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Abstract: Magnaporthe oryzae is one of the most devastating pathogenic fungi that affects a wide range
of cereal plants, especially rice. Rice blast disease causes substantial economic losses around the
globe. The M. oryzae genome was first sequenced at the beginning of this century and was recently
updated with improved annotation and completeness. In this review, key molecular findings on the
fungal development and pathogenicity mechanisms of M. oryzae are summarized, focusing on fully
characterized genes based on mutant analysis. These include genes involved in the various biological
processes of this pathogen, such as vegetative growth, conidia development, appressoria formation
and penetration, and pathogenicity. In addition, our syntheses also highlight gaps in our current
understanding of M. oryzae development and virulence. We hope this review will serve to improve a
comprehensive understanding of M. oryzae and assist disease control strategy designs in the future.
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1. Introduction

Magnaporthe oryzae (synonym of Pyricularia oryzae), which causes rice blast disease, is
a filamentous fungus belonging to the Ascomycota phylum. In 1879, it was initially named
Trichothecium griseum by Cooke without a detailed description [1]. In the following century,
several names were given to the fungus based on the teleomorph and anamorph stages,
such as Ceratosphaeria grisea by Herber (1971) and Dactylaria oryzae by Sawada (1917). In
1990, based on host specificity, physiological differences, and genetic evidence, Rossman
corrected its name to Pyricularia oryzae [2]. P. oryzae was used to refer to the asexual stage,
and the sexual stage was named Magnaporthe grisea by Couch and Kohn (2002). Additional
phylogenetic analysis and interstrain fertility tests showed that M. grisea should be assigned
to Digitaria (crabgrass)-infecting isolates, whereas M. oryzae causes damage to rice and
other important crops in the Poaceae family, such as millet and wheat [3].

Magnaporthe oryzae is one of the most devastating agricultural pathogens since it
primarily attacks cultivated rice (Oryza sativa), an important staple food feeding over 50%
of the world’s population [4,5]. Its infection can be destructive under favorable conditions,
contributing to 10–30% of the annual rice yield loss [6,7]. Given that it can affect both
temperate and tropical rice growth, the disease has been widely distributed in 85 countries
with various environmental conditions [7–9]. As a consequence, it is ranked the most
damaging fungal pathogen in the world [9].

Magnaporthe oryzae can cause disease on rice plants at all developmental stages and
can infect different tissues, including leaves, stems, nodes, and panicles [10]. Its aerial coni-
diophores produce three-celled and teardrop-like conidia that are arranged in a sympodial
manner. The attachment of these conidia to the host surface initiates the infection cycle [11].
Conidia adhere to the host with the help of mucilage, a thick and gluey substance stored
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at the spore tip. They then germinate and generate germ tubes before appressoria differ-
entiation [10–12]. The death of three-celled conidia triggers the formation of single-celled
appressoria [13]. Then, appressoria become melanized and accumulate glycerol, generating
turgor to create pressure for penetration into the host epidermal cells [13]. Upon pene-
tration, it colonizes plants using invasive hyphae that grow intracellularly [14]. Notably,
membrane caps, formed on the invading hyphal tips, are used for cell-to-cell movement via
manipulating the plasmodesmata [14]. Thus, the membrane interactions between M. oryzae
and plant hosts are important for the invasion of hyphae into plant cells [15].

Upon penetration, fungal pathogens can secret effectors to promote virulence and
suppress host immunity [16]. In turn, plants have evolved resistance genes (R) that encode
R proteins to recognize the presence of effectors and enable effector-triggered immunity
(ETI) [16,17]. In M. oryzae, when the first hyphal cell invades, effectors accumulate in the
biotrophic interfacial complex (BIC), the site for effector delivery [15,18]. Two types of
effectors were defined in M. oryzae based on their localization in plant cells: cytoplasmic
effectors entering the host cell cytoplasm via the BIC, and BIC-independent apoplastic
effectors being delivered into the apoplast [19,20].

Due to its notable appressoria formation, the secretion of effectors during the inva-
sion, and the effector delivery to the apoplast and cytoplasm of plant cells, M. oryzae
has been used as a model plant fungal pathogen to understand pathogen genomics and
pathogen–host interactions [11]. Focusing on the biological development and pathogenesis
of M. oryzae, the current key molecular findings are summarized in this review, as well as its
genomic features. Overall, this review primarily aims to build a clear and comprehensive
understanding of the genetic and molecular mechanisms underlying its biology. Such an
understanding will provide insight into potential strategies to reduce the economic losses
caused by it. We also hope that this review can aid in the study of other fungal pathogens.

2. The Features of M. oryzae Genome
2.1. Genome Sequencing

The first analysis of the M. oryzae genome was published (as M. grisea) in 2005 using the
whole-genome shotgun (WGS) approach, with 7× coverage. The genome of M. oryzae 70-15,
originally derived from a cross between isolates of rice and weeping lovegrass, consisted
of seven chromosomes with an estimated size of 38.8 Mb (GenBank accession number:
AACU00000000.3) [21,22]. However, this draft genome sequence was compromised because
of significant retrotransposon content. After improvements in verifying unique sequence
anchors, extending contigs and scaffolds, and filling the remaining gaps, the genome
sequence of the M. oryzae strain 70-15 was refined at the Broad Institute in 2015 with an
estimated size of 41 Mb. The high-confidence annotation and gene models were also
generated using multiple methods including RNA-seq data and expressed sequence tags
(ESTs) alignments, and homologous gene and Basic Local Alignment Search Tool (BLAST)
searches [23]. Therefore, this 41 Mb genome sequence of strain 70-15 became the standard
reference for M. oryzae, consisting of seven chromosomes with about 51.6% GC content
(BioProject Accession number: PRJNA13840).

The initial analysis of the M. oryzae strain 70-15 sequenced in 2005 revealed a fam-
ily of G-protein-coupled receptors that are specific to M. oryzae and have an expression
in infection-related development [22]. Furthermore, they also unveiled three mitogen-
activated protein kinase (MAPK) cascades including appressoria development and penetra-
tion peg formation, which are crucial in the plant infection process, as well as the relevant
genes involved in these signaling cascades. In addition, a significant number of predicted
secretion proteins and putative effector proteins, as well as synthases/synthetases involved
in secondary metabolic pathways, were identified [22]. Many of these became targets for
reverse genetic analysis.

Subsequently, the genome sequences of many other M. oryzae strains became available.
For example, Xue et al. (2012) [24] sequenced two M. oryzae field isolates, Y34 (isolates from
China) and P131 (from Japan), using Sanger and 454 sequencing. Genome comparisons
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revealed that the genome size and overall structure were similar among different strains,
but more genes that might be involved in host–pathogen interactions were found in the
field isolates [24]. They also found different distributions of transposon-like elements
among these three strains, indicating genetic variations [24]. More recently, Dr. T. R.
Sharma’s group sequenced the whole genome of two isolates from India, an avirulent
isolate RML-29 and a highly virulent isolate RP-2421, and identified several isolate-specific
genes and potential effectors through pan-genome analysis, which might be involved in
fungal pathogenicity and fungal–plant interactions [25,26].

Repetitive transposable elements (TEs) may play important roles in both genome
and pathogenic variations in M. oryzae [22,24,27]. They may mediate fungal virulence via
the inactivation or deletion of pathogen-associated molecular patterns (PAMPs)-encoding
genes and can trigger plant defense responses [28,29]. The M. oryzae genome contains
approximately 10% of the repetitive sequences in various isolates [22–24,27]. Xue et al.
(2012) [24] also uncovered that 23.8% of the TE-disrupted genes were predicted to encode
signal peptide sequences, highlighting that this percentage was higher than the average
percentage of the whole genome. The single-molecule real-time sequencing also revealed
that TEs are involved in chromosomal translocation and secreted proteins (SPs) polymor-
phisms [27]. In addition, transposon and effector-rich mini-chromosomes were observed
in the M. oryzae MoT isolate, which contribute to the field adaptation [30]. These findings
suggested a significant role of TEs in defining host specificity and fungal virulence.

2.2. Transcriptomic and Secretome Analysis

The availability of whole-genome sequencing data has facilitated the transcriptomic
and secretome analysis of M. oryzae. The first comprehensive genome-wide transcrip-
tional profiling study of M. oryzae was carried out using microarray analyses. Changes in
genome-wide gene expression during the early stages of spore germination and appressoria
formation were identified [31]. A microarray analysis of the fungal-invading hyphae at an
early stage (36 h post inoculation) uncovered several putative effectors, including fungal
biotrophy-associated secreted (BAS) proteins [20]. Moreover, microarray data of invasive
growth on rice and barley at a later stage (72 hpi) also revealed multiple genes associated
with stress responses and invasive growth [32].

