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Abstract: Background: Dysregulation of the immune response in the course of COVID-19 has been
implicated in critical outcomes. Lymphopenia is evident in severe cases and has been associated
with worse outcomes since the early phases of the pandemic. In addition, cytokine storm has been
associated with excessive lung injury and concomitant respiratory failure. However, it has also
been hypothesized that specific lymphocyte subpopulations (CD4 and CD8 T cells, B cells, and NK
cells) may serve as prognostic markers for disease severity. The aim of this study was to investigate
possible associations of lymphocyte subpopulations alterations with markers of disease severity
and outcomes in patients hospitalized with COVID-19. Materials/Methods: A total of 42 adult
hospitalized patients were included in this study, from June to July 2021. Flow-cytometry was used
to calculate specific lymphocyte subpopulations on day 1 (admission) and on day 5 of hospitalization
(CD45, CD3, CD3CD8, CD3CD4, CD3CD4CD8, CD19, CD16CD56, CD34RA, CD45RO). Markers of
disease severity and outcomes included: burden of disease on CT (% of affected lung parenchyma
injury), C-reactive protein and interleukin-6 levels. PO2/FiO2 ratio and differences in lymphocytes
subsets between two timepoints were also calculated. Logistic and linear regressions were used for
the analyses. All analyses were performed using Stata (version 13.1; Stata Corp, College Station, TX,
USA). Results: Higher levels of CD16CD56 cells (Natural Killer cells) were associated with higher risk
of lung injury (>50% of lung parenchyma). An increase in CD3CD4 and CD4RO cell count difference
between day 5 and day 1 resulted in a decrease of CRP difference between these timepoints. On the
other hand, CD45RARO difference was associated with an increase in the difference of CRP levels
between the two timepoints. No other significant differences were found in the rest of the lymphocyte
subpopulations. Conclusions: Despite a low patient number, this study showed that alterations in
lymphocyte subpopulations are associated with COVID-19 severity markers. It was observed that an
increase in lymphocytes (CD4 and transiently CD45RARO) resulted in lower CRP levels, perhaps
leading to COVID-19 recovery and immune response homeostasis. However, these findings need
further evaluation in larger scale trials.

Keywords: COVID-19; T lymphocytes; lymphocyte subpopulations; inflammatory biomarkers

1. Introduction

SARS-CoV-2 infection leads to activation of the immune system. Activated B lym-
phocytes through the production of antibodies (IgM, IgA and IgG) along with activated
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CD4+ and CD8+ T lymphocytes respond to viral entry and finally lead to protective immu-
nity [1,2]. This antibody-mediated immunity pathway led to the development of effective
vaccines against SARS-CoV-2 infection and the use of convalescent plasma with neutraliz-
ing capability from recovered COVID-19 patients in the initial stages of the pandemic [3–5].
On the other hand, specific CD4+ and CD8+ T cell subpopulations exert a key role in T
cell-mediated immunity [2,6,7]. T lymphocytes exert a key role in viral infections. CD4+ T
cells orchestrate the immune response and can help B cell stimulation, resulting in antibody
production. CD8+ T cells, through their cytotoxic action, eliminate infected cells, which
consequently leads to a reduced viral load [2].

However, dysregulation of the immune response can lead to severe forms of COVID-19
disease [8]. In these cases, an increase in serum inflammatory cytokine levels [e.g., interleukin-
6 (IL-6)] is commonly observed [9–12]. Furthermore, several studies have reported the
presence of lymphopenia (especially in CD4+ and CD8+ T cells) in COVID-19 patients. Of
note, lymphopenia has been identified as a common characteristic in moderate and severe
COVID-19. In addition, several studies have shown that decreased CD8+ T cell levels are
associated with worse COVID-19 outcomes, in terms of severity and mortality [12–17]. On
the other hand, patients with mild symptomatology often present with normal or elevated
counts of T cell subpopulations [15,18].

