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Abstract: Mycobacterium tuberculosis (Mtb) is a deadly pathogen and causative agent of human tu-
berculosis, causing ~1.5 million deaths every year. The increasing drug resistance of this pathogen
necessitates novel and improved treatment strategies. A crucial aspect of the host–pathogen in-
teraction is bacterial nutrition. In this study, Artemisia annua and Artemisia afra dichloromethane
extracts were tested for bactericidal activity against Mtb strain mc26230 under hypoxia and vari-
ous infection-associated carbon sources (glycerol, glucose, and cholesterol). Both extracts showed
significant bactericidal activity against Mtb, regardless of carbon source. Based on killing curves,
A. afra showed the most consistent bactericidal activity against Mtb for all tested carbon sources,
whereas A. annua showed the highest bactericidal activity in 7H9 minimal media with glycerol.
Both extracts retained their bactericidal activity against Mtb under hypoxic conditions. Further
investigations are required to determine the mechanism of action of these extracts and identify their
active constituent compounds.

Keywords: Artemisia annua; Artemisia afra; artemisinin; Mycobacterium tuberculosis; hypoxia; carbon
source; cholesterol

1. Introduction

Tuberculosis (TB), one of the major fatal diseases of humanity, still poses a major
health, social, and economic burden worldwide and mainly occurs in low- and middle-
income countries. TB remains a major worldwide health challenge, even 130 years after
the discovery of the causative agent Mycobacterium tuberculosis (Mtb), causing 10.6 million
reported cases and 1.6 million deaths in 2021 [1].

A major challenge of TB is that standard treatment regimens require six months of
multi-drug therapy. Drug-resistant TB requires significantly longer treatment regimens,
with additionally incapacitating side effects and diminishing results with a limited number
of second-line drugs including linezolid, bedaquiline, delamanid, and pretomanid [2–5].
One contributor to the persistence of TB is the formation of hypoxic granulomas, where
Mtb can survive for long periods of time in non-growing states in which it is phenotypically
tolerant to most drugs [6,7]. The mechanisms by which Mtb can persist in the host are
complex and likely include both low drug penetration and reduced drug efficacy within the
granuloma. Immune stressors and the granuloma structure produce populations of Mtb in
slow or non-growing states or with altered physiology, causing reduced sensitivity to most
antibiotics, termed tolerance. Given this drug tolerance, treatment with the first-line TB
antibiotics leads to a significant decrease in viable bacteria, but often fails to sterilize [8,9].
Surviving bacteria likely provide opportunities for the acquisition of genetically encoded
drug resistance. The emergence of drug resistance demands the discovery of new drugs
and combinations to improve TB therapy at all stages of the disease.
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The development of novel therapies is linked with an understanding of different
survival strategies by bacterial pathogens to overcome stress. Bacterial nutrition is a key
component of host–pathogen interaction in TB [10,11] and, thus, is useful in drug develop-
ment. The infection pattern of bacterial pathogens and the interaction between drugs and
Mtb nutritional requirements may greatly affect disease progression. Lovewell et al. [12]
previously reported that Mtb uses lipids of the host stored in functional lipid bodies during
infection and intracellular replication, suggesting the importance of lipids during infec-
tion. Although lipids are Mtb’s major carbon source in vivo, their low solubility and the
presence of multiple carbon sources led to the consideration that Mtb may use additional
carbon sources during infection [13–15]. Different carbon sources are co-catabolized by Mtb
in vitro [15–17], demonstrating that Mtb can use multiple carbon sources including glucose,
glycerol, and cholesterol. Recent work [18] confirmed that, during infection, mycobacteria
use multiple carbon sources.

Plant extracts have been used for treating various diseases for millennia and about
100,000 plant species have medicinal value [19,20], often without any adverse side effects
on human health and the environment [21]. Plant specialty molecules (previously termed
plant secondary metabolites; PSM) can affect microbial cells in several ways, including the
disruption of membrane function and structure, the interruption of DNA/RNA synthesis
and function, interference with intermediary metabolism, the induction of coagulation of
cytoplasmic constituents, and the interruption of normal cell communication [22–26]. An-
tibiotics currently used as therapies to treat bacterial diseases rely on various mechanisms
of bacterial growth inhibition and bacterial killing. The development of novel therapies
using plants requires a better understanding of the mechanisms of the antimicrobial activity
of plant compounds [27].