In recent years, high-throughput RNA sequencing has become an efficient approach to
provide high-quality transcriptome data. Many transcriptomic analyses were carried out to
study host–pathogen interactions. For example, Kawahara et al. (2012) [33] investigated the
mixed transcriptome of the pathogen M. oryzae and host O. sativa, revealing 240 upregulated
genes encoding potential secreted proteins and many known infection-related genes in
M. oryzae [33]. Another study on plant–fungal interactions between the host rice plants and
M. oryzae discovered several novel effectors and virulence-related genes, including 98-06
isolate-unique genes IUG6 and IUG9, which were involved in the fungal pathogenicity and
located in the BIC [34].

Secretome analysis is another useful approach to identifying crucial genes through
studying secreted proteins and their secretion pathways. One M. oryzae secretome study
during the early stages of infection identified 53 secreted proteins, including proteins that
functioned by modifying fungal lipid and cell walls, detoxifying reactive oxygen species,
as well as encouraging fungal metabolism [35]. Liu et al. (2021) [36] also identified several
secreted proteins requiring N-glycosylation, which play essential roles in fungal pathogenic-
ity and cell wall integrity [36]. Combining transcriptomic and secretome analyses, these
datasets provide an abundant reservoir of candidates for reverse genetic analysis to help
understand the molecular mechanisms in M. oryzae–rice interactions.

Mutant analysis is a definitive process used to establish a causal relationship between
a gene and a specific biological process. Many methods were applied to generate mu-
tants in M. oryzae, such as T-DNA insertion, RNA interference (RNAi), and homologous
recombination (deletion). Among them, gene deletion via homologous recombination
has been the most commonly used method in the past few decades. The latest CRISPR
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technology has also been developed to improve gene-editing efficiency [37,38]. The rest
of this review will give an overview of all M. oryzae genes studied to date using such
approaches (Supplementary Table S1). A Venn diagram of the listed genes is provided for
readers’ overview (Figure 1). Over 400 genes have been summarized in this review, and
it is clear to see that most of them contribute to both the development and virulence of
M. oryzae. A chromosomal map including the significant genes involved in both processes
was generated to detect possible cluster patterns and genomic features (Figure 2).
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3. Molecular Dissection of M. oryzae Biology

In the past, various gene/mutant/protein nomenclatures were used by Magnaporthe
researchers. Here we adopt the most commonly used one for this review. For example,
the wild-type gene is abbreviated as italicized capital letters (ABC1), while the mutant is
indicated with lower case letters (abc1). The protein it encodes is presented in capital letters
(ABC1). Exceptions will be explained. In addition, it is important to bear in mind that
huge variations exist in different field isolates/strains and plant hosts among these studies,
contributing to the discrepancies that are sometimes observed in mutant phenotypes of the
same genes.

3.1. Genes Mainly Related to Fungal Development

In the earlier years of molecular studies, scientists focused on the more obvious
morphological and physiological traits of M. oryzae (Supplementary Table S1a). Similar
to most fungi, asexual spores of M. oryzae, also known as conidia, play an important
role in its life cycle. Conidia are produced from aerial conidiophores in a sympodial
arrangement, and their production and dissemination serve as the major source of inoculum
for M. oryzae [11]. Lee et al. (2006) [39] revealed that conidia formation was light-dependent
and blue light inhibited the asexual development of M. oryzae. A mutant mgwc-1 was also
identified, which is the homolog of the blue light receptor White Collar-1 of Neurospora
crassa, showing a delayed conidia formation [39]. Thus, the light condition is a major cue
for conidiation induction.

A T-DNA insertion mutant showing conidiation deficiency revealed that conidiophore
stalk-less 1 (COS1), a Cys2-His2 (C2H2) zinc-finger protein, plays a determining role in
M. oryzae conidiation [40]. The cos1 mutant affects two conidiophore-related genes while
causing similar symptoms compared to WT in root and foliar infection assays [40]. Such
results indicate that COS1 is a transcriptional regulator involved in conidiation but is not
required for fungal virulence [40]. A C3HC-type zinc-finger domain protein interacting
with the mitochondrial ATP-dependent Lon protease, ZFC3, was also shown to regulate
mitochondrial genes and contribute to conidia production [41]. Through a gene disruption
screen, Saitoh et al. (2014) [42] identified ST1 encoding a sugar transporter in the hexose
transporter family. Mutants with ST1 deletion exhibited compromised conidiation and
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mycelial myelinization. However, its ability to cause blast disease on rice was unaltered,
indicating a unique role of ST1 on M. oryzae development [42]. Many other transcription
factor (TF)-encoding genes, such as forkhead-box TF (HCM1) and homeobox TFs (HOX2
and HOX6), also only contribute to fungal development, which will be discussed later in
the transcription factor section.

Chitin is an essential cell wall component for fungi that can be modified via deacety-
lation. Two chitin deacetylases (CDA1 and CDA4) can catalyze chitin deacetylation and
influence M. oryzae’s vegetative growth but showed no effect on the fungal pathogenic-
ity [43]. Mutants with CDA1 deletion showed chitin deacetylation in mature hyphae, while
the cda4 mutants deacetylated chitin in young hyphae [43]. Lipid biosynthesis is also
involved in M. oryzae development. The fatty acid synthase beta subunit dehydratase
(FAS1) contributes to the conidiogenesis, pigmentation, and appressoria formation of
M. oryzae [44]. A secondary metabolism regulator, LAEA (loss of AflR expression), which
is involved in penicillin G biosynthesis, also functions in the fungal conidia production and
sporulation [45].

Some other genes that only contribute to asexual development in M. oryzae have also
been identified. For example, the calpains-related gene, CAPN1, is engaged in M. oryzae
conidiation but not in fungal pathogenicity [46]. Additionally, the deletion of the spindle
pole antigen gene SPA2, discovered from a mutant with defective colony and conidia
formation, led to defects in hyphal growth and conidia production with normal pathogenic-
ity [47]. Additionally, Lu et al. (2008) [48] discovered that the MTP1 gene, encoding a
type III integral transmembrane protein, was also required for the conidiation and conidial
germination of M. oryzae. mtp1 mutants exhibited delayed appressoria formation and
similar virulence to WT, indicating that this gene is not necessary for fungal virulence [48].
Moreover, a class II histone deacetylase, HDA1, is also involved in fungal vegetative growth
and conidiation [49].

In addition to the genes that regulate asexual development, several genes were found
to affect sexual reproduction in M. oryzae. This fungus is heterothallic, where the formation
of sexual structures (i.e., perithecia, asci, and ascospores) and the completion of its mating
requires compatible partners with opposite mating types [50]. The M. oryzae loci that
determine mating types were described as MAT1-1 and MAT1-2 to represent the opposite
mating types. Each MAT gene has different functions. For example, MAT1-1-1, MAT1-1-3,
and MAT1-2-1 played important roles in perithecia development, and MAT1-1-2 affected
the formation of asci and ascospores [50]. However, MAT1-2-2, likely redundant with
MAT1-1-3, was dispensable for sexual development [50]. Wang et al. (2021) [50] also found
that mutants with MAT loci deletion showed no differences in vegetative growth, asexual
development, and fungal virulence compared to WT. This suggests the independence of
M. oryzae sexual reproduction from other biological processes.

3.2. Autophagy in Different Biological Processes of M. oryzae

During autophagy, intracellular molecules and organelles are degraded through en-
gulfment and lysosome fusion. Recent molecular analysis in M. oryzae revealed that it plays
critical roles in many facets of rice blast biology, including development of appressoria and
pathogenicity (Supplementary Table S1b).

Autophagy-related (ATG) proteins participate in different stages of the autophagic
process. A comparative genomic analysis between M. oryzae and Saccharomyces cerevisiae
classified 23 M. oryzae ATG proteins into different groups based on their functions and
interactions [51]. The first group was the ATG1 kinase complex, including ATG1, ATG13,
ATG17, and ATG29, orchestrating autophagosome formation [51,52]. The second group
formed the autophagosome, including ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12,
and ATG16. The autophagosome is a double-membrane vesicle, which is an indicator of
autophagy [53]. The assembly of the autophagosome is initiated by the serine/threonine
protein kinase ATG1, and the substrate targeting is mediated by a ubiquitin-like modifier
ATG8 [13,52–54]. ATG8 is first modified by the ATG4 family, which contains an active
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cysteine residue (Cys206) to cleave the carboxyl terminus of ATG8 for autophagosome
generation [55]. ATG6 and ATG14, classified in the class III phosphatidylinositol 3-kinase
(PI3K) complex group, interact with ATG8 and function at the early stage of autophagosome
formation [56]. The ATG9-associated vacuolar/lysosomal cytoplasmic recycling system
functions in relocating the autophagy machinery [57]. It has been reported that ATG8 and
ATG9 play partially overlapping roles, and the ATG9 cycling through multiple colonization
sites requires the involvement of ATG1, ATG2, and ATG18 [57].

