drugs for Neglected Diseases initiative (DNDi) is another Lead
Optimization Latin America (LOLA) consortium focused on preclinical assessment includ-
ing the pharmacokinetic efficacy and safety of the designed drugs. Chemoinformatics, in
addition to experimental evaluation including in vitro and in vivo animal model studies,
could provide the structure–property and structure–activity relationships that could guide
the design of optimized products.
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APX Ascorbate peroxidase
CL Cutaneous leishmaniasis
DB Database
DHFR Dihydrofolate reductase
DHFR-TS Bifunctional dihydrofolate reductase-thymidylate synthase
FDA Food and Drug Administration
GAPDH glyceraldehyde 3-phosphate dehydrogenase
H2O2 Hydrogen peroxide
HIV human immunodeficiency virus
HMGR HMG-CoA reductase
mRNA Messenger RNA
PDB Protein Data Bank
PKDL Post Kala-azar dermal leishmaniasis
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PLGA poly lactic acid (PLA) and poly glycolic acid (PGA)
PRP1 Proline-rich protein 1
PTR1 Pteridine reductase 1
ROS Reactive oxygen species
Top1 DNA topoisomerase I
TR Trypanothione reductase
UDP Uridine diphosphate
UGM UDP-galactopyranose mutase
VL Visceral leishmaniasis
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190. Stevanović, S.; Perdih, A.; Senćanski, M.; Glišić, S.; Duarte, M.; Tomás, A.M.; Sena, F.V.; Sousa, F.M.; Pereira, M.M.; Solmajer, T. In
Silico Discovery of a Substituted 6-Methoxy-Quinalidine with Leishmanicidal Activity in Leishmania Infantum. Molecules 2018,
23, 772. [CrossRef]

191. Cordeiro, A.T.; Feliciano, P.R.; Pinheiro, M.P.; Nonato, M.C. Crystal Structure of Dihydroorotate Dehydrogenase from Leishmania
Major. Biochimie 2012, 94, 1739–1748. [CrossRef]

192. Mamidala, R.; Majumdar, P.; Jha, K.K.; Bathula, C.; Agarwal, R.; Chary, M.T.; Majumder, H.K.; Munshi, P.; Sen, S. Identification of
Leishmania Donovani Topoisomerase 1 Inhibitors via Intuitive Scaffold Hopping and Bioisosteric Modification of Known Top
1 Inhibitors. Sci. Rep. 2016, 6, 26603. [CrossRef]

193. Pommier, Y.; Sun, Y.; Huang, S.-Y.N.; Nitiss, J.L. Roles of Eukaryotic Topoisomerases in Transcription, Replication and Genomic
Stability. Nat. Rev. Mol. Cell. Biol. 2016, 17, 703–721. [CrossRef]

194. Fiorillo, A.; Colotti, G.; Boffi, A.; Baiocco, P.; Ilari, A. The Crystal Structures of the Tryparedoxin-Tryparedoxin Peroxidase Couple
Unveil the Structural Determinants of Leishmania Detoxification Pathway. PLoS Negl. Trop. Dis. 2012, 6, e1781. [CrossRef]

195. Chen, C.Y.-C. A Novel Integrated Framework and Improved Methodology of Computer-Aided Drug Design. Curr. Top. Med.
Chem. 2013, 13, 965–988. [CrossRef] [PubMed]

