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Abstract: Naegleria fowleri is a pathogenic free-living amoeba, commonly found around the world
in warm, fresh water and soil. N. fowleri trophozoites can infect humans by entering the brain
through the nose and causing usually fatal primary amebic meningoencephalitis (PAM). Tropho-
zoites can encyst to survive under unfavorable conditions such as cold temperature, starvation,
and desiccation. Recent technological advances in genomics and bioinformatics have provided
unique opportunities for the identification and pre-validation of pathogen-related and environmental
resistance through improved understanding of the biology of pathogenic N. fowleri trophozoites
and cysts at a molecular level. However, genomic and transcriptomic data on differential expres-
sion genes (DEGs) between trophozoites and cysts of N. fowleri are very limited. Here, we report
transcriptome Illumina RNA sequencing (RNA-seq) for N. fowleri trophozoites and cysts and de
novo transcriptome assembly. RNA-seq libraries were generated from RNA extracted from N. fowleri
sampled from cysts, and a reference transcriptome was generated through the assembly of tropho-
zoite data. In the database, the assembly procedure resulted in 42,220 contigs with a mean length
of 11,254 nucleotides and a C+G content of 37.21%. RNA sequencing showed that 146 genes in
cysts of N. fowleri indicated 2-fold upregulation in comparison with trophozoites of N. fowleri, and
163 genes were downregulated; these genes were found to participate in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway. The KEGG pathway included metabolic (131 sequences)
and genetic information processing (66 sequences), cellular processing (43 sequences), environmental
information processing (22 sequences), and organismal system (20 sequences) pathways. On the
other hand, an analysis of 11,254 sequences via the Gene Ontology database showed that their
annotations contained 1069 biological processes including the cellular process (228 sequences) and
metabolic process (214 sequences); 923 cellular components including cells (240 sequences) and cell
parts (225 sequences); and 415 molecular functions including catalytic activities (195 sequences) and
binding processes (186 sequences). Differential expression levels increased in cysts of N. fowleri
compared to trophozoites of N. fowleri, which were mainly categorized as serine/threonine pro-
tease, kinase, and lipid metabolism-related proteins. These results may provide new insights into
pathogen-related genes or environment-resistant genes in the pathogenesis of N. fowleri.
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1. Introduction

Naegleria fowleri is a ubiquitous pathogenic free-living amoeba, colloquially known as
the ‘brain-eating amoeba’, and causes primary amoebic meningoencephalitis (PAM) [1–4].
N. fowleri has three types of life stage: cyst, trophozoite, and flagellate. The amoebae are
found in rivers, ponds, lakes, and swimming pools. When contaminated water enters
through the nose and passes through the cribriform plate in the brain, N. fowleri infection
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is the most frequent result. N. fowleri infection is an extremely rare and severe fatal
brain infection, which usually occurs in children and young adults who engage in water
activities. Infections with N. fowleri are rare, but they occur mainly during the summer and
are reported each year [5–7].

The clinical signs of PAM are similar to those of bacterial and viral meningitis, in-
cluding fever and severe headaches. Because of the difficulty in initial detection, about
75% of diagnoses are made after the death of the patient [7,8]. N. fowleri infection is a rare
and serious infection of the brain. There is no clear treatment or diagnosis using specific
laboratory test in laboratories. In spite of its medical, public health, and environmental
importance, the genetics and biology of this amoeba remain poorly understood.

Recent development in next-generation sequencing (NGS) technology, such as Illu-
mina platforms, has dramatically improved the efficiency of gene discovery. RNA se-
quencing (RNA-seq) is an NGS method for profiling transcripts using deep sequencing
technology [9–11]. In particular, the de novo assembly does not require a reference genome
and is used when the sequence is unknown or incomplete. It goes through the process of
analyzing and mapping the base sequence to form a genome and transcriptome [12,13].