Many species of the genus Artemisia (Figure 1) have different proven medicinal prop-
erties and are used for treating diseases such as malaria, cancer, and hepatitis [28–30], and
have even shown efficacy against COVID-19 [31–34]. Traditional treatments led to the
testing of different Artemisia species and their extracts against several pathogens, including
mycobacteria in vitro and in vivo in a murine model of tuberculosis [35,36]. Artemisia
annua and Artemisia afra are used globally to treat fever and cough, which are the common
symptoms of many diseases including TB [37]. A. annua produces the antimalarial drug
artemisinin (ART), which also has antitubercular activity [38–40]. Both ART and its deriva-
tive artesunate were observed to be effective against Mtb in vitro as well as in a rat-infected
model [40]. In another study, a mycobactin–artemisinin conjugate was designed which ex-
hibited activity against sensitive as well as drug-resistant strains of mycobacteria at a much
lower concentration. The conjugate promoted the initiation of radical reactions, which were
predicted to be central to the mechanism of action [41]. ART also targets a key survival
pathway for Mtb during non-replicating persistence, by blocking the two-component reg-
ulatory system DosRST under hypoxic conditions in vitro [39,42]. Although it produces
little to no ART, A. afra also had significant bactericidal activity against Mtb [38,43,44].

A. annua and A. afra dichloromethane (DCM) extracts were previously shown to have
strong bactericidal activity against M. tuberculosis [38], suggesting that these plants contain
bactericidal compounds beyond ART. To our knowledge, however, there are no reports
regarding the efficacy of A. annua or A. afra against Mtb in the presence of different carbon
sources and under hypoxia. In the present study, the efficacy of extracts of A. annua and A.
afra against Mtb was measured in different carbon sources and under hypoxic conditions
to evaluate the potential of these plant extracts or their constituent compounds for the
treatment of TB.
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Figure 1. Artemisia annua and Artemisia afra. Photos courtesy of James Kishlar of Atelier Temenos. 
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2. Methodology
2.1. Plant Materials

Dried leaves of Artemisia annua L. cv. SAM (MASS 317314) were harvested from plants
field-grown in Stow, MA from rooted cuttings as described [45]. Dried leaves of Artemisia
afra Jacq. ex Willd. cv. MAL (originated from Malawi; FTG181107; batch B#1RbA.10.12.20)
were obtained from Atelier Temenos LLC in Homestead, FL. The vouchers for other
cultivars of A. afra are SEN (LG0019529), LUX (MNHNL17730), and PAR (LG0019528).

2.2. Preparation of Plant Extracts

Dried plant leaves were processed as previously described to produce DCM extracts [38].
DCM extracts were pooled and dried under N2 as previously detailed [46], and ART was
analyzed using GC-MS as described [47]. Hot water tea infusions were also prepared as
detailed in Desrosiers et al. [46].

2.3. Bacterial Strains and Culture Conditions

Mycobacterium tuberculosis (Mtb) strain mc26230 (∆panCD, ∆RD1 [48]) was grown at
37 ◦C and 200 rpm in Middlebrooks 7H9 broth, supplemented with 10% OADC (0.5 g/L
oleic acid, 50 g/L bovine serum albumin fraction V, 20 g/L glucose, 8.5 g/L sodium
chloride, and 40 mg/L catalase), 0.2% glycerol, 0.05% Tween 80, and 24 µg/mL pantothenate.
Where specified, Mtb was grown in minimal media (0.5 g/L asparagine, 1 g/L KH2PO4,
2.5 g/L Na2HPO4, 50 mg/L ferric ammonium citrate, 0.5 g/L MgSO4·7H2O, 0.5 mg/L
CaCl2, and 0.1 mg/L ZnSO4) supplemented with 0.1% tyloxapol, 24 µg/mL pantothenate,
and 0.1% glycerol or 0.1% glucose or 0.1% cholesterol. Middlebrook 7H10 supplemented
with 0.5% glycerol, OADC, and 24 µg/mL pantothenate was used to grow Mtb on solid
media. When cultures were plated for CFU, they were first serially diluted by a series of six
10-fold dilutions. Multiple dilutions were plated, and colonies were counted for dilutions
that yielded multiple colonies, spaced apart well enough for high-confidence counting.

