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Abstract: Chili anthracnose has long been a threat to chili production worldwide. Capsicum baccatum
‘PBC80’ has been identified as a source of resistance to anthracnose. Recently, a QTL for ripe fruit
resistance from ‘PBC80’-derived RILs was located on chromosome 4 (123 Mb) and contained over
80 defense-related genes. To identify the genes most related to anthracnose resistance, a fine map of
the QTL region was developed using single-marker analysis. Nine genes were selected from the new
QTL (1.12 Mb) to study their expression after being challenged with Colletotrichum scovillei ‘MJ5’ in
two different RIL genotypes (Resistance/Resistance or R/R and Susceptible/Susceptible or S/S) at
0, 6 and 12 h. Of the nine genes, LYM2, CQW23_09597, CLF, NFXL1, and PR-14 were significantly
up-regulated, compared to the control, in the R/R genotype. ERF was up-regulated in both chili
genotypes. However, the expression was relatively and constantly low in the S/S genotype. Most up-
regulated genes reached the highest peak (2.3–4.5 fold) at 6 h, except for ERF, which had the highest
peak at 12 h (6.4 fold). The earliest and highest expressed gene was a pathogen receptor, LYM2.

Keywords: Colletotrichum scovillei; hypersensitive reaction; microinjection; wounded inoculation;
defense-related genes; qRT-PCR

1. Introduction

Chili (Capsicum spp.) is an economically important global crop as a key vegetable
and spice [1]. A complex of Colletotrichum species causes chili anthracnose. In Thailand,
the most important species are Co. scovillei, Co. truncatum, and Co. siamense [2], with
Co. scovillei being the most aggressive species [3]. Among the cultivated Capsicum species,
C. annuum lacks resistance to anthracnose, while C. baccatum has resistance to the pathogen,
especially Co. scovillei. Capsicum baccatum ‘PBC80’ accession has been used widely in Asia
and Thailand as the resistant source in several chili-breeding programs [1].

Disease resistance in crop plants is generally controlled by a few genes that have large
effects on the phenotype; however, quantitative variations are also observed [4,5]. Genetic
studies for anthracnose resistance in chili with the hypersensitive reaction (HR) have mostly
shown single genes controlling the resistance [6–9], but some variations were detected in
the susceptible phenotypes. Such variations suggested that the resistance to anthracnose in
chili was a quantitative trait. The resistance trait’s quantitative trait locus (QTL) refers to
the trait’s genomic region, which is identified by a statistical QTL analysis aiming to link
phenotype and genotype and explain the genetic basis of variation in the traits [4,5,10].

Mapping and QTL analyses of the resistance genes to anthracnose derived from
the ‘PBC80’ have been achieved [9,11]. The most recent map developed by Kethom and
Mongkolporn [11] was derived from the recombinant inbred lines (RILs) developed from
an intraspecific C. baccatum cross ‘PBC80’ × ‘CA1316’. The resistance to anthracnose on
ripe fruit was located on chromosome 4 within the QTL RA80f6_r1. The QTL RA80f6_r1
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region is physically 123 Mb (22,920,913–146,776,687 bp), housing approximately 85 defense-
related genes.

Pathogenesis-related proteins are expressed by the host at various time points during
infection and are correlated with differential pathogenesis-related genes expressed by the
pathogen. The crucial interactions between the fungal pathogen and the host plant occur as
early as at the penetration stage of the cuticle and through to the infection/colonization
stage. The resistance mechanism in host, C. baccatum ‘PBC80’, has been well defined as a
hypersensitive reaction (HR) [8]. HR is often a consequence of the plant host recognition
of the invasive pathogen, which results in rapid cell death around the infection site [12].
Pathogen recognition by cell-surface pattern recognition receptors (PRRs) is the earliest
response event of a plant host that initially induces defense mechanisms to inhibit the
pathogen invasion. Studies in rice [13] and coffee [14] revealed that plants could promptly
recognize fungal infection and activate defense activities through the early expressions of
the PRRs before a full development of fungal appressorium around 5–6 h after inoculation.
In chili anthracnose, the causal pathogen Colletotrichum was demonstrated to produce
appressoria as early as 6 h after inoculation [15]. Since the recognition receptors appeared
to be the key genes to activate the HR response, the early response genes were consequently
the targets of this study. The study was then planned to collect mRNA at an early stage of
the infection within the first 24 h after inoculation.