Despite the growing evidence regarding the mechanisms of this maladaptive immune
response, the association between cytokine levels and lymphocyte subpopulations’ reg-
ulation remains largely unclear. The aim of this study was to describe the association
of lymphocyte subpopulations with markers of disease severity and outcomes in adult
hospitalized COVID-19 patients.

2. Materials and Methods
2.1. Study Population

Patients were hospitalized in the Infectious Diseases Unit of the University Hospital of
Ioannina. Adult patients with COVID-19 disease hospitalized between June and July 2021
were randomly selected for inclusion in the study. SARS-CoV-2 infection was diagnosed by
the reverse transcriptase–polymerase chain reaction (RT-PCR) test on nasopharyngeal swab
specimens. This study was part of a larger COVID-19 hospitalized patient cohort study,
which was approved by the Institutional Ethics Committee of the University Hospital of
Ioannina [Protocol Number: 5/11-03-2021 (issue:3)/The University Hospital of Ioannina
COVID-19 Registry, NCT05534074]. Epidemiological, clinical, and laboratory parameters
were obtained from the University Hospital of Ioannina COVID-19 Registry. Data were
imported in a digital database anonymously with a personal identifier code for each patient,
as prespecified by study protocol. Data collection was conducted following the highest
standards of European Guidelines for Good Clinical and Laboratory Practice in Research
Studies/Protocols and in accordance with the Helsinki Declaration. Each patient included
in this study provided a written informed consent.

Patient demographics and duration of symptoms (days) were documented on admis-
sion (day 1). Burden of lung disease on Computed Tomography (CT) was defined as the
percentage (%) of affected lung parenchyma. Calculation of lung involvement was made
similarly to Chung et al. [19]. In this study, each of the five lung lobes was assessed for
the degree of involvement and classified as none (0%), minimal (1–25%), mild (26–50%),
moderate (51–75%), or severe (76–100%) [19]. In the present study lung involvement was
calculated based on 2 axes: (1) in the evaluation of the entire lung parenchyma, simple
approximation was as follows: 25% of lung parenchyma referred to each one of the lower
lobes while 15% referred to each upper and middle lobe, respectively; (2) classification of
severity was defined as: minimum (<10%), moderate (11–25%), important (26–50%), severe
(51–75%), and critical (>75%), respectively.

C-reactive Protein (CRP), interleukin-6 (IL-6) levels, partial O2 pressure/fraction of
inspired O2 (PO2/FiO2 ratio), and lymphocyte subpopulations were measured at two
timepoints (day 1 and day 5). IL-6 was calculated by Access IL-6 assay, a paramagnetic
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particle, chemiluminescent immunoassay executed on Beckman DXi 800 immunoassay
analyzers. CRP was calculated by rate nephelometry (IMMAGE, Beckman Coulter). Also,
differences in lymphocyte subpopulations and inflammatory markers between the two
timepoints were calculated. Patients’ demographic, laboratory and clinical characteristics
were documented by timepoint as mean [± standard deviation, (SD)] or frequency rates.

Since the early days of the pandemic, it has been shown that worsening of COVID-19
occurs from day 7 through day 12 of the disease. Most of the patients who deteriorated,
did so by day 7 [20]. In the study cohort, the mean duration of symptoms (from disease
onset) was 6.29 days. Therefore, the rationale for measuring lymphocyte subpopulations
on day 5 of hospitalization, as a second timepoint, was to include the timeline of clinical
deterioration and not exceed the average length of stay, to reduce selection bias.

2.2. Flow Cytometry Analysis

Specific lymphocyte subpopulations were calculated with the use of flow-cytometry
on admission (day 1) and at day 5 of hospitalization, based on established protocols [21].
Briefly, analyses were performed in a FACScalibur cytometer, using CellQuest V3.1 software
(both by Becton Dickinson). Lymphocyte subpopulations (CD45) from peripheral blood
include B (CD19) and T (CD3) lymphocytes, CD4 T helper cells, CD8 T cytotoxic cells, NK
(natural killer) cells CD16+56 cells, as well as CD45RA+ (naïve) CD45RA+RO+ (transient)
and CD45RO+ (memory) cells.