2.4. Determination of the Minimum Inhibitory Concentration (MIC)

We previously reported MICs of Mtb strain mc26230 for DCM extracts of A. annua cv.
SAM and A. afra cv. SEN using a resazurin microtiter assay (REMA) [38]. Using the same
method, we also measured the MIC for A. afra cv. MAL and remeasured A. afra cv. SEN as
well as the water extracts (tea infusions) of A. annua cv. SAM. For both MICs and killing
assays, Artemisia extract concentrations are expressed as the leaf dry mass from which
the extract was obtained. In each case, the DCM extract obtained from 2.94 g of dry leaf
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mass was resuspended in 1 mL DMSO and the concentration of the resulting solution was
expressed as 2.94 g/mL.

2.5. A. afra and A. annua Bactericidal Activity against Mtb in Different Carbon Sources

Mtb was grown in 7H9 media with OADC and glycerol as described above and when
reaching OD600 = 0.8, cells were centrifuged, washed twice with PBS, and resuspended
to OD600 = 0.8 in 7H9 with OADC and glycerol, or in minimal media containing 0.1%
glycerol, 0.1% glucose, or 0.1% cholesterol. After 48 h, each culture was adjusted to a final
OD600 of 0.1. Mtb suspensions were inoculated in triplicate with a final concentration of
extract two times the MIC values, as determined for A. annua cv. SAM (MIC = extract from
4.5 mg dried leaves/mL, 2× MIC = extract from 9 mg dried leaves/mL) or A. afra cv. MAL
(MIC = extract from 2.5 dried leaves/mL, 2× MIC = extract from 5 mg dried leaves/mL).
Controls consisting of media with Mtb without added extracts were included, also in
triplicate. In all cases, the final volume in each conical tube was 5 mL. Mtb cultures were
incubated, shaking at 250 rpm and 37 ◦C. Mtb samples were taken from each liquid culture
at days 0, 2, 4, 6 and 10 of incubation and then serially diluted and plated on 7H10 solid
medium in the absence of plant extract. After 15–20 days of growth on 7H10 solid medium
in the absence of extract, the resulting Mtb colonies were counted and the CFU/mL was
calculated. CFU relative to day 0 were calculated as (CFU from culture on day x)/(CFU
from culture on day 0).

2.6. A. afra and A. annua Bactericidal Activity against Mtb under Hypoxia

Mtb was grown in 7H9 broth as above, but in this case supplemented with 10% ADC
(50 g/L bovine serum albumin fraction V, 20 g/L glucose, 8.5 g/L sodium chloride, and
40 mg/L catalase) rather than OADC, at 200 rpm at 37 ◦C. Seed cultures were normalized
to an OD600 = 0.1 in 17 mL using fresh media without antibiotics in a rubber stopper-sealed
serum bottle (28 mL total bottle volume). The bottles were sealed with chlorobutyl rubber
lids and aluminum caps, and then cultures were grown at 37 ◦C and 120 rpm to generate
hypoxic conditions, as was previously reported [49]. Methylene blue in separate indicator
cultures was used as an indicator of hypoxic conditions, and discoloration consistently
occurred after eight days. ODs plateaued at approximately 0.35–0.4. Six days after hypoxia
was established (14 days after sealing), cultures were treated with two times the MIC values
as determined for A. annua cv. SAM (9 mg/mL) or A. afra cv. MAL (5 mg/mL) extracts. The
extracts were injected aseptically using a 0.3 mm syringe to minimize the introduction of
oxygen. The same volume of DMSO was also injected under the same conditions to use as
a control. The hypoxic Mtb cultures were incubated with shaking at 120 rpm and 37 ◦C for
2 or 7 days and finally plated on solid media as previously described. Mtb cultures were
also plated 14 days after sealing, before adding the respective drugs. All conditions were
tested in triplicate, and colonies were counted after 15–20 days.