To date, many parasites transcriptomes have been sequenced using NGS technol-
ogy, such as Acanthamoeba spp. [14,15]; Entamoeba histolytica [16–19]; Plasmodium spp. [20];
Clonorchis sinensis [21–23]; Schistosoma spp. [24–26]; and Fasciola hepatica [27–29]. To ob-
tain transcriptomic insights into the differential expression of the stage-specific gene in
N. fowleri, this study used RNA-Seq to analyze the transcriptome of N. fowleri cysts trans-
ferred to encystment buffer for 3 days compared with an N. fowleri trophozoite control
group. In addition, this study was designed to produce transcriptomic data to aid in
better understanding the biology of N. fowleri, which would facilitate the identification of
pathogenic-related genes or environment-resistant genes in N. fowleri infection.

2. Materials and Methods
2.1. Cultivation of N. fowleri and RNA Isolation

N. fowleri trophozoites (Carter NF69; ATCC No. 30215) were axenically cultured at
37 ◦C in Nelson’s medium containing 10% fetal bovine serum [30]. To induced encystation,
N. fowleri trophozoites were transferred into an encystation buffer (120 mM NaCl, 0.03 mM
MgCl2, 1 mM NaHPO4, 1 mM KH2PO4, 0.03 mM CaCl2, 0.02 mM FeCl2, pH 6.8) [31]. After
72 h of incubation in encystation medium, the amoebae were harvested via centrifugation
at 1500 rpm for 3 min at room temperature. The total RNA of trophozoites and cysts was
isolated using RNeasy kits (QIAGEN, Hilden, Germany) according to the manufacturer’s
protocol. The integrity and purity of the extracted total RNA were assessed using the Nan-
oDrop 1000 (Thermo Fisher Scientific, Waltham, MA, USA) and Bioanalyzer 2100 systems
(Agilent Technologies, Santa Clara, CA, USA).

2.2. Sequencing and De Novo Transcriptome Assembly

A total amount of 1 µg RNA (A260/A280 ratio ≈ 2.0–2.18, A260/A230 ≈ 2.27–2.37
and RIN > 7) was used for the construction of the cDNA library. cDNA was synthesized
using mRNA fragments as templates. mRNA was selected using oligo dT probes, and then,
fragmented using divalent cations. The short fragments were purified and resolved using an
EB buffer for end reparation and single-nucleotide adenine addition. Afterwards, the short
fragments were connected with adapters. The library was loaded using an Illumia HiSeq
2500 instrument for 10 gigabase in-depth sequencing. Raw sequence reads were quality
assessed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/;
accessed on 19 January 2023) followed by quality and adapter trimming using the Trinity
assembler with default parameters. All sequence data approaches and expression profiles
of each gene at stage-specific genes were determined.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2.3. Functional Annotation

Differentially expressed genes between N. fowleri trophozoites and cysts samples
were determined using DEseq with the cutoff for fold change set at >2 and for false
discovery rate (FDR) at <0.05. For the second approach, a transcript dataset of N. fowleri
was constructed. Briefly, all the clean reads were assembled using Trinity (version 2.0.2,
http://trinityrnaseq.github.io/; accessed on 19 January 2023 [32]), and transcript datasets
of N. fowleri were constructed using the above approaches. Functional annotation was
performed using BLAST+/SwissProt, Gene Ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) gene sequences, and related parameters were analyzed using
the appropriate software.

2.4. Identification of Stage-Specific Genes

The expression levels of transcripts from the N. fowleri trophozoite and cyst libraries
were calculated by mapping them to the reference transcriptome that was created via the de
novo assembly mentioned above. We followed RSEM (v1.2.29) to assign reads to expression
levels via abundance estimation using FPKM (fragments per kilobase of transcript per
million fragments mapped). We performed the differential gene expression analysis using
a matrix file containing the mapped read counts for N. fowleri trophozoites and cysts. We
searched for stage-specific related genes in the finalized transcriptome of N. fowleri using
the following parameters: an e-value < 1e − 10, an FPKM > 1, and subject coverage > 60%.

