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Abstract: This study was conducted to investigate the antagonistic potential of endophytic and
rhizospheric bacterial isolates obtained from Citrullus colocynthis in suppressing Fusarium solani and
Pythium aphanidermatum and promoting the growth of cucumber. Molecular identification of bacterial
strains associated with C. colocynthis confirmed that these strains belong to the Achromobacter, Pantoea,
Pseudomonas, Rhizobium, Sphingobacterium, Bacillus, Sinorhizobium, Staphylococcus, Cupriavidus, and
Exiguobacterium genera. A dual culture assay showed that nine of the bacterial strains exhibited
antifungal activity, four of which were effective against both pathogens. Strains B27 (Pantoea dispersa)
and B28 (Exiguobacterium indicum) caused the highest percentage of inhibition towards F. solani
(48.5% and 48.1%, respectively). P. aphanidermatum growth was impeded by the B21 (Bacillus cereus,
44.7%) and B28 (Exiguobacterium indicum, 51.1%) strains. Scanning electron microscopy showed that
the strains caused abnormality in phytopathogens’ mycelia. All of the selected bacterial strains
showed good IAA production (>500 ppm). A paper towel experiment demonstrated that these
strains improved the seed germination, root/shoot growth, and vigor index of cucumber seedlings.
Our findings suggest that the bacterial strains from C. colocynthis are suppressive to F. solani and
P. aphanidermatum and can promote cucumber growth. This appears to be the first study to report the
efficacy of these bacterial strains from C. colocynthis against F. solani and P. aphanidermatum.

Keywords: antagonistic bacteria; biological control; damping-off; Fusarium solani; plant growth
promotion; Pythium aphanidermatum

1. Introduction

Cucumber is an important crop in Oman [1]. Soilborne plant diseases represent a
challenge to the cultivation and production of vegetable crops in Oman. In cucumber,
damping-off is a serious problem in the USA, Canada, China, the Middle East, and other
parts of the world [2–8]. In Oman, damping-off and decline diseases have been reported
to occur in 77% of greenhouses and farms in the Al-Batinah regions and cause up to 100%
losses in cucumbers and melons [9–11]. Soilborne diseases are also important in other
vegetable crops including tomatoes, radish, and beans [12–14].

Soilborne diseases of cucumber are caused by a number of fungal and oomycete
pathogens. Pythium species are among the most common soilborne pathogens affecting
cucumber, with P. aphanidermatum being the most widespread soilborne pathogen of cucum-
ber in Oman [11,15,16]. Fusarium solani and Rhizoctonia solani are also important soilborne
pathogens of cucumber [11,17].

Management strategies of damping-off can be divided into four major categories,
namely, development of resistant cultivars, chemical treatments, cultural practices, and
biological control. Most soilborne pathogens, especially Pythium, are non-host-specific
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and resistant cultivars are not known yet. Chemical control is used extensively for the
management of Pythium and other soilborne pathogens. However, systemic fungicides carry
greater environmental risk [18,19] and are subject to the development of resistance [15].

Biological control (or biocontrol) indicates the use of microbial antagonists to suppress
plant diseases. The biocontrol of P. aphanidermatum has been achieved using Pseudomonas
sp., Trichoderma spp. [20–22], Bacillus cereus [23], and B. subtilis [24,25] isolated from various
sources. Biocontrol agents are divided into two groups: endophytes, that live inside the
plant; and rhizospheric microorganisms, that live attached to or beside plant roots [26,27].

A number of studies have been conducted in Oman on the biocontrol of soilborne
pathogens. Pseudomonas aeruginosa showed antagonistic activities against Pythium and
Fusarium [22,28]. The tomato rhizosphere bacteria, Bacillus cereus and Exiguobacterium in-
dicum, and the endophytic fungus Aspergillus terreus isolated from the native plants Rhazya
stricta and Tephrosia apollinea [29], were found to be effective against P. aphanidermatum. A
novel fungus, Cladosporium omanense, and an endophytic bacterium, Enterobacter cloaca,
showed antagonistic activity against cucumber damping-off [30,31]. Several other biocon-
trol agents were reported in Oman during the last 3 years, isolated from desert plants,
medicinal plants, cultivated crops, and marine environments [32–36].