2.7. Statistical Analysis

Statistics were performed in GraphPad Prism 9.2.0. CFUs in kill curve experiments
were compared by ANOVA and Dunnett’s multiple comparisons test.

3. Results
3.1. Determination of the Minimum Inhibitory Concentration (MIC)

Various plant extracts were tested for their ability to inhibit the growth of Mtb. Both
hot water extracts and DCM extracts of both Artemisia sp. showed strong growth inhibitory
effects against Mtb (Table 1). MICs were expressed as the dry leaf mass from which the
extracts were obtained. Hot water extract MICs ranged from 1.3 to 1.7 mg/mL for the A.
afra cultivars SEN, PAR and LUX; A. annua cv. SAM was 1.9 mg/mL (Table 1). A hot water
extract of A. afra cv. MAL was not measured. MICs for DCM extracts of A. afra cv. SEN
ranged from 4.8 to 10 mg/mL in replicate experiments, and the MIC for A. afra cv. MAL
was consistently 2.5 mg/mL (Table 1). ART content of A. annua cv. SAM was 17.08 mg/g
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dry leaf mass, but was undetectable in A. afra cv. MAL. Since, in contrast to SEN, MAL was
ART-free and readily available as a clonal source in the US, experiments were continued
using the MAL cultivar. Considering that MICs of DCM extracts were not substantially
different from the hot water extract MICs, yet allowed extracts to be more concentrated,
further experiments were conducted using the DCM extracts.

Table 1. A. afra and A. annua comparison of extraction and inhibition data.

Cultivar Part Tested a Solvent b Mtb Inhibition c Extraction Method Test System d Ref. e

Artemisia annua

SAM L
D 4.5 mg/mL

1 g/20 mL DCM, 30 min in sonicating water bath, rt,
repeat twice, pooled, dry under N2

5 g/L water, boiled 10 min, cooled, filtered, −20 ◦C storage

I This
studyW 1.9 mg/mL I

NS L + St
M 5 mg/mL 1 kg/2.5 L, 72 h rt, repeat twice, pool, rot. evap.

100 g/500 mL, 72 h rt, then vacuum dry
I

[36]W 5 mg/mL I

NS L + St D
77% inhib. by
100 µg/mL

extract
500 g/UNK vol solvent, sit at rt 12–48 h I [35]

Artemisia afra

SEN L D 4.8 mg/mL 1 g/20 mL DCM, 30 min in sonicating water bath, rt,
repeat twice, pooled, dry under N2

I [38]

SEN

L

D 5–10 mg/mL 1 g/20 mL DCM, 30 min in sonicating water bath, rt,
repeat twice, pooled, dry under N2

5 g/L water, boiled 10 min, cooled, filtered,
−20 ◦C storage

I
This

study

MAL D 2.5 mg/mL
SEN W 1.3 mg/mL
PAR W 1.7 mg/mL
LUX W 1.5 mg/mL

NS L
D 290 µg/mL 1 kg/10 L, rt 3 h stir, sit overnight, filter, rot. evap.,

repeat twice w 5 L DCM, pool evap. extracts
200 g/4 L, 30 min boil, filter, freeze dry.

I
[44]NA M

W NA M

NS L E NA 50 g/500 mL, 24 h rt, repeat twice, pool, rot. evap. I [43]

a L, leaves; St, leaves + stems, in all cases dried and then ground prior to extraction. b Solvents: D, dichloromethane,
E, ethanol; M, methanol; W, water. c All reported as MICs, if known, otherwise % inhibition. Mass refers to
the amount of dry leaf mass used to produce extract, unless otherwise indicated. d M, in vivo mouse; I, in vitro.
e Results obtained in this study are indicated as such. Results with numbered references were reported in those
studies and are reproduced in this table to facilitate comparison of results from different studies. NS, not specified;
NM, not measured; NA, no activity; rt, room temperature.