https://doi.org/10.1016/j.gdata.2015.12.012
https://doi.org/10.1093/database/bau078
https://doi.org/10.1371/journal.pntd.0005368
https://doi.org/10.1093/database/bax047
https://doi.org/10.1186/1756-0500-7-802
https://doi.org/10.1038/msb.2008.15
https://www.ncbi.nlm.nih.gov/pubmed/18364711
https://doi.org/10.1038/s41586-018-0356-z
https://www.ncbi.nlm.nih.gov/pubmed/30046105
https://doi.org/10.3389/fphar.2020.590544
https://www.ncbi.nlm.nih.gov/pubmed/33390966
https://doi.org/10.1016/j.ijantimicag.2018.12.011
https://doi.org/10.1128/AAC.01766-19
https://doi.org/10.3109/10799893.2016.1171344
https://doi.org/10.1007/s10822-016-9921-4
https://doi.org/10.1042/EBC20170052
https://doi.org/10.3390/molecules200713384
https://doi.org/10.1016/j.genrep.2017.09.003
https://doi.org/10.1074/jbc.M110.209593
https://doi.org/10.1371/journal.ppat.1005658
https://www.ncbi.nlm.nih.gov/pubmed/27191844
https://doi.org/10.1111/cbdd.13326
https://doi.org/10.1038/srep42303
https://www.ncbi.nlm.nih.gov/pubmed/28181562
https://doi.org/10.3390/molecules23040772
https://doi.org/10.1016/j.biochi.2012.04.003
https://doi.org/10.1038/srep26603
https://doi.org/10.1038/nrm.2016.111
https://doi.org/10.1371/journal.pntd.0001781
https://doi.org/10.2174/1568026611313090002
https://www.ncbi.nlm.nih.gov/pubmed/23651478


Pathogens 2023, 12, 706 35 of 36

196. Yousefinejad, S.; Hemmateenejad, B. Chemometrics Tools in QSAR/QSPR Studies: A Historical Perspective. Chemom. Intell. Lab.
Syst. 2015, 149, 177–204. [CrossRef]

197. Kashif, M.; Tabrez, S.; Husein, A.; Arish, M.; Kalaiarasan, P.; Manna, P.P.; Subbarao, N.; Akhter, Y.; Rub, A. Identification of Novel
Inhibitors against UDP-Galactopyranose Mutase to Combat Leishmaniasis. J. Cell. Biochem. 2018, 119, 2653–2665. [CrossRef]
[PubMed]

198. Kashif, M.; Manna, P.; Akhter, Y.; Alaidarous, M.; Rub, A. The Screening of Novel Inhibitors against Leishmania Donovani
Calcium Ion Channel to Fight Leishmaniasis. Infect. Disord. Drug. Targets (Former. Curr. Drug. Targets Infect. Disord.) 2016, 16,
120–129. [CrossRef]

199. Rodriguez-Contreras, D.; Hamilton, N. Gluconeogenesis in Leishmania Mexicana: Contribution of Glycerol Kinase, Phospho-
enolpyruvate Carboxykinase, and Pyruvate Phosphate Dikinase. J. Biol. Chem. 2014, 289, 32989–33000. [CrossRef] [PubMed]

200. Palayam, M.; Lakshminarayanan, K.; Radhakrishnan, M.; Krishnaswamy, G. Preliminary Analysis to Target Pyruvate Phosphate
Dikinase from Wolbachia Endosymbiont of Brugia Malayi for Designing Anti-Filarial Agents. Interdiscip. Sci. Comput. Life Sci.
2012, 4, 74–82. [CrossRef]

201. Amaro, R.E.; Baron, R.; McCammon, J.A. An Improved Relaxed Complex Scheme for Receptor Flexibility in Computer-Aided
Drug Design. J. Comput. Aided Mol. Des. 2008, 22, 693–705. [CrossRef]

202. Wu, C.; Dunaway-Mariano, D.; Mariano, P.S. Design, Synthesis, and Evaluation of Inhibitors of Pyruvate Phosphate Dikinase.
Available online: https://pubs.acs.org/doi/pdf/10.1021/jo3018473 (accessed on 10 November 2022).