2.3. Statistical Analysis

Logistic and linear regression adjusted for age, sex, and duration of symptoms were
used in the analyses of categorical and continuous outcomes for each subpopulation of
cells, respectively. False density rate (FDR, Benjamini–Hochberg) was used to correct for
multiple testing error. Violin plots were introduced to visualize the distribution of the
variables of the most significant associations. All statistical analyses were performed using
the STATA 17 (Stata Corp LP, College Station, TX, USA) software.

3. Results

A total of 42 hospitalized patients were included in the study. Patients’ descriptive
characteristics on admission are shown in Table 1, as an entire cohort and stratified by
lung injury status. Female patients represented the majority of the study population
(69.01%, n = 29). The mean age was 55.9 (SD: 20.3) years. Arterial hypertension and
obesity were the most common comorbidities documented in the study (n = 21 and 14,
respectively). Of note, in the studied population none of the patients had comorbidities
such as rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease,
or other chronic immune-mediated/autoimmune diseases that may bias the interpretation
of the lymphocyte subpopulations. Of note, none of these patients had a history of immuno-
modulatory medication use, either.

Table 1. Descriptive characteristics of variables.

Characteristics N
Mean (SD) or

Frequency
CT Burden of Disease

≤50% (n = 19) >50% (n = 15)

Age, years, mean (SD) 42 55.90 (20.30) 54.63 (16.69) 60.13 (19.16)

Sex, n (%) 42

Female 29 (69.05) 15 (78.95) 9 (60.00)

Male 13 (30.95) 4 (21.05) 6 (40.00)

Duration of symptoms, days, mean (SD) 38 6.29 (3.69) 6.83 (4.00) 6.35 (3.69)

Comorbidities, n (%) 42

Arterial Hypertension 21 (50.00) 12 (63.15) 8 (53.30)
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Table 1. Cont.

Characteristics N
Mean (SD) or

Frequency
CT Burden of Disease

≤50% (n = 19) >50% (n = 15)

Diabetes Mellitus 7 (16.70) 3 (15.80) 3 (20.00)

Coronary Artery Disease 6 (14.30) 2 (10.50) 2 (13.30)

Stroke 1 (2.40) 0 1 (6.60)

Cancer (non-active) 2 (4.80) 0 2 (13.30)

Obesity 14 (33.30) 9 (47.40) 4 (26.60)

Chronic Obstructive Pulmonary Disease 1 (2.40) 1 (5.30) 0

Smoking (Active) 2 (4.80) 2 (10.50) 0

Dyslipidemia 7 (16.70) 3 (15.80) 2 (13.30)

Day 1

IL-6, IU/mL, mean (SD) 32 39.46 (52.48) 27.43 (21.27) 60.73 (79.73)

C-reactive protein, mg/L, mean (SD) 42 72.90 (70.98) 70.05 (67.10) 85.73 (85.06)

PO2/FiO2, mean (SD) 41 294.59 (142.52) 342.67 (138.76) 244.15 (117.46)

CD45, mean absolute number 42 1259 (811.88) 1248.21 (712.66) 923 (538.01)

CD3 %, mean (SD) 42 66.69 (11.69) 65.04 (10.82) 64.86 (10.56)

CD3CD8 %, mean (SD) 42 25.04 (10.38) 26.46 (10.83) 19.28 (6.22)

CD3CD4 %, mean (SD) 42 40.39 (10.85) 37.65 (10.84) 45.03 (10.46)

CD3CD4CD8 %, mean (SD) 42 1.17 (1.12) 1.25 (1.45) 1.14 (0.89)

CD16+56 %, mean (SD) 42 19.33 (9.20) 17.87 (8.86) 21.54 (8.03)

CD19 %, mean (SD) 42 13.09 (7.72) 15.97 (7.33) 12.82 (8.18)

CD45RA %, mean (SD) 42 45.02 (12.17) 46.42 (10.75) 42.20 (10.37)

