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Abstract: Lymphatic Filariasis (LF) affects over 120 million people in 72 countries, with sub-periodic
filariasis common in the Pacific. Wuchereria bancrofti has three physiological races, each with a unique
microfilarial periodicity, and each race is isolated to a specific geographical region. Sub-periodic
W. bancrofti is transmitted by various Aedes mosquito species, with Aedes polynesiensis and Aedes
samoanus being the primary vectors in Samoa. The Aedes scutellaris and Aedes kochi groups are
also important vectors in the South Pacific Islands. Anopheles species are important vectors of
filariasis in rural areas of Asia and Africa. The Anopheles gambiae complex, Anopheles funestus, and
the Anopheles punctulatus group are the most important vectors of W. bancrofti. These vectors exhibit
indoor nocturnal biting behaviour and breed in a variety of habitats, including freshwater, saltwater,
and temporary water bodies. Effective vector surveillance is central to LF control and elimination
programs. However, the traditional Human Landing Collection (HLC) method, while valuable, poses
ethical concerns and risks to collectors. Therefore, this review critically analyses alternative trapping
tools for Aedes and Anopheles vectors in LF-endemic regions. We looked at 14 research publications
that discussed W. bancrofti vector trapping methods. Pyrethrum Spray Catches (PSC), one of the
seven traps studied for Anopheles LF vectors, was revealed to be the second most effective strategy
after HLC, successfully catching Anopheles vectors in Nigeria, Ghana, Togo, and Burkina Faso. The
PSC method has several drawbacks, such as the likelihood of overlooking exophilic mosquitoes or
underestimating Anopheles populations. However, exit traps offered hope for capturing exophilic
mosquitoes. Anopheles populations could also be sampled using the Anopheles Gravid Trap (AGT).
In contrast, the effectiveness of the Double Net Traps (DNT) and the CDC Light Trap (CDC LT)
varied. Gravid mosquito traps like the OviArt Gravid Trap (AGT) were shown to be useful tools for
identifying endophilic and exophilic vectors during the exploration of novel collection techniques.
The Stealth trap (ST) was suggested for sampling Anopheles mosquitoes, although specimen damage
may make it difficult to identify the species. Although it needs more confirmation, the Ifakara Tent
Trap C design (ITT-C) showed potential for outdoor mosquito sampling in Tanzania. Furvela tent
traps successfully captured a variety of Anopheles species and are appropriate for use in a variety
of eco-epidemiological settings. By contrast, for Aedes LF vectors, no specific sampling tool was
identified for Aedes niveus, necessitating further research and development. However, traps like the
Duplex cone trap, Resting Bucket Trap (RB), and Sticky Resting Bucket trap (SRB) proved effective
for sampling Aedes albopictus, offering potential alternatives to HLC. This review emphasises the
value of looking into alternative trapping methods for Aedes and Anopheles vectors in the LF-endemic
region. Further research is required to determine the efficacy of novel collection techniques in
various contexts, even if PSC and AGT show promise for sampling Anopheles vectors. The identified
traps, along with ongoing research, provide valuable contributions to vector surveillance efforts in
LF-endemic regions, enabling LF control and elimination strategies to advance.
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1. Introduction

The elimination of Lymphatic Filariasis (LF) and malaria, two mosquito-borne diseases,
is planned for 2030 through preventive chemotherapy and vector control measures [1,2].
Sensitive, quick, and species-specific diagnostic methods for parasite detection in humans
and vectors are required to confirm the cessation of transmission, and they are crucial for
determining disease prevalence [3–8]. These technologies define intervention endpoints
and confirm the efficacy of mass drug administration (MDA) programmes [9].

Medical entomologists have been utilizing molecular xenomonitoring (Mx) for decades
to assess the risk of transmission of vector-borne illnesses (VBDs) by detecting human
infections in arthropod vectors. Mx, a powerful tool for tracking disease transmission, as it
can detect microfilarial DNA in mosquito samples even in trace amounts, served as a proxy
for human infection surveillance related to VBDs [10–17]. Creating xenomonitoring systems
for programmatic use that are accurate, reliable, and cost-effective can be challenging due
to the diverse vector–parasite combinations.