203. Beverley, S.M.; Owens, K.L.; Showalter, M.; Griffith, C.L.; Doering, T.L.; Jones, V.C.; McNeil, M.R. Eukaryotic UDP-
Galactopyranose Mutase (GLF Gene) in Microbial and Metazoal Pathogens. Eukaryotic Cell. 2005, 4, 1147–1154. [CrossRef]

204. Oppenheimer, M.; Valenciano, A.L.; Sobrado, P. Isolation and Characterization of Functional Leishmania Major Virulence Factor
UDP-Galactopyranose Mutase. Biochem. Biophys. Res. Commun. 2011, 407, 552–556. [CrossRef]

205. Kumar, A.; Das, S.; Purkait, B.; Sardar, A.H.; Ghosh, A.K.; Dikhit, M.R.; Abhishek, K.; Das, P. Ascorbate Peroxidase, a Key
Molecule Regulating Amphotericin B Resistance in Clinical Isolates of Leishmania Donovani. Antimicrob. Agents Chemother. 2014,
58, 6172–6184. [CrossRef]

206. Dolai, S.; Yadav, R.K.; Pal, S.; Adak, S. Overexpression of Mitochondrial Leishmania Major Ascorbate Peroxidase Enhances
Tolerance to Oxidative Stress-Induced Programmed Cell Death and Protein Damage. Eukaryotic Cell. 2009, 8, 1721–1731. [CrossRef]

207. Pal, S.; Dolai, S.; Yadav, R.K.; Adak, S. Ascorbate Peroxidase from Leishmania Major Controls the Virulence of Infective Stage of
Promastigotes by Regulating Oxidative Stress. PLoS ONE 2010, 5, e11271. [CrossRef] [PubMed]

208. Sardar, A.H.; Kumar, S.; Kumar, A.; Purkait, B.; Das, S.; Sen, A.; Kumar, M.; Sinha, K.K.; Singh, D.; Equbal, A.; et al. Proteome
Changes Associated with Leishmania Donovani Promastigote Adaptation to Oxidative and Nitrosative Stresses. J. Proteom. 2013,
81, 185–199. [CrossRef] [PubMed]

209. Chou, T.-F.; Bulfer, S.L.; Weihl, C.C.; Li, K.; Lis, L.G.; Walters, M.A.; Schoenen, F.J.; Lin, H.J.; Deshaies, R.J.; Arkin, M.R. Specific
Inhibition of P97/VCP ATPase and Kinetic Analysis Demonstrate Interaction between D1 and D2 ATPase Domains. J. Mol. Biol.
2014, 426, 2886–2899. [CrossRef] [PubMed]

210. Chou, T.-F.; Li, K.; Frankowski, K.J.; Schoenen, F.J.; Deshaies, R.J. Structure–Activity Relationship Study Reveals ML240 and
ML241 as Potent and Selective Inhibitors of P97 ATPase. ChemMedChem 2013, 8, 297–312. [CrossRef]

211. Chou, T.-F.; Brown, S.J.; Minond, D.; Nordin, B.E.; Li, K.; Jones, A.C.; Chase, P.; Porubsky, P.R.; Stoltz, B.M.; Schoenen, F.J.; et al.
Reversible Inhibitor of P97, DBeQ, Impairs Both Ubiquitin-Dependent and Autophagic Protein Clearance Pathways. Proc. Natl.
Acad. Sci. USA 2011, 108, 4834–4839. [CrossRef]

212. Guedes Aguiar, B.; Padmanabhan, P.K.; Dumas, C.; Papadopoulou, B. Valosin-Containing Protein VCP/P97 Is Essential for
the Intracellular Development of Leishmania and Its Survival under Heat Stress. Cell. Microbiol. 2018, 20, e12867. [CrossRef]
[PubMed]

213. Misra, S.; Naskar, K.; Sarkar, D.; Ghosh, D.K. Role of Ca2+ Ion on Leishmania-Macrophage Attachment. Mol. Cell. Biochem. 1991,
102, 13–18. [CrossRef]

214. Zhivotovsky, B.; Orrenius, S. Calcium and Cell Death Mechanisms: A Perspective from the Cell Death Community. Cell. Calcium
2011, 50, 211–221. [CrossRef]

215. Batool, M.; Ahmad, B.; Choi, S. A Structure-Based Drug Discovery Paradigm. Int. J. Mol. Sci. 2019, 20, 2783. [CrossRef]
216. Raj, S.; Sasidharan, S.; Balaji, S.N.; Saudagar, P. An Overview of Biochemically Characterized Drug Targets in Metabolic Pathways

of Leishmania Parasite. Parasitol. Res. 2020, 119, 2025–2037. [CrossRef]
217. Dykhuizen, E.C.; May, J.F.; Tongpenyai, A.; Kiessling, L.L. Inhibitors of UDP-Galactopyranose Mutase Thwart Mycobacterial

Growth. J. Am. Chem. Soc. 2008, 130, 6706–6707. [CrossRef] [PubMed]
218. Kizjakina, K.; Tanner, J.J.; Sobrado, P. Targeting UDP-Galactopyranose Mutases from Eukaryotic Human Pathogens. Curr. Pharm.