CD45RO %, mean (SD) 42 30.29 (10.97) 31.52 (11.56) 31.40 (10.84)

CD45RA+RO+ %, mean (SD) 42 24.40 (8.44) 22 (6.70) 25.73 (7.98)

CD4RA %, mean (SD) 42 16.98 (11.14) 13.78 (9.46) 20.26 (12.45)

CD4RO %, mean (SD) 42 22.74 (7.62) 22.73 (8.59) 24.86 (6.85)

Day 5

C-reactive protein, mg/L, mean (SD) 29 27.93 (40.09) 44.16 (58.83) 15.84 (10.48)

PO2/FiO2, mean (SD) 19 209.29 (135.93) 260.98 (142.70) 203.27 (138.08)

CD45, mean absolute number 34 1745 (918.89) 2042.68 (890.23) 1527.78 (778.17)

CD3 %, mean (SD) 34 67.07 (11.58) 66.10 (10.14) 68.61 (12.26)

CD3CD8 %, mean (SD) 34 22.76 (7.49) 23.66 (5.96) 20.28 (7.83)

CD3CD4 %, mean (SD) 34 43.28 (9.53) 42.16 (8.56) 47.07 (9.38)

CD3CD4CD8 %, mean (SD) 34 1.36 (1.48) 1.56 (1.93) 1.24 (1.06)

CD16+56 %, mean (SD) 34 12.65 (7.92) 12.20 (7.35) 11.48 (6.09)

CD19 %, mean (SD) 34 18.88 (10.66) 20.46 (8.81) 18.17 (12.01)

CD45RA %, mean (SD) 34 43.38 (14.55) 43.87 (13.98) 42.71 (13.32)

CD45RO %, mean (SD) 34 33.35 (11.70) 3287 (11.38) 34 (10.66)

CD45RA+RO+ %, mean (SD) 34 23.26 (8.93) 23.25 (8.51) 23.28 (8.37)

CD4RA %, mean (SD) 34 16.26 (8.08) 14.87 (7.35) 18.07 (9.61)

CD4RO %, mean (SD) 34 26.03 (8.52) 25.18 (6.15) 29.07 (9.12)
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Lung injury ≤50% was observed in 19 patients (55.48%), while 15 patients (44.12%)
had greater injury (>50%) of lung parenchyma. Mean (SD) IL-6 was 39.46 IU/mL (52.48) at
admission. Mean (SD) C-reactive protein was 72.90 mg/L (70.98) and 27.93 mg/L (40.09)
on day 1 and day 5, respectively. Mean (SD) values of PO2/FiO2 were 249.59 mmHg
(142.52) at baseline and 209.29 mmHg (135.93) at day 5. Similar reductions were observed
for the aforementioned variables between day 1 and 5 for both ≤50 and >50% of lung injury.
Results of linear and logistic regression analyses are shown in Tables 2 and 3.

Table 2. Linear and logistic regression analysis adjusted for age, sex, & duration of symptoms.
Lymphocyte subpopulations, CT burden of disease and IL-6 are measured on admission (day 1).
False density rate was used to correct for multiple testing error. IL-6: interleukin-6, CT: computed
tomography.