2.5. Reverse-Transcription PCR

To assess the expression levels of the profilin gene by N. fowleri trophozoites and cyts, the
total RNA of N. fowleri was isolated using an RNeasy®Mini kit (QIAGEN, Valencia, CA, USA).
The cDNA was prepared from 5 µg of total RNA in a reaction mixture containing oligo
(dT) primers. The mixtures were reacted at 42 ◦C for 1 h, then, for 5 min at 94 ◦C and at
4 ◦C. RT-PCR was performed using the profilin gene-specific primers. The PCR conditions
were as follows: 95 ◦C for 5 min, 30 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 1 min,
and then, a final extension for 10 min at 72 ◦C. On 1% agarose gel, the PCR products were
separated and stained with ethidium bromide.

3. Results
3.1. Sequencing and De Novo Assembly

To investigate stage-specific gene expression levels, we produced Illumia RNA-seq
libraries from trophozoites for N. fowleri. Deep sequencing of the libraries yielded about
140 million paired-end reads that were combined, quality filtered, and de novo assembled
using the Trinity software. Trinity assembler was then used to pool and assemble the clean
reads into 13,400 contigs with a total length of 33,118,105 bp, a mean length of 1180.5, a
weighted median length (N50) of 5360 bp, and GC content of 37.21%. The transcriptome
assembly from the cDNA library of the N. fowleri trophozoites and cysts achieved a quality
of ORF/coding sequence for analysis (Table 1, Figure 1).

3.2. Transcriptome Annotation

The sequences were mapped to Gene Ontology (GO) terms and subsequently anno-
tated. A total of 11,254 (total trinity genes) sequences were annotated with GO terms in the
N. fowleri trophozoite and cyst transcriptome. To select the significant GO terms, a p-value
cutoff of 0.005 was used. The GO terms were grouped according to biological processes,
molecular functions, and cellular components. The 2407 sequences were analyzed using
the GO database (Figure 2). In the biological process, 1069 sequences were expressed
including cellular process (228 sequences) and metabolic process (214 sequences). In the
cellular component, 923 sequences were expressed including cells (240 sequences) and cell
parts (225 sequences). In molecular function, 415 sequences were expressed, and the most
frequently expressed sequences included catalytic activity (195 sequences) and binding
(186 sequences).

http://trinityrnaseq.github.io/
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Table 1. Characteristics of the transcriptome of the N. fowleri trophozoites and cysts.

Contig Count 42,220

Type De novo assembly

Total read count 135,733,193

Mean read length (bp) 1180.5

Total read length (bp) 135,733,193

Mean contig length (bp) 2471.5

Total contig length (bp) 33,118,105

Contig N50 value (bp) 5360

GC content (%) 37.21
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Figure 1. Differential expression analysis of the N. fowleri trophozoites and cysts. The assembly
procedure results in 42,220 contigs with a mean length of 11,254 nucleotides and a C+G content of
37.21%. The cysts’ (146) and trophozoites’ (163) differential expression genes (DEGs) were analyzed
using the Gene Ontology (GO) data base. SUM: total of cyst and trophozoite DEGs, black dot: total
read count, red dot: cyst and trophozoite DEGs.

A total of 11,254 sequences were mapped, with 282 mapped to KEGG pathways (Table 2).
A significant proportion of amino acid sequences were associated with (1) metabolic path-
ways (131 sequences) including lipid metabolism, energy metabolism, the metabolism of other
amino acids, nucleotide metabolism, carbohydrate metabolism, amino acid metabolism, the
metabolism of terpenoids and polyketides, xenobiotic biodegradation and metabolism, the
metabolism of cofactors and vitamins, glycan biosynthesis and metabolism, and the biosynthe-
sis of other secondary metabolites; (2) genetic information processing (66 sequences) including
translation, folding, sorting and degradation, replication, and repair; (3) cellular processes
(43 sequences) including cell motility, cell growth and death, cellular community, transport,
and catabolism; (4) environmental information processing (22 sequences) including signal
transduction, membrane transport, signaling molecules, and interaction; and (5) organismal
systems (20 sequences) including the immune system, the digestive system, the nervous
system, development, and the endocrine system (Table 2).