Citrullus colocynthis is a wild plant species belonging to the Citrullus genus [37]. It
is a medicinal plant with several benefits [38,39]. Wild plants are known to have more
resistance to diseases and tolerance to environmental stresses including drought, heat,
and salinity compared to cultivated crops [40,41]. Although several studies addressed the
medicinal values of C. colocynthis, no reports exist on the antagonistic activities of bacterial
strains from this crop against P. aphanidermatum or F. solani. This study was, therefore,
designed to investigate the antagonistic potential of endophytic and rhizospheric bacterial
strains obtained from Citrullus colocynthis in suppressing Pythium and Fusarium, and in
promoting cucumber growth. Knowledge in this field will help in proposing integrated
management strategies for Pythium damping-off diseases.

2. Materials and Methods
2.1. Sampling

Healthy plant samples of Citrullus colocynthis, at the mature fruit stage, were randomly
collected from Wadi Al Alaq (Al-Dakhiliya region) and Wadi Bani Khalid (Al-Sharqiya
region), Oman. The two samples were collected with sterile tools and transferred to the
laboratory in sterile plastic bags. The rhizospheric soil was collected from the roots by
brushing the soil into sterile Petri plates. The roots, stems, leaves, and fruits were separated
and the collected samples were stored in sterile containers at 4 ◦C. Bacterial isolation was
performed within 48 h of sampling.

2.2. Bacteria Isolation from Citrullus colocynthis Rhizosphere and Endosphere

The isolation of cultivable bacteria was carried out as described by Ferjani et al. [42].
One gram of rhizospheric soil from each sample was added to 9 mL of sterile physiological
saline solution (9 g/L NaCl), then the tube for each sample was agitated for 15 min at
200 rpm. After that, suspensions were diluted using physiological water in 10-fold series
and 0.1 mL of each dilution was spread on nutrient agar (NA) culture medium (Oxoid Ltd.,
Basingstoke, UK).

For isolation of endophytic bacteria, the surfaces of collected samples (root, stem, leaf,
and fruit) were sterilized with sodium hypochlorite (2% NaClO, 1 min), before being rinsed
three times in sterile distilled water (SDW). In the next step, samples were dried out on
sterile filter paper. The dried samples were either cut into small pieces with a sterile razor
blade and cultured on NA medium, or they were crushed using a stomacher (Atkinson,
NH, USA). The samples (10 g/sample) were placed in a sterile stomacher bag containing
sterile physiological saline solution (190 mL) and homogenized for two minutes. Further,
the suspensions were serially diluted and plated onto NA medium [43].
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All plates were kept in an incubator for 3–7 days at 28 ± 2 ◦C. Different colonies were
selected and purification was carried out on NA medium via sub-culturing. The bacterial
strains were sorted based on phenotypic characteristics and Gram staining. Moreover,
pure strains were maintained in nutrient broth (NB) (Sigma Aldrich, St. Louis, MO, USA)
containing 25% glycerol at −80 ◦C for further study.

2.3. DNA Extraction, PCR Amplification, and Sequence Analysis of the Bacterial Strains

Genomic DNA of the bacterial strains was extracted from these strains using the
foodproof® StarPrep Two Kit (Windsor, CA, USA). The qualitative and quantitative anal-
ysis of the extracted DNA was conducted using a NanoDropTM 2000 spectrophotome-
ter (Thermo Fisher Scientific, MA, USA). A polymerase chain reaction (PCR) was used
on the extracted DNA of each bacterial strain to amplify the 16s rDNA coding region.
Two universal bacterial primers, 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R
(5′-TACGGYTACCTTGTTACGACTT-3′), were used for the amplification, following the
described thermocycler conditions given by dos Santos, et al. [44]. The PCR reactions
consisted of genomic DNA, primers, and PuRe Taq Ready-To-Go™ PCR beads (Cytiva,
Marlborough, MA, USA). The PCR products were purified and sequenced by Macrogen
Inc. (Seoul, Republic of Korea). The obtained sequences from this study were compared
with reference sequences of closely related species in the National Center for Biotechnology
Information (NCBI) database. GenBank accession numbers were allocated for the 16S
ribosomal DNA sequences of the strains.

2.4. Screening for Antagonistic Activity
2.4.1. In Vitro Antifungal Assays

All rhizospheric and endophytic bacterial strains were inspected for their antifungal
activity against the cucumber fungal pathogens Fusarium solani and Pythium aphanidermatum
through a dual culture assay, as described by Anith, et al. [45]. The used fungal pathogens,
F. solani and P. aphanidermatum, were part of a collection of plant pathogens maintained
in the plant pathology laboratory at the Department of Plant Sciences (Sultan Qaboos
University, Muscat, Oman). They were cultured on potato dextrose agar (PDA) culture
medium (Sigma Aldrich, MO, USA) and then a mycelial disc (5 mm diameter) was excised
from the growing edge of a fungal pathogen colony (5 days old) using a sterile cork borer.
The mycelial disc was placed in the middle of PDA medium inoculated with a 2-day-old
bacterial strain. PDA plates inoculated with the fungal pathogen alone were considered
as the control. After that, all cultures were maintained at 28 ± 2 ◦C for 3–7 days and the
fungal growth diameter was measured from the edge of the fungal disc up to the active
growing edges of the fungus compared with the control. The inhibitory impact of the
bacterial strains was estimated as the inhibition percentage [45].