CT Burden of Disease IL-6

Cells OR (95% CIs) p-Value FDR Obs Beta (95% CIs) p-Value Obs

CD3 0.957 (0.877, 1.044) 0.327 0.546 32 0.208 (−1.584, 2.001) 0.813 31

CD3CD8 0.855 (0.741, 0.986) 0.032 0.176 32 0.109 (−1.546, 1.764) 0.893 31

CD3CD4 1.059 (0.971, 1.155) 0.191 0.499 32 0.095 (−1.647, 1.837) 0.911 31

CD3CD4CD8 0.902 (0.474, 1.717) 0.755 0.755 32 −3.263(−17.455, 10.929) 0.640 31

CD16+56 1.193 (1.019, 1.397) 0.028 0.176 32 −0.528 (−2.638, 1.581) 0.611 31

CD19 0.951 (0.857, 1.055) 0.348 0.546 32 0.380 (−2.037, 2.799) 0.749 31

CD45RA 0.974 (0.901, 1.053) 0.518 0.633 32 −0.725 (−2.541, 1.091) 0.419 31

CD45RO 0.988 (0.920, 1.061) 0.744 0.755 32 0.337 (−1.587, 2.262) 0.721 31

CD45RA+RO+ 1.072 (0.961, 1.195) 0.211 0.499 32 0.547 (−1.576, 2.670) 0.601 31

CD4RA 1.057 (0.965, 1.157) 0.227 0.499 32 −0.561 (−2.278, 1.155) 0.507 31

CD4RO 1.022 (0.925, 1.129) 0.430 0.591 32 0.960 (−1.517, 3.439) 0.433 31

Table 3. Linear regression analysis: association of difference between day 5 and day 1 of CRP and
PO2/FiO2 with the respective difference of cell subpopulations, adjusted for age, sex & duration of
symptoms. False density rate was used to correct for multiple testing error. CRP: C-reactive protein,
PO2/FiO2: partial pressure of O2/Fraction of inspired O2.

Day5-Day1 Delta CRP Delta PO2/FiO2

DeltaCells Beta (95% CIs) p-Value FDR Obs Beta (95% CIs) p-Value Obs

CD3 −3.357(−7.720, 1.007) 0.124 0.273 25 −5.199(−13.540, 3.141) 0.197 16

CD3CD8 2.738(−5.057, 10.534) 0.472 0.577 25 −3.799(−16.438, 8.839) 0.522 16

CD3CD4 −5.227(−10.353,−0.099) 0.046 0.169 25 −0.734(−11.779, 10.311) 0.886 16

CD3CD4CD8 13.895(−8.698, 36.488) 0.214 0.392 25 17.552(−18.688, 53.793) 0.309 16

CD16+56 3.117(−0.747, 6.981) 0.108 0.273 25 5.115(−1.558, 11.789) 0.120 16

CD19 −0.898(−6.699, 4.902) 0.750 0.825 25 −2.639(−12.847, 7.569) 0.581 16

CD45RA −1.241(−4.525, 2.044) 0.440 0.577 25 0.210(−7.014, 7.436) 0.950 16

CD45RO −2.001(−6.110, 2.108) 0.322 0.506 25 −3.652(−11.566, 4.262) 0.332 16

CD45RA+RO+ 4.661(0.631, 8.689) 0.026 0.143 25 3.827(−4.612, 12.267) 0.340 16

CD4RA −0.464(−5.611, 4.683) 0.853 0.853 25 6.252(−2.542, 15.048) 0.146 16

CD4RO −5.327(−9.715, −0.938) 0.020 0.143 25 −1.157(−10.605, 8.291) 0.793 16

The most significant associations were between lymphocyte cell subpopulations and
the extent of lung injury (CT burden of disease) and CRP levels. CD16+56 cells (NK-cells)
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were associated with higher risk of lung injury (OR = 1.193; 95% CI: 1.019 to 1.397; p = 0.028).
On the other hand, an inverse association was observed for CD3+CD8+ cells (OR = 0.855;
95% CI: 0.741 to 0.986; p = 0.032). However, after FDR correction, none of these associations
remained statistically significant. All other subpopulations did not show a significant
association with these markers of disease severity.

Further analysis showed that an increase per 1% in CD3+CD4+ and CD4RO+ cell
count difference between day 5 and day 1 resulted in a negative CRP difference between
these time points (lower CRP value at day 5 than day 1, Beta = −5.227; 95% CI: −10.353
to −0.099; p = 0.046 and Beta = −5.327; 95% CI: −9.715 to −0.938; p = 0.020, respectively).
On the other hand, CD45RA+RO+ cell count difference was associated with a positive
difference between CRP levels at the two timepoints (greater CRP value at day 5 than day
1, Beta = 4.661; 95% CI: 0.631 to 8.689; p = 0.026). However, similarly, this association was
no longer significant after FDR correction. No significant association was found in the
kinetics of other subpopulations of lymphocytes and the inflammatory markers. Similarly,
no significant association was found in the statistical analysis between comorbidities and
the degree of lung injury (all p = NS, data not shown).