Many M. oryzae ATGs’ functions have been revealed by studying autophagic-deficient
mutants. Single-gene deletions of ATG1 to ATG10, as well as ATG12, ATG13, and ATG15
to ATG18 caused compromised fungal virulence or a nonpathogenic phenotype on rice
seedlings, suggesting their key roles in fungal pathogenicity [13,51–55]. Meanwhile, the
involvement of ATGs in hyphal growth, conidia, and appressoria development was also
studied. For example, the atg1 mutants showed normal appressoria formation but reduced
appressorium turgor pressure, defective conidiation, and conidial germination [52]. The
deletion of ATG8 in M. oryzae inhibited its starvation-induced autophagy as well as conidia
cell death during appressoria development [13]. Abnormal conidia production and dissem-
ination from ATG-deficient strains, including atg1, atg4, atg5, atg8, and atg9, also indicated
the importance of autophagy in cellular remodeling during sporulation [13,51–55,57,58]. In
addition to the asexual effect, the autophagic process also contributes to M. oryzae sexual
reproduction by meditating protoperithecia and perithecia production [52,55]. These re-
sults indicate the diverse roles of ATGs in the fungal development and pathogenicity of
M. oryzae.

The genome-wide analysis also revealed six selective ATG genes (ATG11, ATG24,
ATG26, ATG27, ATG28, and ATG29) that are related to pexophagy, mitophagy, or reticu-
lophagy [51]. However, the single-gene deletion mutants of these selective ATG genes all
showed normal conidia or appressoria autophagy and abilities to cause rice blast disease on
rice seedlings, indicating that selective autophagy is not required for fungal pathogenicity
meditated by appressoria [51].

Some proteins interacting with ATGs and/or participating in autophagic processes
have also been studied. SGA1, a predicted vacuolar glucoamylase, acts synergistically
with ATG8 to breakdown glycogen for energy supply, which is required for the onset
of sporulation [54]. Veneault-Fourrey et al. (2006) [13] generated a mutant with NIMA
deletion, which affected mitosis and prevented autophagic conidial cell death, resulting in
defects in appressoria differentiation and infection-structure formation [13]. Furthermore,
overproduction-induced pheromone-resistant protein 2 (OPY2), casein kinase (YCK1), and
VPS9-containing protein (VPS9) were reported to be involved in autophagy by regulating
ATG8 degradation, which contributes to fungal development and pathogenicity [59–61].
Notably, VPS9, as a guanine nucleotide exchange factor (GEF) activating the endosome
marker VPS21, recruits VPS34 and the PI3-K complex (ATG6 and ATG14) to function in
autophagosome formation [61]. In addition, a histone acetyltransferase HAT1 was found to
regulate autophagy via the acetylation of ATG3 and ATG9, and the hat1 mutants exhibited
degraded appressorium turgor pressure and compromised pathogenicity [62]. Another
histone acetyltransferase, GCN5, can acetylate ATG7 to repress autophagy, which plays an
essential role in fungal development and pathogenicity [63].

Endosomes and autophagy are closely connected. VPS35, a component of the cargo-
recognition complex, regulates the conidial autophagic cell death response and autophago-
some biosynthesis [64]. The deletion mutants of the cargo-recognition subcomplex (VPS35,
VPS26, and VPS29) showed defects in asexual development and pathogenicity [64]. The
endosomal sorting complex required for transport (ESCRT) complex also plays an essential
role in fungal endocytosis and autophagy. In M. oryzae, the genes encoding the subunits
of the ESCRT-0 and -III subcomplexes were identified. The ESCRT-0 subcomplex deletion
mutants, hse1 and vps27, formed abnormal vacuoles and showed severe ATG8 lipidation, in-
dicating their contributions to the fungal autophagic process [65]. In addition, the ESCRT-0
subcomplex was revealed to regulate both sexual and asexual development as well as the
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fungal ability to penetrate host plants [65]. SNF7 and IST1 are subunits of the ESCRT-III
subcomplex that play important roles in fungal autophagy, cell wall integrity, and fungal
development and pathogenicity [65,66]. Two endoplasmic-reticulum-associated degrada-
tion (ERAD) ubiquitin ligases, HRD1 and DER1, are involved in lipid metabolism and
autophagy [67]. Deletion mutants of these two genes showed defects in conidial autophagic
cell death, impaired appressoria development, and attenuated pathogenicity [67]. Many
other genes, such as SNT2 encoding the SaNT domain-containing protein, HMT1 encoding
arginine methyltransferase, GLT1 encoding glutamate synthase, and VAST1 encoding the
VAD1 Analog of StAR-related lipid transfer domain-containing protein, have been reported
to be involved in autophagy as well as fungal development and pathogenicity [68–71].
Despite several well-elucidated components that are involved in autophagy and biologi-
cal processes in M. oryzae, the exact mechanisms of how these components contribute to
autophagy and affect pathogenicity are not clear.

3.3. Effector-Related Genes

During early infection, fungal pathogens secrete effectors to suppress host immune
responses and promote invasion and colonization [20,72]. As effectors evolve stochastically,
their biochemical functions can be unpredictable. Many effectors in M. oryzae were identi-
fied through secreted protein predictions from genome sequences or structural similarities
with known effectors from other pathogens. Many avirulence genes, including Avr-Pita,
AvrPiz-t, Avr-Pia, PWL1, and PWL2, have been characterized [73–77]. In addition, four
biotrophy-associated secreted proteins (BAS1-BAS4) were identified through transcrip-
tomic analysis [20]. They are invasive hyphae (IH)-specific proteins secreted into host cells
with different host compatibilities. However, their mutants for functional analysis have not
been obtained [20]. In this section, the genes encoding the non-avirulence secreted proteins
or regulators affecting effectors secretion, which contribute to fungal development and
pathogenicity, are discussed (Supplementary Table S1c).

Several cytoplasmic effectors that accumulate in the biotrophic interfacial complex
(BIC) before being transferred into plant cells have been confirmed by mutant analysis.
A glycine-rich secretion protein, Required-for-Focal-BIC-Formation 1 (RBF1), contains a
secretion signal that is essential for its accumulation in the BIC before being delivered into
the rice cell [78]. It functions in IH differentiation and fungal pathogenicity by engaging
in normal BIC formation [78]. Moreover, two nuclear effectors, Host Transcription Re-
programming 1 and 2 (HTR1 and HTR2), are secreted into the cytoplasm of rice cells via
the BIC. They serve as transcriptional repressors to reprogram immunity-related genes
in host rice [79]. HTR1 and HTR2 deletion mutants showed significant defects in fungal
pathogenicity [79].

By using a large-scale putative secreted protein genes disruption analysis, MC69
was identified to be essential for IH development, appressoria penetration, and fungal
pathogenicity [80]. Unlike the effectors mentioned before, MC69 is secreted and localized
to the BIC but cannot be translocated into the plant host cell [80]. Meanwhile, the deletion
mutants of the endoplasmic reticulum (ER) chaperone LHS1, lhs1, also showed compro-
mised pathogenicity and impaired asexual development [81]. LHS1 is essential for the
function and secretion of the avirulence effector AVR-Pita [81]. Two small secreted proteins
(MPG1 and MHP1) were identified to be required for the formation of hydrophobin, the
small hydrophobic proteins that can be commonly found in filamentous fungi [82–84].
They also contribute to fungal development and pathogenicity [82,83]. In contrast, another
small secretory protein belonging to the snodprot1 family, MSP1, only plays critical roles
in pathogenicity, not in development [85]. Furthermore, the secreted protein-encoding
gene HRIP1 (HR-inducing protein elicitor) has a high level of expression in the fungal
penetration and colonization stages, and its deletion mutants showed normal growth and
asexual development but exhibited attenuated virulence on rice, suggesting its importance
in fungal pathogenicity [86]. In addition, a microarray analysis uncovered two small se-
creted proteins, Hypothetical Effector Gene13 (HEG13) and HEG16, which contribute to
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fungal virulence [87]. HEG13 has a late expression profile that can suppress plant cell death
while HEG16 expresses early and functions in promoting the invasion of epidermal cells
and mesophyll colonization [87].

During infection, fungi can also generate pathogen-associated molecular patterns
(PAMPs) to facilitate colonization. Chitin is one of the best characterized PAMPs that is
released from the fungal cell wall to avoid plant recognition. Chitin oligomers can be
deactivated through binding, degradation, or deacetylation [88]. Chitinase 1 (CHIA1),
also a secreted protein, can not only bind chitin to suppress plant immune responses,
but it can also be recognized by the tetratricopeptide-repeat (TPR) protein in the rice
apoplast to trigger PTI [89]. The deletion of CHIA1 results in delayed fungal development,
including conidia germination and appressoria development, as well as decreased fungal
virulence [89]. SLP1, the secreted LysM Protein1, is an effector protein secreted into the
interface between the fungal cell wall and the plant plasma membrane. It can bind chitin
and inhibit the PAMP-induced plant immune responses [90]. The deletion of SLP1 reduces
fungal virulence [90]. Similarly, the auxiliary activity protein AA91, also a chitin-binding
protein, is secreted into the apoplast and can suppress the plant immune response as
well [91]. aa91 mutants exhibited abnormal appressoria development and compromised
pathogenicity [91]. Moreover, chitin deacetylase CDA7 is an apoplastic effector inhibiting
plant immune responses [92]. The cda7 mutants showed normal fungal morphology and
conidia development but reduced appressorium turgor pressure and attenuated virulence,
indicating its importance for the fungal full virulence [92].