2.4.2. Scanning Electron Microscope (SEM)

PDA plates from the dual culture assays which showed antifungal activity of the
bacterial strains were chosen for electron microscopy study. The hyphal morphology
of fungal pathogens (F. solani and P. aphanidermatum) on the edge of bacterial colonies
was observed under SEM (JEOL JSM-5600, Tokyo, Japan). The hyphal samples of fungal
pathogens were cut out and fixed in glutaraldehyde (2.5% C5H8O2, 4 ◦C, 2 h) and then
washed in phosphate buffer saline (4 times). Afterwards, the samples were desiccated in a
graded ethanol series (25%, 75%, 95%, and 100%) for 10 min each. Finally, they were air
dried, coated with gold, and scanned using an SEM to record abnormalities in the fungal
hyphae [46].

2.5. Determination of Growth-Promoting Potential
2.5.1. Indole Acetic Acid (IAA) Quantification

The antagonistic bacterial strains were evaluated for their in vitro putative growth-
promoting attribute, IAA production. The method, as adopted earlier [47], was applied to
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determine the IAA quantity. Strains were cultured for 72 h on NB medium supplied with
1 mM of L-tryptophan at 28 ± 2 ◦C. Then, the bacterial cultures were centrifuged and the
supernatant was analyzed directly using high-performance liquid chromatography (HPLC)
(SIL-30A, Shimadzu, Tokyo, Japan). The chromatograms from the HPLC were produced
by injecting 20 µL of each filtered sample into the C18 HPLC column (5 µm particle size,
250 mm column length, 4.6 mm column internal diameter; Hewlett Packard Enterprise,
San Jose, CA, USA). Methanol and water were used as the mobile phase at the specific
ratio (80:20 v/v]), and the pH was adjusted to 3.8 using sulfuric acid. The mobile phase
flow rate was 1 mL/min and the spectra scanning of the compound was performed using a
photodiode array detector (Prominence SPD-M20A, Shimadzu, Tokyo, Japan) at 278 nm.

2.5.2. Seed Germination Test via Paper Towel Method

Nine (B1, B2, B20, B21, B23, B24, B27, B28, and B29) of the thirty bacterial strains with
antagonistic activity and IAA-producing ability were evaluated for growth promotion of cu-
cumber seedlings using the paper towel method in accordance with the International Seed
Testing Association [48]. Cucumber seeds were surface sterilized with sodium hypochlorite
(1% NaClO, 5 min) and rinsed three times with autoclaved distilled water. The bacterial
strains were grown in NB medium with shaking (200 rpm) at 28 ◦C for 48 h. Then, the bac-
terial suspension was prepared and adjusted to 106–107 CFU/mL spectrophotometrically
at 600 nm wavelength (Thermo Fisher Scientific, Waltham, MA, USA). The sterilized seeds
were mixed with a bacterial suspension in a 50 mL flask at room temperature (140 rpm,
3 h). Sterile sieves were used to separate the seeds from the bacterial suspension. After
bacterization, 25 seeds were placed in each germination paper and the paper was rolled
and placed in a beaker with a suitable amount of sterile distilled water and maintained in a
growth chamber at 28 ◦C for 10 days (Figure 1). Seeds treated only with water served as
the control. Eventually, germinated seeds, and root and shoot lengths were measured to
calculate the vigor index using the following formula: Vigor index = (mean shoot length +
mean root length) × %Germination [49].
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Figure 1. Paper towel seed germination.

2.6. Statistical Analysis

All the experiments were conducted in a completely randomized design with three
replications in each treatment and repeated three times. All data were subjected to one-
way analysis of variance (ANOVA) and means were compared by the least significant
difference test (p < 0.05) using the R software (version 4.0.3). The data are presented as
means ± standard deviation (SD) and displayed in graphical form.
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3. Results
3.1. Isolation of Endophytic and Rhizospheric Bacteria

Thirty bacterial strains were isolated from the C. colocynthis plants. Eleven strains came
from the rhizosphere (B1–B11), while nineteen were endophytes from the roots (B12–B18),
stems (B19–B22), leaves (B23–B26), and fruits (B27–B30). Some strains were found in only
one location, while other strains were found in both locations (Wadi Al Alaq and Wadi Bani
Khalid) (Table 1).