In 2022, the World Health Organization (WHO) estimated that there were 120 million
people infected with W. bancrofti and 12 million people infected with Brugia malayi. The
disease is most common in tropical and subtropical regions, and it is estimated that 80% of
all cases are found in Africa (World Health Organization, Global Programme to Eliminate
Lymphatic Filariasis. Progress Report 2022. Geneva: World Health Organization; 2023).
Research on mosquito sampling techniques for Anopheles and Aedes vectors of diurnally
sub-periodic (DspWB) and nocturnally periodic (NpWb) W. bancrofti (Wb) is lacking, despite
the abundance of literature emphasizing the use of Mx for LF elimination with a Culex
quinquefasciatus (C.q.)—W. bancrofti (Wb) vector–parasite combination. Choosing the best
Mx tool for public health programmes and surveillance is critical, even though Anopheles
and Aedes vectors are less responsible for the LF burden than Culex-transmitted filariasis.

The epidemiological significance of parasite DNA prevalence in local vector mosquitoes
can be demonstrated by improving mosquito sampling techniques for local mosquito vector
species. This will lead to sufficient sample sizes and more accurate prevalence estimates.
Consequently, these enhancements have increased the operational value of LF and malaria
elimination programmes.

The utilisation of different mosquito sampling techniques by vector control pro-
grammes in diverse eco-epidemiological settings may lead to biased assessments of species
diversity and abundance. This systematic review critically examines the prevalence, ge-
ographic distribution, and bio-ecology of sub-periodic filariasis, specifically focusing on
Anopheles spp. and Aedes spp. The review also investigates and compares the effectiveness
of various Mx traps. The primary objective is to identify the most suitable Mx tool for
various tasks, considering the available information on sampling techniques while taking
into account the biology of the mosquito species acting as vectors.

1.1. Prevalence and Distribution of Lymphatic Filariasis

Over 120 million people in 72 countries across Asia, Africa, the Western Pacific, and
parts of the Caribbean and South America are affected by LF. Sub-periodic filariasis caused
by W. bancrofti is particularly prevalent in the Pacific region, including the islands of Tahiti,
Samoa [18], Tonga, and Fiji, Australia, New Guinea, and the nearby Melanesia, Micronesia,
and Polynesia islands are all part of the Pacific region [19].

The South Pacific islands exhibit a similar pattern of patchy filariasis distribution as
the rest of the world [20,21]. Early data from Fiji [22] revealed a low frequency of 6.4%
among residents of the Labasa, compared to a high prevalence of 25.2% in Taveuni. The
prevalence rates in various communities appeared to be influenced by the behaviours of
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the population and the proximity of densely populated vector areas to human settlements,
increasing the likelihood of infection transmission. Particularly in the Nancowry group of
islands, Nicobar district, the day-biting Aedes (Downsiomyia) niveus transmit the diurnally
sub-periodic W. bancrofti disease in India [23–28].

1.1.1. Physiological Races of W. bancrofti

There are three physiological races of W. bancrofti, each having a unique microfilar-
ial periodicity. Apart from the Polynesian sub-region, the nocturnally periodic race is
widely distributed in tropical and sub-tropical environments worldwide. A nocturnally
sub-periodic race is found in the jungle regions of West Thailand, while the diurnally
sub-periodic race is isolated to the Polynesian sub-region [29–31]. Each race has unique
intermediate hosts, and the microfilarial periodicity of each race coincides with the biting
rhythm of the principal vector mosquitoes.

1.1.2. Types of W. bancrofti Infection Identified, Based on Their Ecological Distribution

1. The Culex fatigans type, transmitted by the Culex pipiens complex, including races like
Culex fatigans, is known as Culex quinquefasciatus and Culex molestus. This is the most
widely distributed ecological type [29].

2. The Anopheles type, in tropical Africa, Anopheles gambiae, Anopheles funestus, and related
species are the principal vectors of W. bancrofti in rural areas, while other regions
have vectors such as Anopheles maculatus, Anopheles whartoni, Anopheles flavirostris, and
Anopheles punctulatus [29].

3. The Aedes (Finlaya) poecilus type is responsible for transmitting nocturnally periodic
W. bancrofti in the Phillipines. Additionally, the Aedes (Finlaya) kochi group serves as
efficient vectors for the diurnally sub-periodic race in the Polynesian region.

4. The Aedes (Ochlerotatus) vigilax type is the primary vector of the diurnally sub-periodic
race of W. bancrofti endemic in the New Caledonian region.

5. Aedes (Stegomyia) polynesiensis-type mosquitoes are the principal vectors of the diur-
nally sub-periodic form W. bancrofti in the Polynesian region.