Des. 2013, 19, 2561–2573. [CrossRef] [PubMed]
219. Pedersen, L.L.; Turco, S.J. Galactofuranose Metabolism: A Potential Target for Antimicrobial Chemotherapy. CMLS Cell. Mol. Life

Sci. 2003, 60, 259–266. [CrossRef] [PubMed]
220. Damveld, R.A.; Franken, A.; Arentshorst, M.; Punt, P.J.; Klis, F.M.; van den Hondel, C.A.M.J.J.; Ram, A.F.J. A Novel Screening

Method for Cell Wall Mutants in Aspergillus Niger Identifies UDP-Galactopyranose Mutase as an Important Protein in Fungal
Cell Wall Biosynthesis. Genetics 2008, 178, 873–881. [CrossRef]

https://doi.org/10.1016/j.chemolab.2015.06.016
https://doi.org/10.1002/jcb.26433
https://www.ncbi.nlm.nih.gov/pubmed/29058760
https://doi.org/10.2174/1871526516666161230124513
https://doi.org/10.1074/jbc.M114.569434
https://www.ncbi.nlm.nih.gov/pubmed/25288791
https://doi.org/10.1007/s12539-011-0109-2
https://doi.org/10.1007/s10822-007-9159-2
https://pubs.acs.org/doi/pdf/10.1021/jo3018473
https://doi.org/10.1128/EC.4.6.1147-1154.2005
https://doi.org/10.1016/j.bbrc.2011.03.057
https://doi.org/10.1128/AAC.02834-14
https://doi.org/10.1128/EC.00198-09
https://doi.org/10.1371/journal.pone.0011271
https://www.ncbi.nlm.nih.gov/pubmed/20585663
https://doi.org/10.1016/j.jprot.2013.01.011
https://www.ncbi.nlm.nih.gov/pubmed/23376486
https://doi.org/10.1016/j.jmb.2014.05.022
https://www.ncbi.nlm.nih.gov/pubmed/24878061
https://doi.org/10.1002/cmdc.201200520
https://doi.org/10.1073/pnas.1015312108
https://doi.org/10.1111/cmi.12867
https://www.ncbi.nlm.nih.gov/pubmed/29895095
https://doi.org/10.1007/BF00232154
https://doi.org/10.1016/j.ceca.2011.03.003
https://doi.org/10.3390/ijms20112783
https://doi.org/10.1007/s00436-020-06736-x
https://doi.org/10.1021/ja8018687
https://www.ncbi.nlm.nih.gov/pubmed/18447352
https://doi.org/10.2174/1381612811319140007
https://www.ncbi.nlm.nih.gov/pubmed/23116395
https://doi.org/10.1007/s000180300021
https://www.ncbi.nlm.nih.gov/pubmed/12678491
https://doi.org/10.1534/genetics.107.073148


Pathogens 2023, 12, 706 36 of 36

221. Schmalhorst, P.S.; Krappmann, S.; Vervecken, W.; Rohde, M.; Müller, M.; Braus, G.H.; Contreras, R.; Braun, A.; Bakker, H.;
Routier, F.H. Contribution of Galactofuranose to the Virulence of the Opportunistic Pathogen Aspergillus Fumigatus. Eukaryotic
Cell. 2008, 7, 1268–1277. [CrossRef] [PubMed]