Several genes that regulate effector secretion also impact fungal development and
pathogenicity. Chen et al. (2014) [93] identified an α-1,3-mannosyltransferase, the Asparagine-
linked glycosylation3 (ALG3), which mediates the N-glycosylation of the effector SLP1 and
influences the SLP1 chitin-binding activity. Mutants with ALG3 deletion showed delayed
infection hyphae development and compromised virulence in rice [93]. The β subunit of the
Sec61 complex (SEC61β), the protein-conducting channel for transport, affects the apoplastic
effectors SLP1 and BAS4, especially their localizations [94]. It also plays an important role in
fungal pathogenicity and development, such as conidiogenesis, cell wall integrity, and appres-
soria development [94]. Additionally, the syntaxin protein SYN8 and the verprolin protein
VRP1 regulate the secretion of Avr-Pita- and Avr-Pia-encoding effectors, respectively [95,96].
Both syn8 and vrp1 mutants showed impaired virulence and abnormal asexual develop-
ment [95,96]. As secretion is a general cellular process, it is not surprising that mutating the
proteins contributing to secretion yields pleiotropic effects.

3.4. Signaling Pathways in M. oryzae

In this section, components of the signaling pathways are discussed (Supplementary
Table S1d). These are master contributors to M. oryzae biology that regulate a broad range
of downstream factors. Therefore, it is not surprising that their disruption dramatically
impacts fungal development and pathogenicity. Here, a conceptual model is included,
summarizing the major signaling pathways discussed in the following section (Figure 3).
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3.4.1. Heterotrimeric G Protein Subunits and Regulatory Proteins

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are molecular switches
in signal transduction, transducing signals from cell surface receptors to various intracellular
downstream components [97]. In M. oryzae, three G protein α subunits (MAGA, MAGB,
and MAGC), two β subunits (MGB1 and MGB2), and one γ subunit (MGG1) have been
identified [22,98–100]. Among them, MAGB, MGB1, and MGG1 are the most well studied
through mutant analysis, which are involved in the signaling pathways that regulate fungal
vegetative growth, appressoria development, and pathogenicity [98–100].

In addition to the G protein subunits, regulators of G-protein signaling (RGS) have also
been studied. RGS proteins function as GTPase-accelerating proteins (GAPs), negatively
regulating G proteins by turning off the G protein signaling pathways [101,102]. In M.
oryzae, eight RGS and RGS-like proteins have been characterized. RGS1 was the first
identified negative regulator of Gα subunits in M. oryzae, which plays important roles in
fungal development and pathogenicity [103,104]. It also regulates the expression of effector-
encoding genes, contributing to the infection process [105]. Further analysis revealed that
RGS2 and RGS6 only contribute to fungal development while RGS3, RGS4, and RGS7
are necessary for both fungal development and pathogenicity [104]. Specifically, RGS2
acts upstream of MAGB for conidiation regulation and RGS7 interacts with MAGB to
regulate pathogenicity [104]. In addition, an RGS7-interacting protein, MIP11, is required
for fungal development and pathogenicity [106]. It also interacts with PDEH, an important
component of the cAMP pathway that will be discussed later [106].

3.4.2. Components of cAMP Pathway

Cyclic AMP (cAMP) can be used by G proteins as a secondary messenger for signal
transduction. Lee and Dean (1993) [107] found that exogenous cAMP can induce appres-
soria formation, indicating the importance of the cAMP-dependent signaling pathway in
recognizing surfaces and forming the infection structure [107]. The gene encoding the
catalytic subunit of cAMP-dependent protein kinase A, CPKA, plays a critical role in ap-
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pressoria penetration for fungal pathogenicity [108]. Mutants with CPKA deletion showed
attenuated virulence, but they exhibited normal appressoria formation and invasive hyphal
growth in plants that can still infect wounded plants [108]. The regulatory subunit of
cAMP-dependent protein kinase A, RPKA, is also essential for fungal development and
pathogenicity [109]. CPKA seems to be mainly localized in cytosolic vesicles while RPKA
shows a nuclear–cytoplasmic distribution pattern, and this cytoplasmic localization is
governed by CPKA [109]. Notably, their interactions and localization can be affected by the
exogenous addition of cAMP [109].

Two cAMP phosphodiesterases in M. oryzae, PDEL (low affinity) and PDEH (high
affinity), were found to engage in intracellular cAMP signaling. PDEH deletion mutants
showed defects in fungal development and attenuated virulence, suggesting that PDEH
is a key regulator of cAMP signaling [110]. On the other hand, PDEL only plays a minor
role in cAMP signaling regulation and may predominantly function in the absence of
PDEH [110]. In addition, the protein phosphatase YVH1 acts upstream of PDEH to regulate
the cAMP signaling pathway [111]. yvh1 mutants exhibited defects in asexual development,
pathogenicity, cell wall integrity, and osmotic stress sensitivity [111].

MAC1 encodes adenylate cyclase, which catalyzes the production of cAMP from
ATP [112]. mac1 mutants exhibited defects in fungal development, including conidiation
and conidial germination, along with disabilities in appressoria formation and attenuated
virulence [112]. Meanwhile, a MAC1-interacting protein CAP1, also known as the adenylate
cyclase-associated protein, plays an important role in MAC1 activation [113]. The deletion
of CAP1 causes a reduced intracellular cAMP level, indicating its involvement in the
cAMP pathway [113]. The defects shown in cap1 mutants, including reduced fungal
vegetative growth and conidiation, abnormal appressoria formation, and significantly
impaired virulence, can be partially rescued by exogenous cAMP [113].

Several downstream targets regulated by the cAMP/PKA signaling pathway have
been functionally studied through target gene deletion analysis. Upon cAMP activation,
SOM1 can further activate the transcription factors STU1 and CDTF1 to regulate appresso-
rium turgor and appressorium initiation, respectively [114,115]. Corresponding single-gene
deletion mutants showed defects in virulence, indicating that these downstream compo-
nents of the cAMP/PKA pathway are indispensable in infection-related morphogenesis
and pathogenicity. In addition, the cAMP/PKA signaling pathway plays an essential
role in glycogen metabolism. Amyloglucosidase (AGL1) and glycogen phosphorylase
(GPH1) can inhibit glycogen mobilization during appressoria development and affect
fungal virulence [116].

3.4.3. Mitogen-Activated Protein Kinase (MAPK) Cascade

The mitogen-activated protein (MAP) kinase (MAPK) PMK1 acts downstream of the
cAMP signaling pathway [117]. pmk1 mutants exhibited abnormal fungal development and
a reduced ability to cause disease in rice and barley [117]. Another two MAP kinase genes,
MPS1 and OSM1, have also been studied. mps1 mutants showed defects in sporulation,
fertility, cell wall integrity, and appressoria penetration, resulting in a nonpathogenic
phenotype [118]. Unlike MPS1, OSM1 does not regulate appressorium turgor pressure
and fungal pathogenicity; it participates in osmotic stress sensitivity and appressorium
morphogenesis [119]. However, MSN2, an OSM1-interacting protein containing the C2H2
zinc-finger DNA-binding domain, is required for cell wall integrity and stress responses
and contributes to asexual development and fungal pathogenicity [120].

A MAPK kinase cascade is formed by MAPKK kinase (MAPKKK), MAPK kinase
(MAPKK), and MAPK. Several MAPKKK-MAPKK-MAPK cascade components have been
studied. MST11 and MST7 genes encode MAPKKK and MAPKK, respectively, to activate
PMK1 [121]. These two genes are necessary for fungal development and pathogenicity,
indicating the importance of the MST11-MST7-PMK1 cascade in M. oryzae biology [121].
Furthermore, thioredoxin TRX2 interacts with MST7 and regulates PMK1 activation [122].
trx2 mutants are defective in fungal asexual development and virulence [122].
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Furthermore, MCK1 and MKK1 serve as the MPKKK and MAPKK for MPS1 activation,
respectively [123,124]. They play essential roles in fungal growth, asexual development,
and pathogenicity, as well as the maintenance of cell wall integrity [123,124]. In addition,
Yin et al. (2016) [124] found that PDEH acts upstream of this MCK1-MKK1-MPS1 cascade,
suggesting an interaction between cAMP signaling and the MAPK cascade [124].