Breeding Ecology, Biology and Implication in the Transmission

In Samoa, sub-periodic W. bancrofti is primarily transmitted by two vectors: A. polyne-
siensis and A. samoanus [12,32–34]. A. polynesiensis, a container breeder, and A. samoanus, a
leaf axil breeder, are nocturnal species restricted to the Samoa islands [18,35–38]. Another
member of the kochi group, A. tutuilae, breeds exclusively in pandanus leaf axils and is also
a nocturnal species found only in Samoa [18].

In the South Pacific Islands, the sub-periodic W. bancrofti is primarily transmitted by
A. pseudoscutellaris, and along with A. polynesiensis, they were efficient transmitters, and the
night-biting A. fijiensis of the kochi group was equally efficient [22,39,40]. C. quinquefasciatus,
the vector of periodic W. bancrofti, could also transmit sub-periodic W. bancrofti to a limited
extent in the Society Islands and Fiji [22,40]. Further studies by Burnett [41], Rossen [42],
and Symes [22,40] confirmed these findings, emphasizing the need for re-examination
potential vectors, particularly in areas where members of the A. scutellaris and kochi groups
have been reported [43].

In India’s Andaman and Nicobar Islands, DspWb is transmitted by the day-biting
Aedes (Downsiomyia) niveus, a tree-hole breeder, with diurnal biting behaviour. A. polyne-
siensis in American Samoa and Western Samoa exhibits similar biting behaviour, primarily
diurnal with a small proportion biting at night [27,44]. Sampling A. niveus presents a signif-
icant challenge for researchers and LF control programmes conducting surveillance [45].

In Samoa, efficient vectors of sub-periodic W. bancrofti include A. polynesiensis, A.
upolensis, and in the Tongo region A. tabu. A. polynesiensis prefers resting in dry coconut
husks, tree holes, the undersides of partially detached bark on dead trees, and similar
sheltered sites. A. upolensis is a true forest dweller, diurnally active and breeds in tree
hollows or cavities of dead trees. A. tabu is predominantly found in plantations but also
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occurs in shady areas in villages, limited to the Tonga islands. Their breeding habitats
include tree holes, artificial containers, coconut shells, and leaf axils of taro [35] Other
important Aedes vectors are A. poecilus, the A. scutellaris group, and O. togoi (earlier known
as A. togoi) [46].

The Anopheles Vector and Its Ecology

Anopheles species are significant vectors of malaria and filariasis in rural regions of
Asia and Africa. Some examples include the A. punctulatus group in Papua New Guinea
(PNG) [47], A. gambiae s.s., A. arabiensis, and A. funestus on the Kenyan coast [48]; A. subpictus
in the Indonesian islands of Flores and Timor [49]; and A. gambiae s.s. in Ghana [50], which
transmits both P. falciparum and W. bancrofti parasites.

There are about 26 Anopheles species vectoring Bancroftian and B. filariasis. Of these,
eighteen species transmit W. bancrofti, three species transmit B. malayi, and five species
transmit both parasites. A. barbirostris is the only known vector of B. timori. Among them,
the A. funestus group and members of the A. gambiae complex including A. gambiae s.s., A.
arabiensis, A. melas, and A. merus are the most important vectors of W. bancrofti. A. merus
breeds in saltwater, while the other three species breed in freshwater [49] with A. melas
often associated with mangroves [51].

In Africa, the A. gambiae complex and A. funestus are the most important vectors of W.
bancrofti [52]. These vectors exhibit indoor nocturnal biting behaviour. A. gambiae is highly
anthropophilic and employs a “patrolling” or “ranging” flight strategy to encounter host
cues. A. funestus is highly endophilic and anthropophilic but can display moderate to high
zoophagy in areas with large livestock populations. They breed throughout the year, with
A. funestus preferring permanent water bodies and certain stagnant water bodies, while the
A. gambiae complex breeds in temporary or man-made water bodies like pools, puddles,
brick pits, fields, construction sites, hoof prints, or tire tracks. This adaptability allows them
to maintain population numbers even during dry months, promoting year-round malaria
transmission [53].

In Asia, W. bancrofti is transmitted by A. jeyporiensis candidiensis and A. minimus in
China, by A. flavirostris in the Philippines, and by A. balabacensis, A. maculatus, A. letifer, and
A. whartoni in Malaysia [49]. The A. punctulatus group includes A. punctulatus, A. farauti,
and A. koliensis, which are the principal vectors of the periodic W. bancrofti in Papua New
Guinea (PNG), West Papua (Indonesia), Solomon Islands, and Vanuatu [54,55].