This study aimed to identify genes involved in the QTL RA80f6_r1 for resistance to
anthracnose from ‘PBC80’ through their mRNA expression post-inoculation. The QTL
RA80f6_r1 was physically large and contained over 80 defense-related genes in the region.
Therefore, this study tried to narrow the QTL region by incorporating more markers into
the QTL area to achieve a fine map. As a result, the new QTL was physically smaller to
accommodate searching targeted defense-related genes, which then had their expressions
post-fruit inoculation investigated.

2. Materials and Methods

A graphical figure to explain the overall study methodology is exhibited in Figure 1.
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Figure 1. A graphical summary of the study methodology.
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2.1. Fine Mapping in the QTL Region and Selection of Defense-Related Genes

The QTL RA80f6_r1 previously identified by Kethom and Mongkolporn [11] was
derived from homozygous recombinant inbred lines developed from a cross between
C. baccatum ‘PBC80’ and ‘CA1316’. The QTL was located on chromosome 4 and contained
eight molecular markers with a total physical distance of 123 Mb. A fine map of the QTL
was attempted by adding more markers into the region. These additional markers were
recruited from silico (insertion-deletion mutants) and SNPs (single nucleotide polymor-
phisms) within the DArTseq [16] genome database of the RIL population [11] by lowering
the marker filtering criteria with ≥75% call rate and minimum allele frequency ≥ 0.1. All
the recruited markers had known locations on the Capsicum chromosome.

The fine mapped QTL was then analyzed to identify markers closely linked to the
resistance to anthracnose with single-marker analysis using QTL IciMapping 4.1 software
(http://www.isbreeding.net (accessed on 16 August 2022); [17]). The quantitative pheno-
typic data derived from Kethom and Mongkolporn [11] were converted to binary data
as 0 = resistance and 1 = susceptibility. Single-marker analysis based on a simple linear
regression [10] was used to identify markers that were most linked to the resistance to
anthracnose by showing the highest LOD scores.

Putative genes involved in the plant defense mechanisms were searched within 7 Mb up-
and down-stream of the fine QTL region, and were selected for the gene expression study.

2.2. Selection of RILs with Resistance and Susceptibility to Anthracnose

Thirty-one RILs from a cross of C. baccatum ‘PBC80’ × ‘CA1316’ were grown in 30 cm
plastic pots. Each line contained 1–2 plants. The chili plants were laid in a 32-mesh insect-
proof house with 50× 100 cm spacing, at the Tropical Vegetable Research and Development
Center, Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart
University, Nakhon Pathom, Thailand.

A fruit bioassay was performed to evaluate resistance to anthracnose. Three fruits
each at mature green and ripe maturity stages were collected for inoculation. Each fruit was
wounded and inoculated with Colletotrichum scovillei isolate MJ5 using a microinjector [10].
Anthracnose symptoms were evaluated at 9 days after inoculation. The anthracnose
severity was evaluated based on a 0–9 disease score developed by [18], whereby the lesion
size proportional to the fruit size was considered as follows: 0 = no infection, 1 = 1–2%,
3 = >2–5%, 5 = >5–15%, 7 = >15–25%, 9 = >25%.

Two RILs, anthracnose-resistance (R/R) and -susceptible (S/S) at both fruit stages,
were selected.

2.3. Expression Study of the Putative Defense-Related Genes
2.3.1. Fruit Inoculation

The isolate MJ5 was cultured on potato dextrose agar (PDA; Difco, Becton, Dickinson
and Company, Sparks, MD, USA) under near-UV for 7 days. When the fungus sporulated,
sterilized water was added to the top of the culture and the culture surface was scraped to
collect spores. The collected spores were filtered with sterilized muslin cloth. The spores
were adjusted to a concentration of 1.0 × 106 spores/mL [18].

Fifteen ripe fruit were collected from each chili plant. Calyces were removed and fruit
were surface sterilized in 1% (w/v) sodium hypochlorite solution for 5 min, and then rinsed
twice with reverse osmosis water. The clean fruit were laid on a metal sieve in a plastic box
half-filled with water. Of the 15 fruit, 9 were inoculated with sterilized water, and 6 were
inoculated with the MJ5. Each fruit was injected twice in the middle of the pericarp. The
injection wounds were 3 cm apart. Each injection contained 1 µL of either water or spore
suspension. The plastic inoculation box lid was closed to maintain high humidity for 12 h.