The p21-activated kinases (PAKs), MST20 and CHM1, are homologs of PMK1 in
Saccharomyces cerevisiae [125]. MST20 deletion results in reduced aerial hyphae and conidia-
tion but normal appressoria formation and penetration, which are significantly impaired in
CHM1 deletion mutants and lead to a nonpathogenic phenotype [125]. MST20 and CHM1
cannot individually activate the PMK1 MAPK pathway and likely function redundantly in
M. oryzae [125]. Moreover, SEP1, a component of the Mitotic Exit Network (MEN), functions
upstream of MKK1 through phosphorylation and contributes to fungal asexual develop-
ment, pathogenicity, and cell wall integrity [126]. Other MEN components, including DBF2
and MOB1, are also essential for these processes, indicating a crosstalk between the MEN
and MKK1 pathways [126].

Many downstream targets of MAPKs have been functionally studied. For example,
the homeobox transcription factor, HOX7, is regulated by the PMK1 MAPK cascade and
is involved in appressoria development [127]. MST12, a Cys2-His2 (C2H2) zinc-finger
protein, functions downstream of PMK1 to regulate fungal pathogenicity [128]. An MST12-
interacting transcription regulator, TPC1, modulates the MST12 DNA-binding affinity [129].
TPC1 plays a critical role in fungal asexual development and pathogenicity, and its nuclear
localization is dependent on the PMK1 pathway regulation, suggesting its involvement
in the PMK1 MAPK cascade [129]. Meanwhile, the transcription factor SFL1, containing
MAPK docking and phosphorylation sites, also interacts with PMK1 and plays critical
roles in fungal conidiation and virulence [130]. Furthermore, single-deletion mutants of
GAS1 and GAS2, two small proteins regulated by PMK1, show normal growth and asexual
development but are unable to penetrate plant hosts to cause disease [131]. Another target
of the PMK1 MAPK cascade, PIC5, was identified through a PMK1-interaction screen and
was found to be critical in appressoria differentiation and fungal pathogenesis [132].

Among the downstream components of the MPS1 MAPK cascade, the MADS-box
transcription factor MIG1 is essential for fungal infection and pathogenicity but does not
impact vegetative hyphal growth and appressoria formation [133]. SWI6, an APSES (Asm1,
Phd1, Sok1, Efg1, and StuA) family transcription factor, also functions downstream of
the MPS1 MAPK cascade. The deletion of SWI6 showed defective fungal development,
such as slow hyphal growth and the abnormal formation of conidia and appressoria [134].
swi6 mutants exhibited reduced turgor pressure, which resulted in compromised virulence
and defects in the cell wall integrity [134]. Moreover, the glycogen synthase kinase GSK1
is also regulated by MPS1 and is vital for fungal vegetative growth, conidiation, and
pathogenicity mediated by appressoria development [135]. Additionally, the WOR1/GTI1
transcription factor GTI1 can be indirectly regulated by MPS1 and contributes to fungal
asexual development, cell wall integrity, and pathogenicity [136].

3.4.4. Monomeric GTPase Modules (Ras Superfamily)

The Ras superfamily of small guanosine triphosphatases (GTPases) serves as molecular
switches for signal transduction [137–139]. They can be classified into five subfamilies,
including Ras (Ras sarcoma), Rho (Ras homologous), Rab (Ras-like proteins in brain), Ran
(Ras-like nuclear), and Arf (ADP-ribosylation factor) proteins [138].

Similar to many other eukaryotic species such as Schizosaccharomyces pombe, M. oryzae
contains two Ras genes, RAS1 and RAS2 [137–139]. Mutants with RAS1 deletion showed
slight defects in conidiation, while RAS2 deletion mutants were lethal, indicating a role
of RAS2 in M. oryzae [139]. Through generating the dominant active allele of RAS2, the
RAS2G18V transformants showed abnormal appressoria formation and a nonpathogenic
phenotype, further supporting the importance of RAS2 [139]. RAS2 functions upstream of
both the cAMP/PKA and PMK1 MAPK pathways [139]. Meanwhile, a GTPase-activating
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protein interacting with RAS2, SMO1, is involved in RAS regulation [140]. Mutants with
SMO1 deletion exhibited abnormal development, such as nonadherent conidia, smaller
appressoria, and attenuated virulence [140]. Moreover, the farnesyltransferase β-subunit
RAM1 interacts with both RAS1 and RAS2 and regulates their localization to the plasma
membrane [141]. RAM1 deletion mutants showed impaired conidia and appressoria
formations and compromised virulence [141]. However, the addition of exogenous cAMP
could restore the defective appressoria formation, indicating that RAM1 functions upstream
of the cAMP signaling pathway. In addition, the function of another Ras-like protein, RAL2,
in fungal development and pathogenicity has also been revealed through homologous
analysis with S. pombe [142]. Essential genes in the cAMP/PKA and PMK1 MAPK pathways,
such as PDEH and SMO1, exhibited decreased expression levels in ral2 mutants, indicating
the importance of RAL2 in the cAMP/PKA and PMK1 MAPK pathways [142].

Several members of the Rho family GTPase have been studied in M. oryzae. For
example, RAC1 plays important roles in fungal conidiogenesis and pathogenicity [143]. It
activates the kinase activity of the downstream target CHM1 and subsequently regulates
the conidiogenesis [143]. The deletion of gene encoding another member of the Rho family
GTPase, CDC42, results in defective conidiation, penetration, and virulence [144]. Other
Rho family proteins, RHO2 and RHO3, are required for appressoria penetration and fungal
pathogenicity [145,146]. rho3 mutants have shown reduced intracellular cAMP levels [146].
However, in the presence of exogenous cAMP, defects in rho3 mutants cannot be rescued,
while the abnormal appressoria development of rho2 mutants can be recovered [145,146].
In addition, eight Rho GTPase-activating proteins (Rho GAPs) containing the conserved
RhoGAP domain have also been functionally characterized. Interactions between Rho
GTPases and these Rho GAPs were detected. Among them, LRG1 and RGA1 interact with
RAC1 and CDC42, indicating their roles in the RAC1 and CDC42 pathways [147]. LRG1
and RGA1 are involved in conidiogenesis and appressoria formation [147]. However, only
LRG1 is required for fungal virulence and cell wall integrity [147].

Seven Arf small GTPase family members have also been identified. ARF6 is involved
in endocytosis and polarity establishment and is vital for fungal asexual development [148].
For the other ARFs, ARL1 and CIN4 are essential for appressoria penetration and infection
growth, contributing to fungal pathogenicity [149]. They also function in vesicle trafficking,
and CIN4 is involved in BIC formation [149]. The sole adaptor protein of these ARFs,
GGA1, also impacts fungal development and pathogenicity [149]. Moreover, GLO3, an
ArfGAP protein, is essential for both asexual and sexual development and virulence [150].
The deletion of GLO3 causes defective endocytosis and responsiveness to endoplasmic
reticulum (ER) stress [150]. In addition, Rab GTPase YPT7 is required for asexual devel-
opment and pathogenicity while being essential for vacuole fusion and autophagy [151].
Interestingly, YPT7 helps to recruit VPS35, the cargo-recognition complex, to the endosome,
indicating its indispensable role in autophagy [152].

3.4.5. Target of Rapamycin (TOR) Signaling Pathway

The cAMP/PKA and MAPK pathways are positive regulatory pathways for appresso-
ria formation and development, whereas the Target of Rapamycin (TOR) pathway nega-
tively controls these processes. It acts downstream of cAMP/PKA to inhibit appressoria
formation [153]. ASD4, the GATA transcription factor, acts upstream of TOR signaling.
ASD4 regulates the expression of genes involved in nitrogen assimilation and glutamine
synthesis, such as GLN1, and importantly inactivates TOR signaling [153]. In asd4 mutants,
the TOR signaling is activated, resulting in appressoria defects [153].

PPE1, a serine/threonine protein phosphatase, and its partner protein SAP1, regulate
the TOR pathway in a negative manner [154]. They are required for normal fungal develop-
ment, pathogenicity, and cell wall integrity [154]. PPE1 also interacts with MKK1, indicating
a complex regulatory network in M. oryzae [154]. Moreover, another PPE1-interacting pro-
tein, TIP41, is also involved in the TOR pathway [155]. Mutants with TIP41 deletion
were defective in fungal development and virulence, as well as cell wall integrity and
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autophagy [155]. Interestingly, TIP41 affects the appressorium turgor pressure rather than
appressoria formation and is also involved in rapamycin sensitivity [155]. SKP1/BTB/POZ
domain-containing protein WHI2 and its interacting phosphatase PSR1 also negatively
regulate the TOR pathway [156]. WHI2 and PSR1 single-deletion mutants all showed
defects in appressoria development and fungal pathogenicity [156]. In addition, IMP1
acts as a downstream target of the TOR signaling pathway [157]. imp1 mutants exhibited
compromised appressoria development and a nonpathogenic phenotype [157]. IMP1 also
localizes to vacuoles and heavily promotes vesicle trafficking and autophagy, suggesting a
branch signaling of TOR-IMP1-autophagy [157].