The A. punctulatus group prefers to breed in small, shallow, exposed pools devoid
of other flora and fauna [56]. In an inland village in PNG, 99.9% of A. punctulatus were
recorded. A. farauti is a coastal species that can breed in brackish water but is also found
at altitudes over 1000 m above sea level in PNG. A. koliensis is a nocturnal mosquito
with a preference for indoor feeding and breeds in streams at the forest margins. In
East Sepik Province, PNG, both A. punctulatus and A. koliensis were found to be potential
vectors. A. punctulatus breeds along river edges during the rainy season and, during the
dry season, along sections of the dried-up river, forming numerous sun-lit puddles that
serve as additional breeding sites [57]. Aedes and Anopheles species which are responsible
for transmitting W. bancrofti in various regions of the world is listed below (Table 1)

Table 1. Aedes and Anopheles LF vectors.

SL.NO. Region Vector Species Reference

1 Flores and Timor (Indonesian Islands) An. subpictus

WHO-2022 [3]2
China

An. jeyporiensis candidiensis

3 An. minimus

4 Philippines An. flavirostris WHO-2022 [3]
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Table 1. Cont.

SL.NO. Region Vector Species Reference

5

Ghana

An. gambiae complex,

Owusu et al., 2015 [7]
6 An. funestus,

7 An. arabiensis

8 An. melas

9

American Samoa

Ae. polynesiensis

Schmaedick et al., 2014 [12]
10 Ae. samoanus

11 Ae. aegypti,

12 Ae. (Finlaya) group

13 India (A &N Islands) Ae. (Downsiomyia) niveus Premkumar et al., 2020 [16]

14 Thailand Ae. niveus group Harinasuta et al., 1970 [30]

15

Samoa

Ae. polynesiensis

Hapairai et al., 2015 [34]
16 Ae. samoanus

17 Ae. (Finlaya) spp.

18 Ae. aegypti

19 Ae. upolensis Ramalingam et al., 1968 [35]

20 Polynesian region Ae. kochi group Burnett et al., 1960 [41]

21 Philippines Ae. poecilus Bockarie et al., 2009 [46]

22
Papua New Guinea, West Papua (Indonesia), Solomon

isalnds, Vanautu

An. punctulatus
Webber et al., 1977, 1979,

1991 [54]
23 An. farauti

24 An. koliensis

25 Tanzania An. merus Bartilol et al., 2021 [58]

26

Polynesia, New Caledonia

Ae. polynesiensis Strickland Hunter’s Tropical
Medicine and emerging
Infectious diseases [59]

27 Ae. tabu

28 Ae. vigilax

29

Thailand

Ae. annandalei Jitpakdi et al., 1998 [60]

30 Ae. desmotes
Gould et al., 1982 [61]

31 Ae. harinasutai

32

Malaysia

An. leucosphyrus

Muturi et al., 2008 [62]

33 An. barbirostris

34 An. balabacensis

35 An. maculatus

36 An. letifer

37 An. whartoni

38 An. donaldi

39 An. campestris

40 Indonesia An. balabacensis

42 Solomons island An. koriensis

43 China and Korea An. sinensis

44 Philippines An. minimus

45 Banggi Island, Sabah, Malaysia An. flavirostris Hii et al., 1975 [63]
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Table 1. Cont.

SL.NO. Region Vector Species Reference

46 Hainan island, China An. minimus Chen et al., 2002 [64]

47

Papua New Guinea

An. koliensis

Manguin et al., 2010 [65]

48 An. bancroftii

49 An. farauti s.l.

50 An. punctulatus

51

Brazil, Dominican republic, Guyana, Haiti, Costa Rica,
Suriname, Trinidad, Tobago and Brazil

An. darlingi

52 An. aquasalis

53 An. albimanus

54 An. bellator

55
Borneo

An. balabacensis
Sallum et al., 2005 [66]

56 An. latens

57 Uganda An. bwambae GB White et al., 1985 [67]

58 Sri Lanka An. (Cellia) jamesii Abeyewickreme et al.,
1991 [68]

59
Nigeria

An. gambiae s.l.
Richards et al., 2011 [69]

60 An. funestus

61 Togo An. gambiae Dorkinoo et al., 2018 [70]

62

Burkina Faso (West africa)

An. gambiae s.l.