3.2. A. afra and A. annua Bactericidal Activity against Mtb in Different Carbon Sources

DCM extracts of A. annua cv SAM and A. afra cv MAL were tested for their bacterici-
dal activities against Mtb strain mc26230 (pantothenate auxotroph and RD1 deletion) in
minimal media containing each of three different carbon sources individually: glycerol,
glucose, and cholesterol. Cultures grown in 7H9 medium containing a mixture of glucose,
glycerol, and oleic acid were tested in parallel. Untreated Mtb grew at equivalent rates
and to equivalent final yields in all three single carbon sources, with a trend towards
more growth in 7H9, as expected due to the latter having been developed as a medium
to support maximal Mtb growth (Figure 2). Both extracts were bactericidal in all carbon
sources. However, the extent of bactericidal activity differed according to carbon source in
some cases. A. afra extracts showed similar bactericidal activity in all of the tested carbon
sources. There were only small differences that were inconsistent across time-points in its
bactericidal activity when Mtb was grown in glycerol, glucose, or cholesterol, or in 7H9
with both glucose and glycerol (Figure 2). However, the bactericidal activity of the A. annua
extract was lower when Mtb was grown in cholesterol or glucose in comparison to growth
in glycerol or 7H9 with both glucose and glycerol, suggesting different effects of carbon
metabolism on the bactericidal activities of the two extracts (Figure 2).
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Figure 2. Comparative analysis of Mtb growth and plant extract bactericidal activity in different
carbon sources. At day 0, log-phase cultures grown in the indicated carbon sources were back-
diluted to OD600 0.1 in the same media and treated with either the indicated extract or with the
extract vehicle DMSO. At the time-points indicated on the x axis, aliquots from each culture were
removed, diluted, and plated on extract-free solid 7H10 media to determine the number of viable
CFU. CFU counts for extract-treated cultures were compared to Day 0 and to each other by 2-way
ANOVA. All samples from Day 2 onward were significantly different than Day 0 (adjusted p < 0.05).
Samples grown in minimal media with individual carbon sources that were significantly different
from corresponding samples grown in 7H9 are indicated with stars. * = adjusted p < 0.05; ** = adjusted
p < 0.01. (A). Comparative growth/death of Mtb in the presence of 5 mg/mL A. afra extracts in all
carbon sources. (B). Comparative growth/death of Mtb in the presence 9 mg/mL A. annua extracts in
all carbon sources. The following are the sole carbon sources used in this experiment: 7H9 + glucose
and glycerol, minimal medium (MM) + glycerol, MM + glucose, and MM + cholesterol. Data are the
average from three independent experiments. Plots showing the growth of Mtb in each individual
carbon source in the presence of each plant extract (n = 3) ±SD are provided in the supplementary
material (Supplemental Figure S2).

3.3. A. afra and A. annua Bactericidal Activity against Mtb under Hypoxia

Considering that Mtb survives under hypoxic conditions within lung granulomas
during natural infection, A. annua cv. SAM and A. afra cv. MAL extracts were tested for
their bactericidal activity against Mtb strain mc26230 grown under hypoxic conditions.
Cultures were grown in 7H9 medium containing a mixture of glucose and glycerol and
sealed in bottles with a headspace:culture volume ratio of 0.6 at an OD of 0.1. Extracts and
DMSO were added 14 days after sealing the bottles, by injection through the rubber lid to
minimize the introduction of oxygen. Over seven days after injection, the viable population
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of Mtb remained relatively constant in cultures treated with only DMSO. We observed a
small increase in the number of viable cells on Day 2 after DMSO treatment, which may
be due to minimal oxygen introduction during drug injection. However, the viable Mtb
cell population declined by one and three orders of magnitude at 2 and 7 d, respectively,
after the injection of A. afra or A. annua DCM extracts into the hypoxic cultures (Figure 3).
It was therefore concluded that A. afra and A. annua have similar bactericidal effects under
hypoxic conditions.
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control were added by syringe to Mtb cultures that had previously been slowly depleted of oxygen
over 14 days. At the time-points indicated on the x axis after adding extracts or vehicle, cultures were
opened, diluted, and plated on extract-free 7H10 plates to determine viable CFU. N = 3 cultures per
time-point; bars = ±SD. Extract-treated samples at Days 2 and 7 all had significantly lower CFU than
samples at time 0 (2-way ANOVA with Dunnett’s multiple comparisons test, p < 0.0001). Samples
treated with A. afra did not differ significantly from samples treated with A. annua at any time-point
(p > 0.05).