3.3. Differential Expression Genes (DEGs)

To identify the DEGs of N. fowleri trophozoites and cysts for each gene, log Fc was
calculated, and DEGs including an adjusted p < 0.05 and log-2-fold change ratios > 1 were
selected (Figure 1). We analyzed in the transcriptome database the expression of 38 genes
related to cytoskeleton protein, 24 genes encoded for cell growth and death, and 49 genes
potentially implicated in signal transductions. A total of 10 and 14 upregulated DEGs
in N. fowleri trophozoites and cysts, respectively, are shown in Table 3. In this study, we
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focused on the expression of the profilin gene among various genes expressed in N. fowleri
trophozoites and cysts. Because the profilin gene regulates the nucleation rate of actin
polymerization in other organisms, including Acanthamoeba [33], and the rate of filament
elongation, and reduces the concentration of F-actin, profilin is also assumed to play an
important role in the pathogenesis of N. fowleri. Results from the gene expression analysis
showed that profilin (log Fc = 6.814, p < 0.001) was differentially expressed in the cyst
stage of N. fowleri (Table 3). The profilin gene, in particular, exhibited the fifth highest
expression level during the cyst stage, while there was no expression level in trophozoite
stage of N. fowleri.
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Table 2. Pathway in N. fowleri trophozoites and cysts mapped by the Kyoto Encyclopedia of Genes
and Genomes (KEGG).

Pathway

Cellular Processes 43

Cell motility 22
Cell growth and death 10

Cellular community 4
Transport and catabolism 7

Environmental Information Processing 22

Signal transduction 12
Membrane transport 7

Signaling molecules and interaction 3

Genetic Information Processing 66

Translation 31
Folding, sorting, and degradation 23

Replication and repair 12

Metabolism 131

Lipid metabolism 22
Energy metabolism 11

Metabolism of other amino acids 9
Nucleotide metabolism 19

Carbohydrate metabolism 37
Amino acid metabolism 8

Metabolism of terpenoids and polyketides 3
Xenobiotic biodegradation and metabolism 6

Metabolism of cofactors and vitamins 8
Glycan biosynthesis and metabolism 2

Biosynthesis of other secondary metabolites 6

Organismal Systems 20

Immune system 5
Digestive system 5
Nervous system 4

Development 1
Endocrine system 5

Table 3. The list of genes that showed upregulated proteins in N. fowleri trophozites and cysts.

Upregulated Proteins in N. fowleri Trophozoites log FC

Luminal-binding protein 14.309

Lysosomal Pro-X carboxypeptidase 7.017

Chaperone protein 4.349

12-oxophytodienoate reductase 1 4.344

Probable alpha-L-glutamate ligase 4.181

fatty acid desaturase 4.120

Cytoskeleton-associated protein 3.280

Tubulin alpha-6 chain 2.659

Actin 2.115

Microtubule-associated protein 1.996
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Table 3. Cont.

Upregulated Proteins in N. fowleri Cysts log FC

Uridine kinase 13.526

Calpain-5 8.641

Translin-associated factor X-interacting protein 7.394

Gag-Pol polyprotein 6.912

Profilin 6.813

Probable E3 ubiquitin-protein ligase 6.707

Serine/threonine-protein kinase 6.683

LisH domain-containing protein 5.032

Phospholipid-transporting ATPase 4.970

EF-hand domain-containing family member C2 4.579

Kinesin-like calmodulin-binding protein 4.429

Probable glycerol-3-phosphate dehydrogenase(mt) 4.327

Sphingosine-1-phosphate lyase 4.285

Nitrile-specifier protein 4.174

3.4. Gene Expression of Profilin in N. fowleri Trohozoites and Cysts

To confirm the expression of the profilin gene in N. fowleri trophozoites and cysts,
RT-PCR analysis was carried out (Figure 3). We selected a primer to clone the profilin gene
found by the Blast search (Supplementary Material Table S1). To perform RT-PCR analysis,
we synthesized cDNA from total RNA extracted from N. fowleri trophozoites and cysts.
The expression of profilin was observed at 450 bp in N. fowleri cysts but not in N. fowleri
trophozoites (Figure 3).
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4. Discussion

Pathogenic N. fowleri resides in various environments and causes a brain infection
called PAM. It is unclear which genes are expressed in each life stage that cause brain
infection. A detailed understanding of the information on the differential expression genes
between the trophozoites and cysts of N. fowleri may provide novel pathogenic factors
in amoeba infection. Transcription profiling provides information on and fundamental
insights into biological processes. In this study, the transcript analysis of N. fowleri tropho-
zoites and cysts via RNA-seq was performed. We used a high-throughput sequencing
system to profile the N. fowleri trophozoite and cyst transcriptome using the Illumina HiSeq
2500 system. Through DEGs analysis, we obtained various genes involved in N. fowleri
during the cyst stage.