2.3.2. RNA Extraction and cDNA Synthesis

Total RNA was extracted from the challenged fruit with either water or the MJ5 at 0
(only water inoculation was performed), 6, and 12 h after inoculation, using a modified

http://www.isbreeding.net
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CTAB-LiCl method [19]. The 1 cm2 fruit tissue surrounding the inoculation wound was
excised and immediately dipped into liquid nitrogen. The frozen tissue was stored at
−80 ◦C until required for RNA extraction. The quantity and quality of the extracted total
RNA was measured with a Nanodrop 2000c spectrophotometer (Thermo Fischer Scientific,
Waltham, MA, USA). The RNA was stored at −80 ◦C.

Before cDNA synthesis, the RNA samples were DNA cleaned by incubating the RNA
with DNAse I, RNAse-free (New England Biolabs, Ipswich, MA, USA) at 37 ◦C for 40 min.
One µg of the RNA was converted to cDNA with the RevertAid RT Reverse Transcription
Kit (Thermo Fischer Scientific, Waltham, MA, USA). The cDNA quantity and quality were
inspected using the Nanodrop 2000c spectrophotometer. The cDNA was diluted 15-fold
with RNase-free water, and then transferred to −80 ◦C storage.

2.3.3. Designing the Primers Specific to the Targeted Defense-Related Genes

The nucleotide data of the selected putative defense-related genes were derived from
the Capsicum baccatum ‘PBC81’ reference genome, GenBank database “www.ncbi.nlm.nih.gov
(accessed on 15 August 2022)”. The secondary structure of each gene was inspected with
mfold “http://www.unafold.org (accessed on 16 August 2022)”. The primers specific to the
selected genes were designed with Primer3Plus “https://www.primer3plus.com (accessed
on 16 August 2022)” (Table 1) by avoiding any expected secondary structure regions.

Table 1. Sequences of the primers specific to the selected defense genes and housekeeping genes.

Gene ID Gene Description Forward/Reverse Primer 5′–3′ Product Size
(bp)

CQW23_09568 LysM domain-containing GPI-anchored
protein 2 (LYM2)

CCCGATCTCTCTTCTCATACAAATGC
GGCAGACTTAAGATCCCATCCACAC 133

CQW23_09584 Ethylene-responsive transcription
factor (ERF)

GGGAAGTTGAGATTGTGAGAAGCA
AGGGAGTGAGAATGAGAAGCTGG 172

CQW23_09596 Hypothetical protein (HP596) TCTTTGTCTGAGGTTCCATCGG
ACCTTACTACTCTATGCCTTCAAAG 76

CQW23_09597 Hypothetical protein (HP597) CCCAATGAAGAGGATGGCTCTGGT
GCAACATCGATTGAACCCCAGAAAC 200

CQW23_09600 Histone-lysine N-methyltransferase (CLF) TTCCTCTGAAGATGCAACTGTG
AAGATCCTTCGTCAGATTCTCC 148

CQW23_09601 Hypothetical protein (HP601) TCTTGCTGTGGATCTGTTGCTG
TCCTTGCTTTTTGTCTCTGCGG 96

CQW23_09609 Auxin response factor 23 (ARF23) AAAGGTCCGAGCAATCAAAGGG
TGCCATCCCTCTCTCTAGAAGC 93

CQW23_09618 NF-X1-type zinc finger protein (NFXL1) TGCTTTTGTGGGAAGAGGCAAG
GCAGGGACAACTTCTAGCTGGA 210

CQW23_09644 Non-specific lipid-transfer protein 2 (PR-14) ACAAAGGCAAGGTTTCTGCTCTC
GCGATTACATCATCACAACCACCC 72

CQW23_20069 Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH)

AGACCTTGGAGTTGCAGATGTG
TGAGACCGTGACAATGCTAACC 78

CQW23_12274 Elongation factor 1-alpha (EF-1α) TCTCCGACGACAAACCTCAAGC
CGCCATTCCTGAATTGTGTGATAGGG 80