4. Discussion

To our knowledge, this is the first study showing that Artemisia extracts can kill Mtb
regardless of the carbon source used for its growth, and when Mtb is in a hypoxia-induced
state of growth arrest. This is important because Mtb metabolizes a variety of different
sources of carbon that it likely encounters during infection [15–17,50–52]. The results in
this study showed that growth rates and yields were similar in glucose, glycerol, and
cholesterol, and the A. afra cv. MAL extract was equally efficacious in all three conditions.
However, the A. annua cv. SAM extract efficacy differed among carbon sources, suggesting
that there may be two different mechanisms of killing action in different carbon sources in
response to each Artemisia sp.

Plants have a long history of providing bioactive compounds for vital and novel
therapeutics [53,54]. Many previous studies reported the effect of A. annua and A. afra ex-
tracts against the growth of Mtb [35,36,38,43,44]. Most prior studies were in vitro; however,
Ntutela et al. [44] also included rodent testing. Although those in vitro tests showed a
DCM extract MIC of 290 µg/mL against Mtb H37Rv, and a subfraction activity (fraction
C8) that at 2 µg/mL was nearly 100 times more potent than the original extract, there was
no efficacy of either the DCM or hot water extract in vivo in Mtb-infected mice (Table 1).

The extraction methods used in Ntutela et al. [44]’s studies may be a reason for the
loss of activity in vivo. For example, 200 g of dried leaves were boiled in 4 L water for
30 min, filtered and then freeze dried to yield a hot water infusion. The traditional hot
water extraction was boiled for 5–10 min at 5 g/L or steeped for 5–10 min in the boiled
water. In our unpublished studies, increasing the dry mass of the Artemisia:water ratio
beyond 10 g/L results in >50% loss of extractables. Furthermore, increasing the leaf g/L
beyond ~10 g/L causes a significant decline in extractables [55]; e.g., ART recovery declined
from 62 to 29% when leaf:hot water ratios increased from 20 to 50 g/L. The Ntutela et al.
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study used a water extract of 50 g/L with 30 min boiling and lyophilized to dryness. In our
experience with A. annua, ART was not fully recovered when our lyophilized tea infusion
was reconstituted in water, resulting in about a 50% loss, so for experiments we never
use reconstituted lyophilized tea (Supplemental Figure S1). When compared to our tea
MIC of ~1.5 mg/mL, the Ntutela et al. [44] water extract had neither in vitro nor in vivo
activity (Table 1), results consistent with a possible loss of activity of the water extract
in vivo. A similar argument can be made for the DCM extract of Ntutela et al. [44], because
they extracted at 2 g/10 mL, then twice more but each at half the original solvent volume
(Table 1). In contrast, we extracted 1 g/20 mL DCM for 30 min in a sonicating water bath
at room temperature and extracted twice again using the same volumes [38]. One might
question whether the extracts even reached the lungs of the treated mice; however, an
ADME study of rats treated per os with A. annua showed that a considerable amount of the
marker drug ART reached the lungs [46]. Finally, Ntutela et al. [44] did not gavage their
animals with the Artemisia extracts, but instead mixed them into the feed for ad libidum
consumption, which compromised dosing.