We assembled transcriptomes from trophozoites and cysts and identified a total of
11,254 genes with an average length of 2471.50 bp. A total of 42,220 genes were annotated us-
ing four major databases. We found 146 DEGs in cysts and 163 DEGs in trophozoites (2-fold
expression, FDR < 0.5). The transcriptomic genes related to cellular motility, growth and
death, signal transduction, translation, carbohydrate metabolism, lipid metabolism, and
nucleotide metabolism showed various expression levels during cyst and trophozoite for-
mation. These results related to amoebae proliferation, differentiation, and growth/death.
GO and pathway analysis of the DEGs showed that ‘cells’, ‘cellular processes’, and ‘catalytic
activity’ were the most increased categories. These findings will be useful in further studies
of the other pathogenesis-related gene in N. fowleri.

Our study also showed increased expression of many genes encoding cytoskeleton-
related genes such as actin, tubulin, myosin, and actin-binding proteins in N. fowleri tropho-
zoites. A total of 38 genes were associated with cytoskeleton-related protein. These genes
could be classified into six GO categories and three pathways. In the ‘cellular processes’
pathway, genes were mainly associated with cell motility, growth/death, and cellular
community. In the ‘environmental information processing’ pathway, genes were related
to signal transduction such as serine threonine-protein kinase, Rho GTPase, and tyrosine
kinase. Moreover, these pathways provide a starting point for exploring genes related to
amoeba development and pathogenesis and understanding their molecular functions.

There are many reports of the function of the cytoskeleton involved in pathogenicity
in protozoa such as E. histolytica [34–36], T. gondii [37,38], and Acathamoeba spp. [39,40].
Recently, studies of the transcriptome of Balamuthia mandrillaris trophozoites for structure-
guided drug design and treatment with Hesperidin conjugated with silver nanoparticles
using RNA-Seq in N. fowleri infection were reported [41,42]. In a previous study, Nf-actin
was located in the cytoplasm, pseudopodia, and amoebastome in N. fowleri trophozoites [43].
N. fowleri that was overexpressed Nf-actin showed significantly increased adhesion, phago-
cytic activity, and cytotoxicity [44].

In particular, levels of the profilin gene in cysts were significantly increased, whereas
those in trophozoites were not changed. It is reported that the profilin gene regulates the
nucleation rate of actin polymerization and the rate of filament elongation and reduces
the concentration of F-actin [45,46]. Moreover, some genes such as cytoskeletal genes and
pathogenesis-related genes, and the heat shock protein, showed increased expression levels
in the cyst stage compared with the N. fowleri trophozoites stage. These results indicate that
cytoskeleton-related genes play important roles in the pathogenesis of N. fowleri infection.

Although the pathways used by N. fowleri cysts to access the host are poorly un-
derstood, our data suggest that this step could be facilitated by transporters that are
upregulated in our transcriptome. Even though the serine/threonine protease, kinase,
and lipid metabolism-related proteins are still unknown, they have been suggested to
act as regulators of cyst formation in N. fowleri. Thus, these results could indicate that
stage-specific genes may be important regulators in the pathogenesis of N. fowleri infection.

In conclusion, we used RNA-seq to identify the various DEGs in N. fowleri tropho-
zoites and cysts. Additionally, we obtained stage-specific genes that were significantly
upregulated for each stage. This information can be utilized to assess developmental com-
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petence concerning cellular processes, metabolism, and the immune system in amoeba–host
interaction, which could be associated with brain infection. Additionally, these results
could be valuable transcriptomic/genomic resources for further analysis of genes involved
in cellular mechanisms and the immune system in other protozoan infections.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pathogens12020174/s1, Table S1: Sequence of primers
used for cloning of Nf-profilin gene.
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