Sanata Coulibaly et al.,
2022 [71]

63 An. funestus s.l.,

64 An. coluzzii

65 An. gambiae

66 An. nili

67
Mali

An. gambiae complex,
Coulibaly et al., 2015 [72]

68 An. funestus complex

69 Tanzania An. gambiae complex Jones et al., 2018 [73]

70

Kenya Coast

An. gambiae s.s.

Mathenge et al., 2005 [74]71 An. arabiensis

72 An. funestus

73 Indonesia An. aconitus Atmosoedjono et al.,
1977 [75]

2. Methodology
2.1. Database Search and Systematic Review

We systematically analysed published research articles using specific databases in-
cluding Google Scholar, ResearchGate, PubMed, and ScienceDirect. Our search focused on
topics such as molecular xenomonitoring, W. bancrofti (Wb), Lymphatic Filariasis, Mosquito
sampling methods, mosquito trapping techniques, Aedes- and Anopheles-transmitted filaria-
sis, and sub-periodic filariasis. Through this search, we identified 41 relevant articles.

In our analysis, we specifically examined the efficiency of different mosquito trapping
techniques, with a focus on sampling Aedes and Anopheles mosquito vectors of W. bancrofti.
This information is crucial for conducting molecular xenomonitoring, VBD surveillance,
and implementing effective public health programmes. After careful evaluation, we se-
lected 14 records that met our inclusion criteria, making them eligible for data collection
and comprehensive analysis.
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2.2. Exclusion Criteria

Brugian filariasis studies involved the Anopheles species in transmission. LF was
transmitted by Culex mosquitoes.

Studies focused on human blood surveys for microfilarial infection detection for
Transmission Assessment Surveys (TAS).

2.3. Inclusion Criteria

1. Aedes and Anopheles transmitted W. bancrofti.
2. Co-endemicity of LF and malaria transmitted by the Anopheles vector.
3. Molecular xenomonitoring of Aedes and Anopheles LF vectors.
4. Mosquito trapping techniques employed in diverse LF-endemic regions for Transmis-

sion Assessment Surveys
5. Efficiency assessment of various mosquito traps.

The flow chart below depicts the search strategies for sampling techniques related
to Anopheles- and Aedes-mediated W. bancrofti. Full-text records meeting the inclusion
criteria were selected for review. The study design was described using all five steps of the
PRISMA (Preferred Reporting Items for Systematic Reviews) (Figure 1) checklist to ensure
review quality.
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3. Sampling Strategies for LF-Endemic Aedes and Anopheles Vectors

The 14 included publications focused on assessing trapping techniques for Aedes and
Anopheles vectors transmitting W. bancrofti in endemic regions where an Mx of LF has
been conducted. While the HLC method has been essential, ethical concerns and risks to
collectors necessitate exploring alternative trapping tools [51].

This review critically analysed the efficiency of seven traps for sampling Anopheles
LF vectors such as PSC, GT, BGS, CDC LT, ET, DNT, and AGT (Table 2) and discussed novel
collection methods including the Stealth trap, Ifakara Tent Trap, Mbita trap, Furvela tent
trap as alternatives to HLC [51]. For Aedes LF vectors, four different traps were analysed
(BGS, GT, CDC LT, DNT) along with the Resting Bucket Trap (RB), Sticky Resting Bucket
trap (SRB), Duplex cone trap, and novel sticky trap [51].

Table 2. Studies carried out in different LF-endemic regions where the principal vectors are Aedes
and Anopheles.

S. No.
Filariasis
Endemic

Countries
Main Vector Context Study Date Study

Design
Vector

Sampling
Methods

Sample
Size

Analysis
Method Reference

1 Nigeria

A. gambiae s.l.,
A. funestus,
Anopheles spp.,
Culex spp.

Post-MDA
surveillance 2009 Longitudinal PSC 4398 Dissection Richards et al.,

2011 [69]

2
Papua
New

Guinea

A. punctulatus
A. koliensis *
A. hinesorum *
A. farauti 4 *
A. farauti sensu
stricto.*

Post-MDA
surveillance 2007–2008 Longitudinal HLC 21,899 PCR Reimer et al.,

2013 [76]

3 American
Samoa

A. polynesiensis
A. samoanus
A. aegypti
A. (Finlaya) group
A. oceanicus *
A. samoanus *
A. tutuilae *
A. nocturnus *
C. annulirostris *
C. sitiens *
C. quinquefasciatus