3.4.6. Ubiquitination Cascade

The ubiquitin system is a proteolysis pathway conserved in eukaryotes [158]. The
ubiquitination of target proteins requires a series of enzymatic reactions. Ubiquitin is first
activated by the activating enzyme (E1) and then transferred to the conjugating enzyme (E2).
E2 and the substrate protein bind through the ubiquitin ligase (E3). The polyubiquitin chain
is generated from subsequent ubiquitin conjugation, which is then recognized by the 26S
proteasome for degradation [158]. The exogenous application of the proteasome inhibitor
Bortezomib can affect conidia germination, appressoria formation, and the pathogenicity
of M. oryzae [159]. In addition, the polyubiquitin (MGG_01282) is involved in asexual and
sexual development and fungal virulence, supporting the importance of ubiquitination in
M. oryzae biology [159].

The E2 RAD6 and its downstream E3s (BRE1, UBR1, and RAD18) have been func-
tionally characterized [160]. The deletion of RAD6 results in multiple defects in fungal
development and pathogenicity, such as slow vegetative growth, reduced conidia pro-
duction, and appressoria formation [160]. Further analyses of the downstream E3 ligases
revealed that the RAD6-UBR1 cascade plays critical roles in conidia germination and ap-
pressoria development [160]. Essential components of the cAMP/PKA, Ras, and PMK1
MAPK signaling pathways, including Gα subunits, RGS1, and the Ras antagonist IRA1, are
substrates of the RAD6-UBR1 cascade [160]. In addition, the RAD6-BRE1 cascade regulates
histone H3K4 methylation and contributes to fungal conidiation and pathogenicity [160].
Due to the weak interaction between RAD6 and RAD18, the rad18 mutant showed a normal
phenotype [160].

Several studies have illustrated the importance of the ubiquitin system in M. oryzae
development and pathogenicity. A key component of the SCF (Skp1/Cullin1/F-box) E3
ubiquitin ligase complex, SKP1, is required for fungal development and pathogenicity [161].
The skp1 RNAi-silenced knockdown transformants showed defects in germination, sporu-
lation, and appressoria formation, exhibiting a nonpathogenic phenotype [161]. Moreover,
GRR1, an adaptor to E3 ubiquitin ligase containing the F-box, also contributes to de-
velopmental processes, such as conidiogenesis, appressoria formation, turgor pressure
generation, cell wall integrity, and virulence [162]. In addition, the ubiquitin system compo-
nent cue protein (CUE1) and the ubiquitination-associated F-box protein (FBX15) are also
involved in fungal conidiation and pathogenicity [163]. Particularly, CUE1, a key factor of
the endoplasmic-reticulum-associated degradation (ERAD) complexes, is essential for the
ER stress response and the accumulation of cytoplasmic effectors in the BIC [163].

Ubiquitins are recycled by deubiquitinating enzymes (DUBs) that disassemble ubiq-
uitin conjugates into monomeric ubiquitin [164]. Two DUBs, UBP4 and UBP8, have been
identified and functionally characterized. Single-deletion mutants of UBP4 and UBP8
both exhibited defects in fungal vegetative growth, asexual development, and pathogenic-
ity [165,166]. UBP8 also regulates the carbon catabolite repression in M. oryzae [166].

Sumoylation is a post-translational modification similar to ubiquitination, where
the small ubiquitin-like modifier (SUMO) attaches to target proteins. The association
between ubiquitination and sumoylation has been characterized in the cue1 and fbx15
single-deletion mutants, where the reduced sumoylation levels can be observed in these
ubiquitination-related deletion mutants [163]. The SUMO pathway in M. oryzae has been
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studied, including the small ubiquitin-like modifier SMT3, E1-activating enzymes AOS1
and UBA2, E2 conjugating ligase UBC9, and E3 ligase SIZ1 [167]. By analyzing these
single-gene deletion mutants, the SUMO pathway has been uncovered to play essential
roles in multiple processes, including fungal vegetative growth, conidia development, and
pathogenicity [167]. Moreover, the SUMO pathway is involved in cellular responses to
different stresses, such as osmotic and oxidative stresses [167]. In addition, many candidate
downstream targets of SUMO have been identified via affinity purification, GO annotation,
and KEGG pathway analysis. Many proteins associated with effector secretion, cell wall
integrity, appressoria development, and fungal virulence can be SUMO modified [167].
Some small GTPases (e.g., RHO1 and RAS2) and protein kinases (e.g., PMK1, MPS1, and
OSM1) are also putative SUMO proteins [167]. However, more detailed analyses using
genetic and molecular methods are needed to define the functions of these substrates and
how sumoylation affects their activities.

3.5. Multifunctional Genes Involved in Different Aspects of M. oryzae Biology

In this section, master contributors that have profound effects, including different
types of transcription factors and kinases and phosphatases, are discussed (Supplementary
Table S1e). Interferences of these key components yield pleiotropic defects in both fungal
development and pathogenicity.

3.5.1. Transcription Factors

Transcription factors play essential roles in controlling gene expression. The Zn2Cys6
zinc-finger family is the largest family of transcription factors in M. oryzae [168]. They have
been systematically analyzed, and many of them are involved in both fungal development
and pathogenicity [169–171]. For example, GPF1 (Growth and Pathogenicity regulatory
Factor 1) and CCA1(Conidiation, Conidial germination, and Appressorium formation
required transcription factor 1) are required for appressoria penetration, while COD1 and
COD2 (COnidia Development 1 and2) control conidia-related genes and are essential for
conidiogenesis and pathogenicity [169,170]. LEU3, another leucine-associated Zn2Cys6
TF, acts upstream of other TFs in the same family, including LEU1, LEU2, and LEU4 [171].
These proteins play important roles in the leucine biosynthesis pathway, as well as in fungal
development and virulence [171].

The Cys2-His2 (C2H2) zinc-finger protein family also contains a large number of
TFs [168]. Most of the C2H2 TFs are involved in diverse aspects of M. oryzae biology. For ex-
ample, CON7 (CONidium morphology) is the first identified C2H2 TF that regulates a large
set of genes and contributes to both fungal development and pathogenicity [172]. CRZ1
(calcineurin-responsive transcription factor 1) acts downstream of calcium-dependent sig-
naling and is critical for fungal cell wall integrity and pathogenicity [173]. CREA, a carbon
catabolite repressor, affects the expression of many carbon-metabolizing and virulence-
related genes [174]. The deletion of CREA results in multiple fungal defects, including slow
growth, impaired asexual development, and compromised pathogenicity [174]. However,
some C2H2 TFs, such as CONx4; CONx6 to CONx11; GCF4 and GCF7 (Growth and Coni-
diation regulatory Factors); ZAP1; and ZFP2, 3, 9, 14, and 15, only contribute to fungal
development [175]. Others, such as ZFP1, 6, 8, and 11, play important roles solely in fungal
pathogenicity [175].

Basic leucine zipper (bZIP) transcriptional factors contain a basic DNA-binding region
and a leucine-zipper region, which are highly conserved in eukaryotes. The full set of
bZIP TFs has been identified through genome sequencing and BLAST analysis. Several of
them play significant roles in fungal development and virulence, including BZIP4, 7, 10,
11, 13, 14, and 22; ATF1 (homologous to bZIP TF ATF/CREB from yeasts to mammals);
AP1 (homolog of the bZIP TF AP1); METR; and HAC1 [176–179]. In particular, AP1 and
ATF1 are essential for the oxidative stress response, and METR is involved in methionine
biosynthesis [176,177,179]. Moreover, YCP4, a target of AP1, is involved in controlling fun-
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gal growth, conidiogenesis, appressoria turgor pressure, cell wall integrity, stress responses,
and pathogenicity [180].

Homeobox transcription factor genes (HOX) contain highly conserved sequences
coding for the homeodomain, which is the DNA-binding motif commonly found in de-
velopmental regulators. They are essential in fungal growth and differentiation [181,182].
In M. oryzae, eight HOX genes (HOX1 to HOX8) were identified that played divergent
roles in fungal development, including appressoria formation and conidiation [182]. Kim
et al. (2009) [182] found that HOX1 and HOX6 were involved in hyphal growth, while
HOX4 affects conidia size. The HOX2 deletion mutants exhibited no conidia formation
but had similar virulence to WT on rice leaves due to typical mycelium development [182].
hox7 mutants showed no appressoria formation and a nonpathogenic phenotype when
the mutated conidial suspension was sprayed onto rice seedlings [182]. However, the
infiltration assay of the hox7 conidial suspension showed a disease lesion on rice leaves,
indicating the role of HOX7 in appressoria penetration [182]. Among these HOX genes,
HOX3 and HOX5 did not affect either fungal development or pathogenicity [182]. On
the other hand, HOX8, also identified as MST12, interacted with a MAP kinase, which is
involved in the fungal pathogenicity [128,182].