2.3.4. Gene Expression Analysis with qRT-PCR

A qRT-PCR reaction was prepared in a 15 µL volume with final concentrations of
all ingredients as follows: 1× Maxima SYBR Green qPCR Master Mix (Thermo Fischer
Scientific, Waltham, MA, USA), 0.4 µM each primer and 17 ng cDNA. The qRT-PCR was
performed in a CFX Opus 96 Real-Time PCR System (Bio-Rad, Hercules, CA, USA) with a
thermal program as follows: initial denaturation at 95 ◦C for 10 min, denaturation at 95 ◦C

www.ncbi.nlm.nih.gov
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for 15 s, annealing/extension at 54–59 ◦C for 60 s (varied by different primers). The thermal
steps 2 and 3 were repeated for 40 cycles. The PCR product sizes were inspected with
melting curve analysis and agarose gel electrophoresis. Each cDNA sample was performed
in qRT-PCR thrice (technical replications).

Levels of relative expressions of the genes were calculated by the 2−∆∆Ct method [20]
in comparison with two housekeeping genes, glyceraldehydes 3 phosphate dehydrogenase
(GADPH) and elongation factor 1-alpha (EF-1α), and the control cDNA derived from the
fruit inoculated with water at 0 h. Two-way analysis of variance (ANOVA) was performed,
and means were compared by Tukey’s HSD test using the R software version R-4.2.2 [21].

3. Results
3.1. Fine Mapping and Defense-Related Gene Selection

An additional 80 molecular markers within the QTL RA80f6_r1 were discovered
from the DArTseq genome data of the RIL ‘PBC80’ × ‘CA1316’ population [11]. Of the
80 markers, 69 were silico (insertion-deletion mutants) and 11 were SNPs. Single-marker
analysis identified two closely linked markers to the anthracnose resistance loci, Silico09
(34,998,101 bp) and SNP309 (33,876,713 bp), with LOD 5.9 and 5.2, respectively. The physical
distance between the Silico09 and SNP309 were 1.12 Mb (Figure 2, Table 2).
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Figure 2. Fine map of the QTL RA80f6_r1 after the addition of the silico and SNP markers (left); LOD
values of all the markers in the QTL derived from single marker analysis (right), indicating SNP309
and Silico09 had the highest LODs (5.2 and 5.9, respectively).

Table 2. Physical position and LOD values of the markers in relation to the resistance to anthracnose
in the QTL RA80f6_r1 region by single-marker analysis.

Marker Physical Position (bp) LOD 1 PVE (%) 2 Add 3

SNP305 22,920,913 4.88 20.87 −0.21
Silico01 24,353,170 4.16 18.07 −0.20
SNP306 24,353,190 4.16 18.07 −0.20
Silico02 25,181,503 2.14 9.78 −0.15
Silico03 27,298,089 3.87 16.92 −0.19
Silico04 27,762,754 4.05 17.67 −0.20

SNP0132 28,348,529 3.75 16.48 −0.19
Silico05 28,350,263 3.17 14.10 −0.18
Silico06 31,275,816 3.22 14.33 −0.18
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Table 2. Cont.

Marker Physical Position (bp) LOD 1 PVE (%) 2 Add 3

Silico07 31,813,244 0.24 1.14 −0.05
Silico08 32,891,183 1.53 7.08 −0.13
SNP309 33,876,713 5.22 22.14 −0.22
SNP310 34,133,643 3.15 14.02 −0.17
SNP311 34,378,585 4.74 20.34 −0.21
Silico09 34,998,101 5.91 24.67 −0.23
Silico10 39,171,666 2.38 10.80 −0.15
Silico11 40,015,431 3.45 15.26 −0.18
Silico12 40,678,856 4.46 19.27 −0.20

SNP1755 41,686,959 4.16 18.07 −0.20
Silico13 42,390,824 4.88 20.87 −0.21
Silico14 43,749,964 1.35 6.28 −0.12
Silico15 44,285,168 1.70 7.83 −0.13
Silico16 46,002,881 1.53 7.11 −0.13
Silico17 47,161,782 1.20 5.62 −0.11
Silico18 47,414,359 1.53 7.11 −0.13
Silico19 47,677,887 0.16 0.79 −0.04
Silico20 47,681,951 0.24 1.14 −0.05
Silico21 48,000,095 0.09 0.43 −0.03
Silico22 48,586,639 1.18 5.51 −0.11
Silico23 48,746,637 4.05 17.67 −0.20
Silico24 51,871,096 3.43 15.17 −0.18
Silico25 53,148,783 2.93 13.11 −0.17
Silico26 55,311,209 2.38 10.80 −0.15
Silico27 55,657,165 3.15 14.02 −0.17
Silico28 56,845,351 0.41 1.95 −0.07