Post-MDA
surveillance 2011 Cross-

sectional BGS + lure 22,014 PCR Schmaedick et al.,
2014 [12]

4 Mali A. gambiae complex,
A. funestus complex

Post-MDA
surveillance 2007 Longitudinal HLC 4680 Dissection Coulibaly et al.,

2015 [72]

5 Ghana Anopheles spp.
Culex spp.

Post-MDA
surveillance 2008 Cross-

sectional PSC and GT 4500 PCR Owusu et al.,
2015 [7]

6 Samoa

A. polynesiensis
A. (Finlaya) sp.
A. aegypti *
A. upolensis *
C. annulirostris *
C. quinquefasciatus *

Post-MDA
surveillance 2012 Cross-

sectional
BGS + Lure,

HBC and
CDC LT

5360 PCR Hapairai et al.,
2015 [34]

7 Mali

A. gambiae complex
A. funestus complex
A. pharaoensis *
A. rufipes *

Post-MDA
surveillance 2009–2013 Longitudinal HLC and

PSC 14,539 Dissection
and PCR

Coulibaly et al.,
2016 [77]

8 Togo

A. gambiae,
Culex spp.,
A. aegypti *,
Mansonia spp. *

Post-MDA
surveillance 2015 Cross-

sectional
PSC, HLC,

and ET 10,872 PCR Dorkinoo et al.,
2018 [70]

9 Tanzania A. gambiae complex,
C. quinquefasciatus

Post-MDA
surveillance 2015 Cross-

sectional
CDC LT and

GT 1650 Dissection
and PCR

Jones et al.,
2018 [73]

10 Ghana

A. gambiae complex,
A. funestus,
A. arabiensis
A. melas,
A. rufipes *
A. coustani *
Aedes spp *
Culex spp.*
Mansonia spp.*

Post-MDA
surveillance 2016–2017 Cross-

sectional

AGT, Box
GT, CDC GT,
LT, ET, BGS,

IRC, PSC
2188 PCR Opoku et al.,

2018 [51]

11
India (A
and N

Islands)

A. (Downsiomyia)
niveus,
C. quinquefasciatus
A. albopictus *
A. aegypti *
A. edwardsi *
A. malayensis *
A. subalbatus *

Post-MDA
surveillance 2014–2015 Cross-

sectional
BGS, GT,

DNT, and
HLC

2170 RT-PCR Premkumar et al.,
2020 [16]
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Table 2. Cont.

S. No.
Filariasis
Endemic

Countries
Main Vector Context Study Date Study

Design
Vector

Sampling
Methods

Sample
Size

Analysis
Method Reference

12
Burkina

Faso (West
Africa)

A. gambiae s.l.,
A. funestus s.l.,
A. coluzzii,
A. gambiae,
A. nili,
A. arabiensis *

Monitoring
of LF and
malaria

prevalence

2014 and
2015

Cross-
sectional HLC, PSC 29,183

Conventional
PCR and
LAMP

Sanata Coulibaly
et al., 2021 [78]

13 Samoa

A. polynesiensis,
A. samoanus,
A. (finlaya) spp.
A. aegypti,
A. albopictus *
A. upolensis *
C. quinquefasciatus *

Post-MDA
Surveillance

2018 and
2019 Longitudinal BGS + Lure 13,700 PCR McPherson et al.,

2022 [17]

14 Burkina
Faso

A. gambiae,
A. coluzzi *
A. arabiensis *
A. funestus group,
A. nili

Assessment
of VSM 2018

Cross-
SectionalCross-

sectional

HLC,
Window ET,
DNT, PSC

3322 PCR Sanata Coulibaly
et al., 2022 [71]

* Non—LF vectors collected during sampling. HLC—Human Landing Catch, PSC—Pyrethrum Spray Catch,
HBC—Human Bait Catch, BGS—Biogents Sentinel trap, CDC LT—Centres for Disease Control Light trap, ET—Exit
Trap, GT—Gravid Trap, AGT—Anopheles gravid trap, DNT—Human baited double bed net-traps, BOX—box
gravid trap, IRC—Indoor Resting Collection.

PSC was the second most efficient method after HLC, effectively capturing Anopheles
vectors in Nigeria, Ghana, Togo, and Burkina Faso [7,51,69,79]. However, PSC has drawbacks,
as it may miss exophilic mosquitoes or underestimate Anopheles populations [72,78,80,81]. The
Exit trap was useful for trapping exophilic mosquitoes [71]. BGS showed varying results
in different settings, being more effective in some regions but less so in others [17,34,50].
The AGT appeared to be an appropriate trap for sampling Anopheles populations [51]. CDC
LT and DNT also had variable efficiency [71]. In Mali, HLC was observed to be more
productive than the PSC [82].