Figures 1 and 2 show the distribution of CRP with significant cell markers (before FDR
correction) at day 1 and day 5 (Figure 1), as well as the distribution of CRP and lymphocyte
count differences between these timepoints (Figure 2).
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4. Discussion

This study evaluated the association of different lymphocyte subpopulations with
COVID-19 disease severity markers in hospitalized patients. Several previous studies
in COVID-19 patients have assessed the possible role of lymphocyte cell populations as
predictors and markers of disease severity and outcome.

Common viral infections typically lead to expansion of T cells and a resulting lympho-
cytosis. T cell cytotoxicity exerts a key role in the elimination of infected cells in COVID-19,
similar to other viral infections. However, in these patients, the lymphocyte count and
especially CD8+ T cells are greatly reduced [15,22]. It has been shown that this reduction
is strongly associated with the severity of COVID-19 [15,23,24]. In the study by Ashrafi
et al., (n = 40) the decreased number of T cells and particularly the CD4+ T cell count were
associated with higher mortality rates due to severe COVID-19 [25]. This finding can be
interpreted by the central role of CD4+ helper T cells in immunity [26]. In another study,
CD8+ T lymphopenia among all T cell subpopulations was a more profound factor in
disease severity progression [27]. In addition, in the meta-analysis by Huang et al. it was
observed that absolute counts of lymphocyte subpopulations were decreased in severe
cases of COVID-19, compared to less severe disease [28]. CD16+56 NK cell counts have
been shown to decrease in COVID-19 disease [29]. Cytolytic activity of NK cells and asso-
ciated production of cytokines exert a key role in the defensive immunological response
against SARS-CoV-2 infection [30]. This cytolytic activity of NK cells serves as a possible
mechanism of progressive lung damage observed in the present study with the increase in
NK count. Similarly, in a study (n = 32 patients) with severe SARS-CoV-2 infection, a raised
proportion of mature NK cells and low T cell counts was observed [31].

In a study of 103 COVID-19 patients from the early stages of the pandemic, it was
shown that CD3+ T cells, CD4+ T cells, CD8+ T cells, and CD16+56 NK cell counts were
significantly decreased in these patients compared to healthy individuals (controls) and
were inversely associated with the severity of the infection. Of note, it was also observed
that low CD8+ T levels were more common than low CD4+ T levels in COVID-19 pa-
tients [32]. Similarly, in a single-center, retrospective study (n = 164), it was shown that
decreased counts of total CD3+, CD3+CD8+, CD3+CD4+, and CD3+CD4+CD8+ T lym-
phocytes were associated with higher rates of in-hospital mortality [33]. Aside from their
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role as predictors of disease severity, the measurement of T cell subpopulations has also
been examined in distinguishing COVID-19 from other lung infections, such as community
acquired pneumonia (CAP), even during the early phase of the pandemic. In a single-center
study of 296 confirmed COVID-19 cases and 130 CAP cases, analysis showed that mean
values (% counts) of CD19+ and CD3+CD8+ in COVID-19 patients were significantly lower
than in patients with CAP. On the other hand, mean values (absolute and % counts) of
CD3+CD4+, CD16+56+ in COVID-19 patients were significantly higher than in patients
with CAP [34]. Furthermore, several studies have proposed a protective role of CD8+ T
cells in the progression to more severe forms of COVID-19, especially in the acute phase of
the disease [35,36].