SNP7049 65,265,181 2.38 10.80 −0.15
Silico29 65,700,039 2.16 9.86 −0.15
Silico30 65,987,191 0.00 0.04 −0.01
Silico31 68,981,148 2.64 11.91 −0.16
Silico32 71,888,214 2.87 12.87 −0.17
Silico33 72,249,488 3.48 15.36 −0.19
Silico34 75,024,622 3.44 15.20 −0.18
Silico35 78,008,814 3.44 15.20 −0.18
Silico36 78,028,368 3.73 16.38 −0.19
Silico37 78,035,410 0.43 2.05 −0.07
Silico38 78,164,097 2.16 9.86 −0.15

BACSNP_4_63 84,305,804 3.14 14.00 −0.18
Silico39 85,431,446 3.14 14.00 −0.18
Silico40 86,667,602 3.14 14.00 −0.18
Silico41 91,189,255 2.38 10.80 −0.15
Silico42 92,568,227 1.93 8.86 −0.14
Silico43 92,939,149 1.19 5.55 −0.11
Silico44 100,038,292 2.38 10.80 −0.16
Silico45 100,064,499 3.73 16.38 −0.19
Silico46 101,835,880 1.96 8.97 −0.14
Silico47 102,448,025 2.89 12.94 −0.17
Silico48 103,063,217 1.36 6.34 −0.12
Silico49 103,132,977 2.41 10.94 −0.15
Silico50 103,371,531 2.87 12.87 −0.17
Silico51 103,567,675 3.15 14.02 −0.17
Silico52 103,579,898 1.96 8.97 −0.14
Silico53 104,238,202 1.39 6.45 −0.12
Silico54 106,569,759 2.16 9.86 −0.15
Silico55 111,192,822 3.73 16.38 −0.19

BACSNP_4_60 113,019,674 2.16 9.86 −0.15
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Table 2. Cont.

Marker Physical Position (bp) LOD 1 PVE (%) 2 Add 3

Silico56 114,140,855 2.41 10.94 −0.15
Silico57 115,808,681 0.80 3.76 −0.09
Silico58 125,855,206 3.18 14.16 −0.17
Silico59 129,409,957 3.15 14.02 −0.17
Silico60 132,674,360 1.59 7.35 −0.13
Silico61 133,136,427 2.38 10.80 −0.15
Silico62 134,969,221 1.77 8.13 −0.13
Silico63 136,379,454 3.44 15.20 −0.18
Silico64 137,027,139 2.87 12.87 −0.17
Silico65 139,918,888 2.00 9.15 −0.14
Silico66 142,635,277 2.89 12.94 −0.17
Silico67 144,664,453 3.74 16.43 −0.19
Silico68 144,808,619 2.64 11.89 −0.17
Silico69 144,901,329 2.93 13.11 −0.17
SNP331 146,776,687 4.74 20.34 −0.21

1 LOD: LOD score calculated from single marker analysis. 2 PVE: Phenotypic variation explained by the marker.
3 Add: Estimated additive effect of the marker.

Gene searching in the new QTL RA80f6_r1 region found nine genes, six of which were
defense related and three were unknown (Table 3).

Table 3. Genes with known defense and unknown functions discovered in the new QTL RA80f6_r1 region.

Gene Physical Position (bp) 1 Gene Function 2

LYM2 27,166,666–27,169,869 Involved in defense response as chitin-binding protein.

ERF 31,226,500–31,227,246 Transcriptional activator that may involve in disease resistance pathways.

HP596 33,798,986–33,799,247 Unknown.

HP597 34,375,190–34,380,266 Unknown.

CLF 34,927,068–34,936,068 Involved in chromosome silencing, histone methylation, regulation of gene
expression by genetic imprinting, cell differentiation, etc.

HP601 34,997,949–35,013,770 Unknown.

ARF23 36,381,979–36,386,588 Transcriptional activator that may involve in disease resistance pathways.