The review identifies traps with potential for xenomonitoring LF vectors, but further
studies are needed to assess their effectiveness in different settings [51,73]. The CDC Light
Trap captured more Culex and fewer Anopheles vectors [51]. A comparison of various vector
sampling techniques in Anopheles- and Aedes-mediated LF-endemic regions is provided in
Table 3.

Table 3. Applicability of different vector sampling techniques to sample Anopheles and Aedes vectors
in LF-endemic regions apart from the Human Landing Collection.

LF-Endemic Region LF Vector PSC GT BGS CDC LT ET DNT AGT

Nigeria

Anopheles sp.

4 X - - - - -

Ghana 4 X X X 4 - 4

Togo 4 - - - 4 - -

Burkina Faso 4 - - - 4 4 -

Mali X - - - - - -

Tanzania - X - X - - -

Samoa
Aedes sp.

- - 4 4 - - -

Nancowry Islands, India - X X - - X -

PSC—Pyrethrum Spray Catch, HBC—Human Bait Catch, GT—Gravid Trap, BGS—Biogents Sentinel trap,
CDC LT—Centres for Disease Control Light trap, ET—Exit Trap, DNT—Human baited Double Net Traps,
AGT—Anopheles gravid trap. 4: effective; X: invalid.

4. Methods for Sampling Mosquitoes to Conduct Disease Surveillance and Research

It is critical to comprehend the behaviour, distribution, and function of mosquitoes as
disease vectors in order to effectively combat illnesses such as LF, malaria, dengue, Zika,
and others. Scientists are able to advance disease management by gaining insights into
mosquito populations and their interactions with the environment through the use of a
variety of collection techniques.
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Human Landing Catch (HLC): Employing mosquitoes’ biological propensity to seek
a blood meal for reproduction, this technique captures mosquitoes as they descend onto
human or animal hosts. They are captured using an oral aspirator prior to biting the
host [83].

Pyrethrum Spray Collection (PSC): PSC entails the application of an insecticide
aerosol containing pyrethrum within confined spaces. Mosquitoes are rendered immobile
and disoriented, causing them to descend onto a white cloth, from which they can be
collected [84].

CDC Light Trap: These devices attract and capture adult mosquitoes using artificial
light sources. By simulating natural light sources, the trap attracts mosquitoes for further
study [85].

CDC Gravid Trap: Specialized equipment built to capture female mosquitoes in
search of sites where they can lay their eggs. These devices leverage the inherent behaviour
of mosquitoes by employing attractants such as organic matter to establish an optimal
environment for oviposition [86].

Biogents Sentinel (BGS) Trap: These traps imitate human or animal hosts by combin-
ing chemical attractants, visual signals, and heat. The chemical lures and design of the trap
increase its attraction to blood-seeking mosquitoes [86].

Window Exit Trap: As mosquitoes enter or leave designated areas, this trapping
system captures them. It is comprised of two chambers, one of which is baited with heat
and carbon dioxide to simulate human presence and entice mosquitoes to enter; these
mosquitoes are then collected in the exit chamber [87].

DNT: This consists of two box nets, one protecting the collector and a second larger
net, which is placed directly over the inner net. The outer net is raised off the ground so
that mosquitoes attracted to the human bait are collected between the two nets [88].

4.1. Novel Tools for Sampling Anopheles Vectors: W. bancrofti and P. falciparum Transmission

Gravid mosquito traps, such as the OviArt Gravid Trap (AGT), offer valuable sampling
tools for both endophilic and exophilic vectors, enhancing the detection of parasite-infected
mosquitoes for VBD surveillance and Transmission Assessment Surveys. AGT, specifically
targeting gravid Anopheles mosquitoes, has shown promising results with improved catch
size compared to other traps like the Box gravid trap. However, further improvements in
battery protection and transportation convenience are needed. AGT is made of a rectangular
basin measuring 45 cm × 33 cm × 11.5 cm (length × width × height), with a 4 cm hole
on the side and a 6 L rectangular basin. An open plastic tube (collection chamber) was
inserted into the hole and the other opening of the tube was sealed with fibreglass netting
to prevent trapped mosquitoes from escaping. The tube was placed and secured halfway
into an aluminium collapsible pipe. The flexible tube was connected to a 12 V fan that
provided suction on the water surface [89].