222. Kleczka, B.; Lamerz, A.-C.; van Zandbergen, G.; Wenzel, A.; Gerardy-Schahn, R.; Wiese, M.; Routier, F.H. Targeted Gene Deletion
of Leishmania Major UDP-Galactopyranose Mutase Leads to Attenuated Virulence. J. Biol. Chem. 2007, 282, 10498–10505.
[CrossRef] [PubMed]

223. Misra, S.; Valicherla, G.R.; Shahab, M.; Gupta, J.; Gayen, J.R.; Misra-Bhattacharya, S. UDP-Galactopyranose Mutase, a Potential
Drug Target against Human Pathogenic Nematode Brugia Malayi. Pathog. Dis. 2016, 74, ftw072. [CrossRef]

224. de Souza Moreira, D.; Xavier, M.V.; Murta, S.M.F. Ascorbate Peroxidase Overexpression Protects Leishmania Braziliensis against
Trivalent Antimony Effects. Mem. Inst. Oswaldo Cruz 2018, 113, 1–5. [CrossRef]

225. Singh, K.; Ali, V.; Pratap Singh, K.; Gupta, P.; Suman, S.S.; Ghosh, A.K.; Bimal, S.; Pandey, K.; Das, P. Deciphering the Interplay
between Cysteine Synthase and Thiol Cascade Proteins in Modulating Amphotericin B Resistance and Survival of Leishmania
Donovani under Oxidative Stress. Redox Biol. 2017, 12, 350–366. [CrossRef]

226. Das, S.; Aich, A.; Shaha, C. The Complex World of Cellular Defense in the Leishmania Parasite. Proc. Indian. Natl. Sci. Acad. 2015,
81, 629–641. [CrossRef]

227. Adak, S.; Datta, A.K. Leishmania Major Encodes an Unusual Peroxidase That Is a Close Homologue of Plant Ascorbate Peroxidase:
A Novel Role of the Transmembrane Domain. Biochem. J. 2005, 390, 465–474. [CrossRef] [PubMed]

228. Dolai, S.; Yadav, R.K.; Pal, S.; Adak, S. Leishmania Major Ascorbate Peroxidase Overexpression Protects Cells against Reactive
Oxygen Species-Mediated Cardiolipin Oxidation. Free. Radic. Biol. Med. 2008, 45, 1520–1529. [CrossRef] [PubMed]

229. Seguin, S.J.; Morelli, F.F.; Vinet, J.; Amore, D.; De Biasi, S.; Poletti, A.; Rubinsztein, D.C.; Carra, S. Inhibition of Autophagy,
Lysosome and VCP Function Impairs Stress Granule Assembly. Cell. Death Differ. 2014, 21, 1838–1851. [CrossRef] [PubMed]

230. Mansuri, R.; Kumar, A.; Rana, S.; Panthi, B.; Ansari, M.Y.; Das, S.; Dikhit, M.R.; Sahoo, G.C.; Das, P. In Vitro Evaluation of
Antileishmanial Activity of Computationally Screened Compounds against Ascorbate Peroxidase To Combat Amphotericin B
Drug Resistance. Antimicrob. Agents Chemother. 2017, 61, e02429-16. [CrossRef]

231. Saavedra-Lira, E.; Pérez-Montfort, R. Energy Production in Entamoeba Histolytica: New Perspectives in Rational Drug Design.
Arch. Med. Res. 1996, 27, 257–264.

232. de Carvalho Gallo, J.C.; de Mattos Oliveira, L.; Araújo, J.S.C.; Santana, I.B.; dos Santos Junior, M.C. Virtual Screening to Identify
Leishmania Braziliensis N-Myristoyltransferase Inhibitors: Pharmacophore Models, Docking, and Molecular Dynamics. J. Mol.
Model. 2018, 24, 260. [CrossRef]

233. Gundampati, R.K.; Sahu, S.; Shukla, A.; Pandey, R.K.; Patel, M.; Banik, R.M.; Jagannadham, M.V. Tryparedoxin Peroxidase of
Leishmania Braziliensis: Homology Modeling and Inhibitory Effects of Flavonoids for Anti-Leishmanial Activity. Bioinformation
2014, 10, 353–357. [CrossRef]