NFXL1 36,512,044–36,515,448 Promotes H2O2 production, defense response to bacterium, response to microbial
phytotoxin, response to salt stress, salicylic acid biosynthetic process, etc.

PR-14 40,270,316–40,270,594 Transfer lipids across membranes. May play a role in plant defense or in the
biosynthesis of cuticle layers.

1 Data from genome annotation of Capsicum baccatum ‘PBC81’ genome reference [22], National Center for Biotechnology
Information “https://www.ncbi.nlm.nih.gov/genome/?term=capsicum+baccatum (accessed on 15 August 2022)”.
2 Information from UniProt “https://www.uniprot.org (accessed on 16 August 2022)”.

3.2. Selection of the RILs with Resistance and Susceptibility to Anthracnose

Of the 31 RILs, 29 yielded fruit for anthracnose resistance bioassay. Four RILs showed
resistance at both fruit stages (R/R), three were resistant at mature green fruit (R/S),
eight were resistant at ripe fruit (S/R), and 12 were susceptible at both fruit stages (S/S)
(Table 4). Two RILs G1-017130 and G1-017264 were selected with R/R and S/S phenotypes,
respectively, (Figure 3, Table 4) for further gene expression study. Anthracnose severity
scores of the ‘PBC80’, ‘CA1316’, and the RILs are displayed in Figure 4.

https://www.ncbi.nlm.nih.gov/genome/?term=capsicum+baccatum
https://www.uniprot.org
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Table 4. Anthracnose severity scores on mature green and ripe fruit of the 29 RILs.

RIL Code
Anthracnose Severity Score (0–9)

Mature Green Ripe

G1-017130 0 0
G1-017135 0 5
G1-017147 5 0
G1-017233 5 5
G1-017257 5 5
G1-017261 5 3
G1-017264 5 5
G1-017267 5 7
G1-017325 1 5
G1-017339 5 0
G1-017396 5 5
G1-017399 0 0
G1-017415 3 0
G1-017416 3 0
G1-017425 0 0
G1-017431 5 1
G1-017433 0 5
G1-017473 0 1
G1-017531 1 1
G1-017539 5 0
G1-017540 5 3
G1-017541 5 5
G1-017544 5 0
G1-017579 3 0
G1-017588 5 5
G1-017593 5 5
G1-017623 5 0
G1-017679 5 5
G1-017845 0 0

3.3. Gene Expression in the Chili Fruit Post Inoculation

The gene expression in the fruit after inoculation of the nine genes, including LYM2,
ERF, HP596, HP597, CLF, HP601, ARF23, NFXL1, and PR-14 were investigated by the
qRT-PCR technique. The R/R genotype had six significantly up-regulated genes, i.e., LYM2,
ERF, HP597, CLF, NFXL1, and PR-14 compared to the control (water inoculation at 0 h;
Figure 5). Only ERF up-regulated in both chili genotypes; However, the expression was
relatively and constantly low in the S/S genotype. Most up-regulated genes reached the
highest peak (2.3–4.5 fold) at 6 h and declined at 12 h, except for the ERF, which had the
highest peak (6.4 fold) at 12 h.

Similar patterns of the gene expressions were also found in the chili fruit inoculated
with water. The six genes, i.e., LYM2, ERF, HP597, CLF, NFXL1 and PR-14, significantly
up-regulated in the R/R genotype and reached the highest peak at 6 h (1.51–3.74 fold) then
declined at 12 h, except for the ERF that had the highest peak (4.98 fold) at 12 h (Figure 5).
The expression levels of these genes in the water control were significantly lower than those
in the fruit inoculated with MJ5 (Table 5).
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Figure 5. Relative expression levels 0–12 h post fruit inoculation with MJ5 and water of the nine genes in
two chili genotypes: R/R + water (grey), R/R + MJ5 (black), S/S + water (white), and S/S + MJ5 (dot).
The vertical bars represent standard deviation of the means based on 2-way ANOVA; *, **, *** and ****
indicate statistically significant differences compared to the same chili genotype inoculated with water at
0 h (control) at p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively, by Tukey’s HSD test.

Table 5. Relative expression levels (means + SD) of the six up-regulated genes in the R/R and S/S
chili genotypes at 6 and 12 h post fruit inoculation with water and MJ5.