In our study, a higher CD3+ T cytotoxic (CD3+CD8+) cell count on admission was
associated with a lower risk of lung injury >50% as assessed by CT, resulting in a less severe
form of the disease. Of note, our study population represents a rather moderate-severity
cohort of patients, as evidenced by a mean PO2/FiO2 ratio of 294.59 on admission/day 1.
Another point of interest is that the mean duration of symptoms in our patients was six
days. According to a previous study, the decrease of T cells in severe cases of disease was
noted at its highest point within the first seven days from symptoms’ onset. Eventually,
T cells were gradually restored to normal levels after the third week from the onset of
symptoms [15].

IL-6, among cytokines, has been shown to be associated with more severe forms of
COVID-19 [23], probably as a result of the induced cytokine storm [37]. In a large meta-
analysis of 7865 patients, a decrease in lymphocytes and elevated IL-6 levels were found in
the group of severe cases compared to mild disease [38]. However, in the present study, no
statistical association was found between IL-6 and lymphocytes. Similarly, no statistical
association was observed in linear regression analysis of the change between day 5 and
day 1 of PO2/FiO2 with the change in cell subpopulations. The lack of significance for
IL-6 and PO2/FiO2 in our cohort may be explained by the less severe form of disease from
admission to day 5, and the rather limited sample-size.

It is evident that CRP is a strong indicator of the inflammatory process and a predictor
of COVID-19 disease severity [23,24,39–41]. However, data regarding the association
of lymphocytes and CRP levels are scarce. In a study of 172 COVID-19 hospitalized
patients, a significant correlation between CD8+ T cells and inflammation markers such
as CRP and Neutrophil to Lymphocyte ratio (NLR) was observed [42]. Also, a small-
sized study (n = 33 patients), showed a negative correlation between CRP levels and T cell
subpopulations. Specifically, CRP was inversely associated with CD3+, CD3+CD4+ and
CD3+CD8+ T cells (rho = −0.77, p < 0.001, rho = −0.74, p < 0.001, rho = −0.66, p = 0.001),
respectively [43].

Changes in lymphocyte subpopulations have been observed in patients with COVID-
19, and these changes have been linked to the severity of the illness. During the onset of
COVID-19 disease, a polarization of lymphocytes towards a memory phenotype occurs,
in which naïve CD45RA cells are flowing in a transient state (CD45RA+RO+) to become
memory (CD45RO) cells [44]. This polarization is accompanied by a functional exhaustion
of immune cells [45], and leads to the reduction of both cellular [46] and humoral immune
responses [47]. Importantly, the transition between naïve (CD45RA) to memory (CD45RO)
cells is a prerequisite for a successful immune response that is associated with a milder
COVID-19 onset and course [48]. The associations found in this study confirm previous
data and support that during hospitalization, a clinical improvement is associated with
this transition, which is inversely proportional to CRP levels. Specifically, the reduction of
CRP between day 1 to day 5 is associated with an induction of CD45RO subpopulation,
indicating an initiation of immune response. The impact of lymphocyte populations in
COVID-19 is complex and dependent on the stage of the illness and the individual patient’s
immune response. Further research is needed to fully understand the role of lymphocytes
in COVID-19 and how to best use this information to improve treatment and outcomes
for patients.
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Our study has some limitations. First, the sample size is small, and the study involves
only one medical center, which, however, covers a wide geographical area of western
Greece. Second, comparisons between subgroups of patients based on the degree of lung
injury did not yield statistically significant results, owing to the small number of patients
in each group. Third, for the same reasons, it was not possible to analyze outcomes such
as death and intubation in this cohort of patients due to the small number of these events.
Last, measurement of cell counts and inflammatory markers at more timepoints may have
yielded more granular results in terms of lymphocyte subpopulation kinetics and their
association with inflammatory markers.

5. Conclusions

Despite its limited size, our study showed that alterations in lymphocyte specific
subpopulations are associated with COVID-19 severity. Also, the observed increases in
memory T cells (CD45RO) and CD4 T cells (CD3+ and RO+) were associated with lower
CRP levels, potentially leading to COVID-19 recovery and immunity. However, these
findings need further evaluation and validation in larger scale trials, in order to draw
conclusions on the role of specific lymphocyte subpopulations in COVID-19 progression.
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