Table 1. Identification of rhizospheric and endophytic bacteria associated with Citrullus colocynthis.

Bacterial
Code

Source of
Isolation Identified Species Max. Identity (%) GenBank

Accession No.
Place of

Collection

B1 Soil Achromobacter xylosoxidans 99.79% JQ724537 Wadi Al Alaq
B2 Soil Pantoea dispersa 100% MN725743 Wadi Al Alaq
B3 Soil Pseudomonas lini 99.75% MT102313 Wadi Al Alaq
B4 Soil Pseudomonas plecoglossicida 99.71% MF574326 Wadi Al Alaq
B5 Soil Pseudomonas aeruginosa 100% JQ659890 Wadi Al Alaq
B6 Soil Pseudomonas fluorescens 100% HM439968 Wadi Al Alaq
B7 Soil Rhizobium pusense 100% MK734334 Wadi Al Alaq
B8 Soil Sphingobacterium spiritivorum 100% KR349259 Wadi Bani Khalid
B9 Soil Pseudomonas plecoglossicida 100% MF574326 Wadi Bani Khalid

B10 Soil Achromobacter xylosoxidans 99.82% MK537386 Wadi Bani Khalid
B11 Soil Pseudomonas putida 100% KU672371 Wadi Bani Khalid
B12 Root Bacillus aryabhattai 100% MT078622 Wadi Al Alaq
B13 Root Sinorhizobium meliloti 99.85% MT197365 Wadi Al Alaq
B14 Root Bacillus anthracis 98.89% KF601916 Wadi Al Alaq
B15 Root Bacillus anthracis 99.66% KF601916 Wadi Bani Khalid
B16 Root Unknown Wadi Bani Khalid
B17 Root Achromobacter mucicolens 99.48% MT534143 Wadi Bani Khalid
B18 Root Achromobacter xylosoxidans 98.79% MN889379 Wadi Bani Khalid
B19 Stem Achromobacter xylosoxidans 99.86% MK332530 Wadi Al Alaq
B20 Stem Unknown Wadi Al Alaq
B21 Stem Bacillus cereus 100% MK648340 Wadi Bani Khalid
B22 Stem Pseudomonas plecoglossicida 99.86% MF574326 Wadi Bani Khalid
B23 Leaf Pseudomonas stutzeri 97.34% KY606628 Wadi Al Alaq
B24 Leaf Staphylococcus gallinarum 99.93% MH542297 Wadi Al Alaq
B25 Leaf Cupriavidus gilardii 99.50% AY860225 Wadi Bani Khalid
B26 Leaf Achromobacter xylosoxidans 100% MK537386 Wadi Bani Khalid
B27 Fruit Pantoea dispersa 100% MN725743 Wadi Al Alaq
B28 Fruit Exiguobacterium indicum 99.86% KT986092 Wadi Al Alaq
B29 Fruit Unknown Wadi Bani Khalid
B30 Fruit Achromobacter xylosoxidans 98% HQ288926 Wadi Bani Khalid

3.2. Molecular Identification

The obtained nucleotide sequences were deposited in GenBank under defined acces-
sion numbers (Table 1). The identity indices of the bacterial strains with their relevant strain
on the NCBI database are presented in Table 1. There was up to nearly 100% resemblance
detected amongst the strains and sequences in the database (except B16, B20, and B29).
Identification of the bacterial strains showed that they belonged to different genera and
species. These strains belonged to 10 bacterial genera, namely, Achromobacter, Pantoea, Pseu-
domonas, Rhizobium, Sphingobacterium, Bacillus, Sinorhizobium, Staphylococcus, Cupriavidus,
and Exiguobacterium (Table 1). Pseudomonas, Achromobacter, and Bacillus were the most abun-
dant genera. The most abundant species were Achromobacter xylosoxidans and Pseudomonas
plecoglossicida. The bacterial species Achromobacter xylosoxidans, Pseudomonas plecoglossicida,
and Pantoea dispersa were detected in the rhizosphere as well as the endosphere of Citrullus
colocynthis (Table 1).
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3.3. Antagonistic Activity against F. solani and P. aphanidermatum

The bacterial strains were examined for their ability to retard the growth of F. solani
and P. aphanidermatum in vitro using the dual culture technique (Figure 2). Out of the 30
bacterial strains, only 9 rhizospheric and endophytic bacterial strains caused inhibition
against F. solani growth, while 4 strains inhibited P. aphanidermatum growth. Among these
strains, only four of the strains demonstrated an inhibitory effect toward the growth of
both fungal pathogens. SEM observation of F. solani and P. aphanidermatum hyphae at the
inhibition zone showed negative effects of the selected bacterial strains on the morphology
of the pathogens. The bacterial strains caused shrinking and deformation of their hyphae,
indicative of a loss in turgidity and cellular content (Figure 3).