The Stealth trap (ST) has been recommended as a valuable tool for capturing Anopheles
mosquitoes, particularly A. gambiae s.l., in West Africa. While ST shows high capture rates,
it may cause damage to specimens, making species identification challenging [82]. The
Ifakara Tent Trap C design (ITT-C) has been considered promising for outdoor mosquito
sampling in Tanzania and has been evaluated for routine malaria vector surveillance.
Modifications and validation in different settings are needed for optimal performance [90].
The ITT has been reported to be comparatively superior in terms of capture rates compared
to HLC [91] and CDC LT [92]. However, operators’ exposure to mosquito bites necessitates
modifications for improved performance [93].

Furvela tent traps provide an efficient way to capture Anopheles mosquitoes, especially
in situations with diverse mosquito fauna. Combining CDC-LT or window-exit traps (to
sample endophagic mosquitoes) with Furvela tent traps (to sample exophagic ones) allows
robust sampling of diverse mosquito species [94]. Both CDC-LT and Furvela tent traps
are portable and suitable for surveillance. These tools hold promise for effective vector
monitoring in various eco-epidemiological settings [82,90,94,95].
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4.2. Aedes Mosquito Sampling Techniques: W. bancrofti Transmission

In a typical endemic setting for DspWb mediated by A. niveus, BGS, DNT, GT, and
HLC were deployed for vector mosquito sampling to assess vector infection. However,
none of these trapping methods were suitable for sampling A. niveus, with BGS and DNT
capturing more A. albopictus and A. aegypti, and GT capturing C. quinquefasciatus [61]. Thus,
there is currently no specific sampling tool identified for A. niveus apart from HLC.

In contrast, BGS was found to sample adequate numbers of A. polynesiensis and A.
samoanus vectors of LF in Samoa. However, the sampling method suitable for A. polynesiensis
in Samoa may not be applicable for A. niveus in Nancowry Islands, and BGS showed limited
efficiency in capturing A. niveus [16]. For A. albopictus, some traps like the Duplex cone
trap, Resting Bucket Trap (RB), and Sticky Resting Bucket (SRB) have been reported to be
efficient in sampling.

The Duplex cone trap was found to be the most productive trap for sampling A.
albopictus, offering a promising alternative to HLC [96]. RB and SRB traps were also
effective in capturing A. albopictus in various habitats, with SRB showing higher capture
rates [97]. Additionally, the novel sticky trap was reported to be more precise than the
ovitrap for sampling A. albopictus in urban settings [98].

These findings suggest that, for specific mosquito species like A. niveus, further re-
search and development of the suitable sampling tools are needed. Meanwhile, traps like
the Duplex cone trap, RB, SRB, and novel sticky trap show promise for efficient sampling
of A. albopictus.

5. Conclusions

In conclusion, this review has focused on the assessment of trapping techniques for
Aedes and Anopheles vectors responsible for transmitting W. bancrofti in LF regions endemic
to LF. While the Human Landing Collection (HLC) method has been instrumental, it
raises ethical concerns and poses risks to collectors, underscoring the need for alternative
trapping methods. Among the traps examined, the Pyrethrum Spray Catches (PSC) method
demonstrated high efficiency in capturing Anopheles vectors across multiple countries.
However, it may not effectively capture exophilic mosquitoes and could underestimate
Anopheles populations. Other traps like the Anopheles Gravid Trap (AGT) and the Exit
Trap, also showed potential, although their effectiveness varied in different settings.

In the case of Aedes vectors, traps like BGS and CDC LT proved useful in specific
regions, yet no dedicated sampling tool was identified for A. niveus apart from HLC. Novel
traps like the Stealth trap, the Ifakara Tent Trap C design (ITT-C), and Furvela tent traps offer
promising alternatives for capturing Anopheles mosquitoes in diverse eco-epidemiological
settings. Regarding A. albopictus, traps like the Duplex cone trap, Resting Bucket Trap (RB),
and Sticky Resting Bucket (SRB) exhibited high efficiency in various habitats. Nonetheless,
further research is imperative to develop suitable sampling tools for specific mosquito
species like A. niveus. In summary, these findings provide valuable insights into efficient
sampling strategies for LF-endemic Aedes and Anopheles vectors, thereby facilitating vector
surveillance and enhancing disease control efforts.
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