Three members of the forkhead-box (FOX) TF gene family, FKH1, HCM1, and FOX1,
have been functionally characterized. FKH1 is essential for both fungal development and
pathogenicity, while HCM1 only contributes to vegetative growth and conidial germina-
tion [183].

Other TFs in M. oryzae have also been studied. For instance, CRF1 encodes a basic
helix–loop–helix (bHLH) TF and is essential for fungal virulence [184,185]. CRF1 regulates
numerous genes related to carbohydrate and lipid metabolism and thus contributes to phos-
phorylation during appressoria formation and regulating glycerol metabolism [184,185]. It
is also involved in fungal growth and asexual development [184,185]. The pH-regulatory
transcription factor PACC is essential for fungal biotrophic growth, asexual development,
and pathogenicity [186,187]. Interestingly, it is also involved in fungal alkalinization, and its
expression increases with an increasing pH [187]. In addition, TRA1 (Transcription factor 1)
is a TF-encoding gene whose accumulation is regulated by the TF CON7 [188]. TRA1 plays
important roles in spores’ adhesion and germination and virulence [188]. TRA1-dependent
genes, including TDG4 and another TF-encoding gene TDG2, also contribute to fungal
virulence [188].

3.5.2. Kinases and Phosphatases

Protein phosphorylation is a major post-translational modification that is critical in
intracellular regulation. This process is revisable in that the targeted proteins can be
phosphorylated by kinases at specific sites, and specific phosphatases can help to remove
these modifications [189]. In addition to the MAPK pathways, several protein kinases in
M. oryzae that are essential for fungal development and pathogenicity have been studied.

Subunits of a constitutively active serine/threonine kinase (CK2), CKb1 and CKb2, are
required for fungal growth and virulence [190]. CK2 is necessary for a large ring structure
formation in the appressorium, which is important for appressoria penetration [190]. The
actin-regulating protein ARK1 (Actin-Regulating Kinase 1) is another serine/threonine
kinase that is vital for fungal pathogenicity [191]. Mutants with ARK1 deletion showed
abnormal appressorium turgor pressure [191]. The ark1 mutants were also defective in
endocytosis and not sensitive to exogenous oxidative stress [191]. Meanwhile, the related
ARK1-interacting actin-binding protein, ABP1, was found to affect the actin cytoskeleton
and contribute to fungal growth and pathogenicity [192]. Moreover, the dual-specificity
tyrosine-regulated protein kinase YAK1 (orthologous to YAK1 in S. cerevisiae) is involved
in fungal development and pathogenicity [193]. YAK1-deletion mutants exhibited defects
in glycogen and lipid metabolism, resulting in decreased turgor pressure and abnormal
appressoria penetration [193]. In addition, the cyclin-dependent kinase subunit CKS1 and
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the atypical guanylate kinase GUK2 are both critical in appressoria development and fungal
infection [194,195].

The SNF1/AMP-activated protein kinase (AMPK) family is conserved in eukaryotes
to balance the cellular energy ATP [196]. SNF1 is a catalytic subunit of the SNF1/AMPK
pathway, and it maintains peroxisomes and lipid metabolism and is essential for sporula-
tion, vegetative growth, and virulence [197,198]. In M. oryzae, the β-subunit SIP2, γ-subunit
SNF4, and SNF1-activating kinases SAK1 and TOS3 have been shown to play critical roles
in lipid metabolism, fungal development, and virulence [198].

Histidine kinases (HIKs) are sensor proteins for external signal detection and sig-
naling [199]. They form unstable phosphoramidate bonds, which are different from ser-
ine/threonine kinase-producing phosphoester bonds [200]. In M. oryzae, SLN1, which
encodes a putative histidine kinase, functions as a turgor sensor and is essential for cell wall
integrity [201,202]. Its deletion mutants exhibited an impaired melanin layer, decreased
appressorium turgor pressure, and attenuated virulence [201,202]. The histidine kinase
PAS1 (period circadian protein, aryl hydrocarbon receptor nuclear translocator protein, and
single-minded protein) is also required for mycelia and conidial development, appressoria
formation, and pathogenicity [203]. Several HIKs-encoding genes, HIK1 to HIK9, have been
identified, and their single-deletion mutants have been functionally characterized. They
contribute to conidial development and fungal virulence in varying degrees [199]. HIK5
plays some significant roles as its deletion mutants cannot cause any disease on the plant
host and showed defects in appressoria formation and cell wall integrity [199]. Similarly,
HIK8-deletion mutants were also nonpathogenic [199]. In addition, HIK5 and HIK9 are
involved in cell wall integrity and the hypoxia-sensing pathway [199].

PPG1, the serine/threonine-protein phosphatase catalytic subunit (PP2A), is critical
for vegetative growth, conidiation, and appressoria penetration in M. oryzae [204]. It
also regulates the Rho family GTPase, such as CDC42, RHO3, and RAC1, which are key
factors for pathogenicity [204]. The phosphatase CDC14 antagonizes cyclin-dependent
kinases, which affects mitosis and cytokinesis [205]. The deletion of CDC14 results in
reduced growth and conidiation, an abnormal septation and nuclei distribution in the
hyphae, and appressoria formation defects, which ultimately results in compromised
pathogenicity [205].

TPS2, the trehalose 6-phosphate phosphatase, is a key component of the trehalose
phosphate synthase/trehalose phosphate phosphatase (TPS/TPP) pathway for trehalose
biosynthesis [206]. Mutants with TPS2 deletion showed defects in fungal growth, conid-
iogenesis, and cell wall integrity [206]. The tps2 mutants also exhibited abnormal turgor
pressure, which resulted in compromised virulence [206]. In addition to TPS2, the TPS
complex in M. oryzae contains another two subunits, trehalose 6-phosphate synthase (TPS1)
and a regulatory subunit (TPS3). TPS1 also plays an essential role in fungal infection and
carbon and nitrogen metabolism, while TPS3 is required for TPS1 activation and contributes
to fungal pathogenicity [207].

In M. oryzae, five lipid phosphate phosphatases (LPP1 to LPP5) have been identified.
Among them, only LPP3 and LPP5 are involved in diacylglycerol regulation and are critical
for appressoria development and fungal virulence [208]. In addition, the phosphatidate
phosphatase PAH1, expressed in multiple stages, contributes to asexual development, heat
tolerance, and fungal virulence [209]. The PAH1 deletion mutants exhibited lipid alteration,
which affected the accumulation of phosphatidic acid, suggesting its essential role in lipid
metabolism [209].

3.5.3. Peroxisomal- and Mitochondrial-Related Genes

Peroxisomes are single-membrane organelles that participate in several lipid
metabolisms [210]. According to their role or localization, peroxisome proteins can
be divided into three groups: biogenesis proteins (peroxins), matrix proteins, and
membrane proteins [211]. In M. oryzae, several peroxisome proteins, including PEX1,
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PEX5, PEX6, PEX7, PEX13, PEX14, PEX14/17, and PEX19, have been studied. They are
important for fungal development and pathogenicity [210–217].

In particular, PEX13 and PEX14 are key components of the peroxisomal docking
complex and are essential for peroxisome formation [213]. The peroxisomal fission gene 1
(PEF1) also regulates peroxisome formation by affecting peroxisomal fission [218]. On the
other hand, PEX5 and PEX7 are the receptors for peroxisomal targeting signal (PTS) 1 and
PTS2, respectively, which are essential for recognizing and importing peroxisomal matrix
proteins [211,216,219]. PEX6 is also required for peroxisomal integrity and subsequently
affects the import of matrix proteins and β-oxidation of fatty acids [210]. In addition, PEX19
is required to maintain the peroxisomal structure while PEX11A plays a critical role in
peroxisomal proliferation [212,215].

The generation of acetyl-CoA is one of the most important consequences of fatty
acid β-oxidation [220]. PTH2 is a carnitine acetyl-transferase (CAT) that is predominantly
present in peroxisomes [220]. The pth2 mutants lost the CAT activities and showed a com-
promised lipid metabolism in appressoria and attenuated fungal virulence, indicating the
importance of acetyl-CoA in appressoria function and fungal pathogenicity [220]. Mean-
while, the peroxisomal-CoA synthetase PCS60 is also involved in fatty acid metabolism
and contributes to the growth of infection hyphae and fungal pathogenicity [221]. The
β-oxidation of fatty acids also results in the reoxidation of NADH to NAD+ in peroxisomes.
The alanine, glyoxylate aminotransferase 1 (AGT1), is localized to peroxisomes and ex-
hibits an indispensable role in fungal full virulence [222]. The disruption of AGT1 affects
the ratio of ADH/NAD+ in peroxisomes, resulting in defects in lipid mobilization and
turgor pressure generation [222]. As a consequence, the agt1 mutants displayed abnormal
appressoria penetration and impaired pathogenicity [222].