Our results revealed major survival differences of Mtb in different carbon sources when
exposed to A. annua and A. afra extracts. The efficacy of the A. afra extract in cholesterol
is particularly important because cholesterol plays a pivotal role in the infectivity and
virulence of Mtb [56]. Mtb uses cholesterol as a major carbon source during infection and
any other compounds or carbon sources that hinder cholesterol metabolism can inhibit Mtb
growth, resulting in carbon starvation and metabolic intoxication and subsequently causing
an imbalance in the central metabolism [57]. Chang and Guan confirmed that cholesterol
and fatty acid are the main carbon sources that Mtb uses during infection [57]. However,
some drugs have variable efficacy depending on the carbon source in use. For example,
Kalia and collaborators reported that glycerol supplementation interfered with the potency
of drugs targeting cytochrome bc1:aa3 in mycobacteria [18]. According to the studies of
Bellerose et al., 2019 [58], Mtb mutants that lack glycerol catabolism due to variations
in homopolymeric regions in the glycerol kinase gene (glpK) are associated with drug
resistance in clinical isolates and are less susceptible to treatments. Further, they analyzed
the efficacy of glycerol metabolism and other carbon sources (fatty acid and cholesterol) in
determining the effect of different drugs (INH, RIF, and moxifloxacin) against Mtb. They
found that all drugs were almost 50% less efficient in the absence of glycerol catabolism.
That study speculated that glycerol significantly increases the efficacy of different drugs
and enhances their efficacy. Highlighting that characteristic, a drug development effort
encountered promising lead compounds when screening for activity in glycerol, but found
they lacked activity against Mtb grown in other carbon sources [59].

Hypoxia and the gradual depletion of oxygen is a key element in granuloma develop-
ment in human TB and an important consideration in the design of therapeutics useful for
treating tuberculosis [60]. Several in vitro models to obtain non-replicating M. tuberculosis
have been developed and are based on reducing oxygen availability and nutrient starva-
tion. One of the most used methods is the Wayne model, in which non-replicating Mtb is
obtained by gradually adapting stirred aerobic cultures to hypoxia through a self-generated
oxygen depletion gradient [61]. Our method was an adaptation of the Wayne model.

Several lines of evidence link the inhibition of Mtb growth/metabolism with hypoxic
conditions within the host. Mtb can survive long periods of hypoxia but is an obligate
aerobe for growth. Tuberculosis infections are preferentially associated with the most
oxygen-rich sites in the body [62], suggesting that reduced levels of O2 may limit Mtb
growth in vivo. This may explain why recrudescent tuberculosis occurs most often in the
upper lobes of the lung, the single most-oxygenated region of the body. According to
Lim et al. [63], phosphoenolpyruvate (PEP) is almost completely depleted in Mtb under
hypoxic conditions. A loss of PEP reduces PEP–carbon flux toward multiple pathways
essential for the replication of Mtb. Metabolomic profiles of Mtb collected under hypoxia
showed an accumulation of intermediates in glycolysis and the reductive branch of the
TCA cycle, with a reciprocal depletion of PEP and oxidative branch intermediates of the
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TCA cycle, such as α-ketoglutarate. Under hypoxia, PEP depletion may affect multiple
cellular metabolic processes that are involved in Mtb metabolic remodeling [51].

The impact of hypoxia during TB treatment is likely tremendous, because non-growing
Mtb is less sensitive to most drugs. For example, isoniazid (INH) is one among the four
first-line drugs used in the treatment of tuberculosis, and in vitro kills actively growing bacilli,
but it possesses little or no activity against Mtb under conditions of nutrient starvation
or progressive oxygen depletion [64,65]. In contrast, we found that A. annua and A. afra
extracts were bactericidal to Mtb under hypoxia. Thus, these Artemisia sp. may maintain
efficacy against Mtb in vivo where it is exposed to hypoxic conditions.

5. Conclusion

Mycobacterium tuberculosis is a deadly pathogen, causing disease in more than 10 million
people annually. In this study, Mtb was killed by A. annua and A. afra extracts when grown
in glycerol, glucose, or cholesterol as sole carbon sources and under hypoxic conditions.
Hence, it is important to understand the metabolism of Mtb under alternative carbon
sources and under hypoxia in the presence of extracts/drugs, given its consequences on
infection, antibiotic efficacy, and potential in novel therapeutic development. It is im-
portant to unlock the underlying mechanism of how Artemisia extracts affect the growth
of Mtb in different carbon sources and in hypoxia. This study can serve as a basis for
further developing that understanding for future potential use against this multi drug
resistant pathogen.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens12020227/s1, Figure S1: TLC showing loss of components
of Artemisia annua tea upon lyophilization and reconstitution in water. Figure S2: A. afra and A. annua
bactericidal activity against Mtb in different carbon sources.
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