234. Venkatesan, S.K.; Saudagar, P.; Shukla, A.K.; Dubey, V.K. Screening Natural Products Database for Identification of Potential
Antileishmanial Chemotherapeutic Agents. Interdiscip. Sci. 2011, 3, 217–231. [CrossRef]

235. Maamri, S.; Benarous, K.; Yousfi, M. Identification of 3-Methoxycarpachromene and Masticadienonic Acid as New Target
Inhibitors against Trypanothione Reductase from Leishmania Infantum Using Molecular Docking and ADMET Prediction.
Molecules 2021, 26, 3335. [CrossRef]

236. Inacio, J.D.F.; Fonseca, M.S.; Limaverde-Sousa, G.; Tomas, A.M.; Castro, H.; Almeida-Amaral, E.E. Epigallocathechin-O-3-Gallate
Inhibits Trypanothione Reductase of Leishmania Infantum, Causing Alterations in Redox Balance and Leading to Parasite Death.
Front. Cell. Infect. Microbiol. 2021, 11, 640561. [CrossRef]

237. Amiri-Dashatan, N.; Rezaei-Tavirani, M.; Ranjbar, M.M.; Koushki, M.; Mousavi Nasab, S.D.; Ahmadi, N. Discovery of Novel
Pyruvate Kinase Inhibitors Against Leishmania Major Among FDA Approved Drugs Through System Biology and Molecular
Docking Approach. Turk. J. Pharm. Sci. 2021, 18, 710–717. [CrossRef] [PubMed]

238. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]
[PubMed]

239. Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al.
AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-
Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1128/EC.00109-08
https://www.ncbi.nlm.nih.gov/pubmed/18552284
https://doi.org/10.1074/jbc.M700023200
https://www.ncbi.nlm.nih.gov/pubmed/17284446
https://doi.org/10.1093/femspd/ftw072
https://doi.org/10.1590/0074-02760180377
https://doi.org/10.1016/j.redox.2017.03.004
https://doi.org/10.16943/ptinsa/2015/v81i3/48223
https://doi.org/10.1042/BJ20050311
https://www.ncbi.nlm.nih.gov/pubmed/15850459
https://doi.org/10.1016/j.freeradbiomed.2008.08.029
https://www.ncbi.nlm.nih.gov/pubmed/18822369
https://doi.org/10.1038/cdd.2014.103
https://www.ncbi.nlm.nih.gov/pubmed/25034784
https://doi.org/10.1128/AAC.02429-16
https://doi.org/10.1007/s00894-018-3791-8
https://doi.org/10.6026/97320630010353
https://doi.org/10.1007/s12539-011-0101-x
https://doi.org/10.3390/molecules26113335
https://doi.org/10.3389/fcimb.2021.640561
https://doi.org/10.4274/tjps.galenos.2021.53367
https://www.ncbi.nlm.nih.gov/pubmed/34978400
https://doi.org/10.1038/s41586-021-03819-2
https://www.ncbi.nlm.nih.gov/pubmed/34265844
https://doi.org/10.1093/nar/gkab1061
https://www.ncbi.nlm.nih.gov/pubmed/34791371

	Introduction 
	Chemotherapy in Leishmaniasis: Current Drugs, Limitations, and Challenges 
	Antimonials 
	Amphotericin 
	Miltefosine 
	Pentamidine 
	Paromomycin 

	Drug Resistance and Significance of Combination Therapy 
	Structure- and Ligand-Based Drug Design: Antileishmanial Drug Discovery 
	Structure-Based Drug Design (SBDD) 
	Ligand-Based Drug Design 

	Design of Novel Drug Targets: Experience from our Laboratories 
	Pyruvate Phosphate Dikinase Inhibitor against Leishmania donovani 
	UDP-Galactopyranose Mutase of Leishmania Is a Drug Target 
	Targeting Ascorbate Peroxidase of Leishmania 
	Screening of Novel Inhibitors against Calcium ion Channels of Leishmania 
	Molecular and Cellular Aspects of Novel Drug Design 

	Future Perspectives 
	Conclusions 
	References