Genotype +
Inoculation

LYM2 ERF

6 h 12 h 6 h 12 h

RR + water 2.99 ± 0.28 b
x 1.47 ± 0.22 c

y 3.74 ± 0.51 c
y 4.98 ± 0.40 b

x
RR + MJ5 4.53 ± 0.35 a

x 2.80 ± 0.44 b
y 4.05 ± 0.33 bc

y 6.43 ± 0.71 a
x

SS + water 1.03 ± 0.26 cd
x 0.24 ± 0.10 e

y 2.03 ± 0.18 de
x 1.30 ± 0.10 ef

x
SS + MJ5 0.75 ± 0.16 de

x 0.67 ± 0.19 de
x 2.25 ± 0.42 de

x 2.30 ± 0.24 d
x
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Table 5. Cont.

Genotype +
inoculation

HP597 CLF

6 h 12 h 6 h 12 h

RR + water 3.47 ± 0.30 a
x 1.62 ± 0.20 b

y 1.52 ± 0.29 a
x 0.92 ± 0.23 cd

y

RR + MJ5 3.70 ± 0.19 a
x 1.75 ± 0.20 b

y 1.80 ± 0.17 a
x 1.43 ± 0.28 bc

x

SS + water 1.83 ± 0.24 b
x 0.58 ± 0.15 d

y 0.8 ± 0.11 cd
x 0.52 ± 0.12 d

x

SS + MJ5 1.34 ± 0.29 bc
x 1.36 ± 0.16 bc

x 0.75 ± 0.06 cd
x 0.71 ± 0.15 cd

x

Genotype +
inoculation

NFXL1 PR-14

6 h 12 h 6 h 12 h

RR + water 2.25 ± 0.42 a
x 0.77 ± 0.07 c

y 2.68 ± 0.82 a
x 1.23 ± 0.06 b

y
RR + MJ5 2.31 ± 0.46 a

x 1.58 ± 0.42 ab
x 2.98 ± 0.69 a

x 1.33 ± 0.28 b
y

SS + water 0.62 ± 0.13 c
x 0.26 ± 0.04 c

x 1.02 ± 0.25 b
x 0.37 ± 0.04 b

x
SS + MJ5 0.70 ± 0.22 c

x 0.40 ± 0.10 c
x 1.09 ± 0.04 b

x 0.68 ± 0.13 b
x

Means followed by the same superscript letter (abcdef) within a column or the same subscript letter (xy) within a
row of the same gene are not significantly different (p > 0.05).

4. Discussion
4.1. Defense Roles for the Identified Genes

The resistance to anthracnose derived from the ‘PBC80’ has been well documented [8,23].
The defense mechanism is known as a hypersensitive reaction (HR), whereby a form of
rapid localized cell death occurs at the infection site to restrict pathogen spread [24]. Plants
generally resist a pathogen invasion via two innate immune systems, i.e., cell-surface pattern
recognition receptor (PRR)-mediated and intracellular nucleotide-binding leucine-rich repeat
receptor (NLR)-mediated immunities [25]. Recent reports have shown that both PRR- and
NLR-mediated immunities have mutual roles in HR [26–30], which is defined as pathogen
recognition, ion influxes, reactive oxygen species (ROS) burst, lipid peroxidation, transcriptional
reprogramming, and cell wall reinforcement [24].

LYM2 (LysM domain-containing GPI-anchored protein or chitin elicitor-binding pro-
tein (CEBiP)) is known as PRR. The PRR’s roles in plant defense are pathogen recog-
nition and induction of a plasmodesmata closure, which is the first response by plants
to stresses [31]. Once the pathogen is recognized, different signaling cascades in PRR-
mediated immunity, i.e., ion influxes, ROS burst, and MAPK cascade are triggered. The
recognition roles of LYM2 as PRR have been reported in rice and Arabidopsis [32–34]. More-
over, the induction of plasmodesmata closure by LYM2 was also reported in Arabidopsis
after being infected by Botrytis cinerea [35]. The plasmodesmata closure could prohibit the
pathogen spread to the neighboring cells.

NFXL1 (NF-X1-type zinc finger protein) is a transcription factor identified in Arabidopsis [36].
NFXL1 was reported in Arabidopsis for positive regulation of the production of H2O2, a member
of ROS [37]. The accumulation of ROS is one of the earliest defense responses in plants upon
pathogen recognition. The ROS’s involvement in the HR through promoting a cell wall reinforce-
ment by forming a cross-linking between glycoproteins [38,39], signaling to stimulate other plant
defense responses against pathogens [40–42], and participating in programmed cell death (PCD)
via the ROS burst process [43–46].