In addition to peroxisomes, the β-oxidation of fatty acids also occurs in mitochondria,
and many mitochondrial-localized enzymes also play critical roles in M. oryzae biology [223].
The short-chain acyl-CoA dehydrogenase 2 (SCAD2) is involved in the first dehydrogena-
tion step of the mitochondrial β-oxidation pathway [224]. The disruption of SCAD2 leads
to an impaired ability to utilize fatty acids [224]. The scad2 mutants exhibited defects in
appressoria development and fungal pathogenicity [224]. Meanwhile, Acyl-CoA dehydro-
genases are also involved in the respiratory system, delivering electrons to the ubiquinone
pool to synthesize ATP with the help of electron-transferring flavoprotein (ETF) and its
dehydrogenases (ETFDH) [225]. In M. oryzae, two subunits of the ETF (ETFA and ETFB)
and one ETFDH all localize to mitochondria and function downstream of the mitochon-
drial β-oxidation [226]. Single deletion mutants of these genes showed defects in fungal
vegetative growth, conidiation, virulence, and fatty acid metabolism [226]. Another mito-
chondrial β-oxidation enzyme, Enoyl-CoA hydratase ECH1, is also required for the fungal
utilization of fatty acids [227]. The ech1 mutants had defects in mitochondrial β-oxidation
and integrity, conidial germination, abnormal appressoria penetration, and compromised
fungal virulence [227].

The 3-methylglutaconyl-CoA hydratase AUH1 contributes to the fusion and fission of
mitochondria [228]. Mutants with AUH1 deletion displayed defects in fungal development
and pathogenicity [228]. Another mitochondrial fission protein FIS1 is also crucial for both
fungal development and virulence [229]. Moreover, a FIS1-interacting protein DNM1, also
known as the dynamin-related protein, is required for asexual development, such as conidi-
ation and turgor pressure generation and pathogenicity [230]. Interestingly, the localization
of DNM1 can be observed in both peroxisomes and mitochondria, and it plays a critical role
in both peroxisomal and mitochondrial fission [230]. In addition, the isovaleryl-CoA dehy-
drogenase IVD, another mitochondrial-localized enzyme, is involved in leucine catabolism
and contributes to fungal vegetative growth, conidiation, and pathogenicity [231]. The
acetoacetyl-CoA acetyltransferase ACAT1 is also mitochondria localized, whereas ACAT2
is localized to the cytoplasm [232]. Although both ACAT1 and ACAT2 are required for the
fungal full virulence, only ACAT2 is involved in vegetative growth [232].
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3.5.4. Other Important Genes in M. oryzae Biology

The turgor pressure produced by appressorium requires the formation of a 1,8-
dihydroxynaphthalene (DHN) melanin layer as an impermeable barrier [233]. In M. oryzae,
three melanin synthesis genes (ALB1, RSY1, and BUF1) have been functionally studied [234].
Besides their important roles in turgor pressure generation, they are also required for fungal
virulence [235]. Their mutants showed defects in conidiation, appressoria formation, and
stress resistance [235].

Indole-3-acetic acid (IAA) is the most common auxin involved in plant growth, devel-
opment, and plant–microbe interactions [236]. The IAA/auxin biosynthesis also occurs in
fungal pathogens. The indole-3-pyruvic acid (IPA) pathway in M. oryzae plays essential
roles in the IAA/auxin biosynthesis, as well as fungal development and pathogenicity [237].
The tryptophan aminotransferase (TAM1) and the indole-3-pyruvate decarboxylase (IPD1)
are key components of the IPA pathway [237]. The deletion of TAM1 and IPD1 leads to
reduced IAA production [237]. In addition, tam1 and ipd1 mutants exhibited defects in
vegetative growth and conidiation and impaired virulence [237].

Transcription and post-transcriptional levels of regulations play key roles in M. oryzae
biology [238]. RNA interference (RNAi) is a conserved mechanism of transcriptional
regulation, where small interfering RNAs (siRNAs) bind to target sequences and silence
the gene expression [238]. RNAi pathway components of M. oryzae, including the primary
Dicer (DCL2), the RNA-dependent RNA polymerase (RDRP1), and Argonaute (AGO3)
are required for siRNA biogenesis [239]. The disruption of DCL2, RDRP2, and AGO3
results in reduced conidia production [239]. Furthermore, deletion mutants of RDRP2
and AGO3 were unable to colonize and infect plant hosts [239]. These results suggest
the essential roles of siRNA in fungal development and pathogenicity [239]. Moreover,
RNA methylation is one of the regulatory processes of RNA modification, including the
reversible and conserved N6-methyladenosine (m6A) RNA methylation [240,241]. The
N6-adenosine-methyltransferase (IME4) is required for m6A RNA methylation in M. oryzae
and is involved in fungal pathogenicity [242]. In addition, two m6A-binding proteins
(YTH1 and YTH2) and the mRNA:m6A demethylase (ALKB1) all contribute to fungal
virulence, and YTH2 is also important for conidiation [242].

Histone modifications, such as methylation and acetylation, also contribute to the
regulation of biological processes at the transcriptional level. In M. oryzae, the transcrip-
tional regulation of histone modification dynamics is essential for regulating virulence
genes [243]. Several enzymes involved in histone modifications regulate gene expression
and contribute to fungal development and pathogenicity. For example, the histone lysine
methyltransferase SET1 is required for histone H3 lysine 4 methylation and is involved
in numerous gene regulations [244]. The deletion of SET1 results in defects in vegetative
growth and asexual development, including conidiation and appressoria formation [244].
set1 mutants displayed a compromised ability of plant infection [244]. Moreover, the hi-
stone acetyltransferases RTT109 and SAS3 are required for the acetylation of histone H3
lysine 56 (H3K56) and H3K14, respectively [245,246]. The deletion of RTT109 or SAS3
results in abnormal asexual development and attenuated virulence [245,246]. Two histone
deacetylases, RPD3 and HST4, also contribute to vegetative growth and conidiation [247].
Interestingly, the deletion of HST4 results in reduced virulence, while the overexpression of
RPD3 leads to the nonpathogenic phenotype, suggesting a negative role of RPD3 in fungal
virulence [247]. Furthermore, TIG1-, HOS2-, SNT1-, SET3-, and HST1-encoding proteins are
components of the histone deacetylase (HDAC) transcriptional corepressor complex [248].
Single-deletion mutants of these genes were unable to cause disease on plant hosts and
exhibited defects in conidiation [248]. In addition, the histone demethylase JMJ1 is also
involved in fungal vegetative growth, appressoria formation, and virulence [249]. Over-
all, these studies indicate the implication of histone modification in fungal development
and pathogenicity.

Many other factors, such as NADPH oxidase-encoding genes (NOX1 and NOX2),
O-mannosyltransferases-encoding genes (PMT2 and PMT4), and phospholipase C genes
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(PLC1 to PLC3) play diverse roles in M. oryzae biology [250–254]. Detailed information,
including the gene code, mutant name, gene function, and mutant phenotypes can be
found in the supplementary table (Supplementary Table S1f).

4. Conclusions

Rice blast is one of the worst agricultural diseases in terms of world-wide economic
losses. Genetic and genomic analyses of the causal pathogen, M. oryzae, have improved
our understanding of the disease. Over the past decades, numerous genes involved in
the development and pathogenicity of M. oryzae have been identified and functionally
characterized. Various signaling pathways and virulence factors have been revealed.
Evidently, the pathogen uses various strategies to invade the host and overcome the host’s
defense responses. These include the formation of invasive structures, such as appressoria
and infectious hyphae, and the delivery of diverse effectors.

With more than 10,000 genes encoded in its genome, only about 400 have been fully
studied using mutant analysis. This highlights the limited understanding of this important
staple cereal pathogen. With the development of target-gene deletion methods, especially
the robust and efficient CRISPR technology, genetic studies in M. oryzae have been and
will continue to be improved. More research is needed to understand the network details
involved in its various biological processes. In addition, novel strategies can be applied
to confer host resistance to M. oryzae based on mutant studies of this pathogen. For
example, host-induced gene silencing, a plant engineering technology using RNAi to
silence target genes through trans-species RNAi, can be tested and used on some well-
studied pathogenicity genes of M. oryzae.

Due to the crosstalk of signaling pathways and the complicated network among regu-
lators in M. oryzae, identifying specific functions of development or virulence factors can be
challenging with mutant analysis. Future developments in cell biology and biochemical
tools for targeted analyses will foster a more comprehensive understanding of M. oryzae
mechanisms. Additionally, collaborations between molecular biologists and breeders will
be essential to provide more opportunities for disease management and reduce incidences
of rice blast in the field.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/pathogens12030379/s1. Table S1: Summary of genes from
M. oryzae that have been studied using mutant analysis. References [255–336] are cited in the supple-
mentary materials.
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