CLF (Histone-lysine N-methyltransferase) has a role in epigenetic regulation of gene
expressions through repressive chromatin to silence genes by DNA methylations of H3K27
on the histone H3 [47–50]. In a stress condition, CLF also suppresses the expressions of
some genes to properly respond to the environments [51–54]. Recently, CLF was reported
to promote a set of defense genes that induced the PCD against a pathogen effector in
Arabidopsis [55].

ERF (Ethylene-responsive transcription factor) is a transcription factor in a subfamily of
the APETALA2 (AP2)/ethylene-responsive-element-binding protein (EREBP) in plants [56].
ERF plays several different roles during plant development to regulate plant defense
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responses against abiotic and biotic stresses [57–62]. Therefore, ERF could promote HR by
directly activating the expression of defense-related genes.

PR-14, or non-specific lipid-transfer protein 2 (LPT2) is primarily involved in various
key processes of plant cytology, i.e., cell wall organization, cell membrane stabilization and
signal transduction [63]. In plantdefense, LPT1 and LPT2 have been identified as pathogenesis-
related (PR) proteins known as PR-14 [64]. PR proteins are basically against microorganisms.
PR-14 was reported to exhibit antimicrobial activity in mung bean, rice, and wheat against
various fungal pathogens, i.e., Fusarium solani, Fusarium oxysporum, Pythium aphanidermatum,
Athelia rolfsii, Magnaporthe grisea, Rhizoctonia solani, Alternaria sp., Curvularia lunata, Bipolaris oryzae,
Cylindrocladium scoparium, Botrytis cinerea and Sarocladium oryzae [65–67], by disrupting the
pathogen cell membrane causing loss of membrane integrity [68,69].

4.2. Wound Response in Plant Defense Mechanism

Similar to the defense responses to the pathogen invasion, plants with abiotic (wound)
stresses activate Ca2+ influx, ROS burst, phosphorylation, electrical signaling, the expres-
sion of defense-related genes, synthesis of phytohormone, and cell wall reinforcement soon
after plant cells are injured [70–72]. The inoculation method in the study used a microinjec-
tor to wound the pericarp of the chili fruit simultaneously to deliver the inoculum. The fruit
inoculated with water also had the same wound-response genes up-regulated as occurred
in the ones inoculated with the MJ5 pathogen.

4.3. Speculative Roles of LYM2 in HR

HR is a rapid defense mechanism that requires gene receptors to first recognize a
pathogen and quickly causes localized cell death in the infected area [12,26]. Several studies
in Arabidopsis revealed that PRRs and NLRs worked together to trigger HR [26,73–76].
In the principle, PRRs act by recognizing the pathogen’s elicitor, and subsequently is
suppressed by the pathogen’s activities to avoid defense elicitation [77]. NLRs’ role is to
support PRRs after being suppressed [25,26]. Therefore, gene receptors appeared to play a
key role as an HR trigger in plant defenses.

Recently, CbAR9, a NLR gene, was reported to be responsible for the HR in the ‘PBC80’
against anthracnose (Co. truncatum) [78]. CbAR9 was found highly expressed at 12 h after
fruit inoculation [78]; however, the gene expression was not investigated earlier. LYM2
has been proven a PRR member [34,35] that showed the highest transcript level (4.53 fold)
at the earliest hour (6 h) after fruit inoculation in this study, and thus may have had an
important role to induce the HR in ‘PBC80’ chili as well. Based on both studies, CbAR9 and
LYM2 seemed to involve in the HR in ‘PBC80’ as PRR and NLR receptors.

5. Conclusions

A fine map of the QTL RA80f6_r1 region was achieved by incorporating 80 new
markers into the region. Single marker analysis identified two closely linked markers
to the anthracnose resistance, Silico09 and SNP309, that were physically 1.12 Mb apart
and housing six defense-related and three unknown genes. Five genes, including LYM2,
CQW23_09597, CLF, NFXL1, and PR-14 significantly up-regulated in the resistant chili
genotype. LYM2 was the most interesting gene with a receptor function and having the
earliest and highest response.
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