Pathogens 2023, 12, x FOR PEER REVIEW 6 of 15 
 

 

B29). Identification of the bacterial strains showed that they belonged to different genera 
and species. These strains belonged to 10 bacterial genera, namely, Achromobacter, Pantoea, 
Pseudomonas, Rhizobium, Sphingobacterium, Bacillus, Sinorhizobium, Staphylococcus, Cupriavi-
dus, and Exiguobacterium (Table 1). Pseudomonas, Achromobacter, and Bacillus were the most 
abundant genera. The most abundant species were Achromobacter xylosoxidans and Pseu-
domonas plecoglossicida. The bacterial species Achromobacter xylosoxidans, Pseudomonas pleco-
glossicida, and Pantoea dispersa were detected in the rhizosphere as well as the endosphere 
of Citrullus colocynthis (Table 1). 

3.3. Antagonistic Activity against F. solani and P. aphanidermatum 
The bacterial strains were examined for their ability to retard the growth of F. solani 

and P. aphanidermatum in vitro using the dual culture technique (Figure 2). Out of the 30 
bacterial strains, only 9 rhizospheric and endophytic bacterial strains caused inhibition 
against F. solani growth, while 4 strains inhibited P. aphanidermatum growth. Among these 
strains, only four of the strains demonstrated an inhibitory effect toward the growth of 
both fungal pathogens. SEM observation of F. solani and P. aphanidermatum hyphae at the 
inhibition zone showed negative effects of the selected bacterial strains on the morphology 
of the pathogens. The bacterial strains caused shrinking and deformation of their hyphae, 
indicative of a loss in turgidity and cellular content (Figure 3). 

 
Figure 2. Dual culture assay showing the antifungal activity of selected bacterial strains against 
Fusarium solani (FO) and Pythium aphanidermatum (PA). (B) refers to the different bacterial strains. 
Figure 2. Dual culture assay showing the antifungal activity of selected bacterial strains against
Fusarium solani (FO) and Pythium aphanidermatum (PA). (B) refers to the different bacterial strains.
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Figure 3. Antagonistic activity of selected bacterial strains on Fusarium solani (FO) and Pythium
aphanidermatum (PA) mycelial morphology depicted using a scanning electron microscope (SEM).
Normal patterns of hyphae presented in the control (FS and PA). Distorted mycelial structure,
wrinkled or shrunken patterns presented in FO + B1, FO + B2, PA + B2, PA + B21, PA + B27, and
PA + B28.
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The nine antagonistic strains belonged to Achromobacter xylosoxidans, Pantoea dispersa,
Bacillus cereus, Pseudomonas stutzeri, Staphylococcus gallinarum, and Exiguobacterium indicum.
These strains hindered the growth of F. solani and P. aphanidermatum with different percent-
ages of inhibition. The inhibition percentage of F. solani and P. aphanidermatum growth by
the active strains was in the range of 16.9–48.5% and 40.5–51.2%, respectively. Strains B27
(48.5%) and B28 (48.1%) caused the highest percentage of inhibition toward F. solani, while
strains B21 (44.7%) and B28 (51.1%) caused the highest percentage of inhibition toward
P. aphanidermatum (Figure 4). Strains B2, B21, B27, and B28 were inhibitory toward both
pathogens, and the inhibition percentage caused by these strains ranged from 41.1 to 51.2%.
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3.4. Growth-Promoting Assays
3.4.1. Determination of IAA Production

The HPLC method was applied to determine the IAA generated by the selected
bacterial strains. Production of IAA (ppm) was detected in all of the selected bacterial
strains, comprising B1 (749.1), B2 (660.3), B20 (714.4), B21 (512.9), B23 (699.6), B24 (706.7),
B27 (568.7), B28 (581.2), and B29 (732.9). Strain B1 produced the highest amount of IAA,
followed by B29. The lowest amount of IAA was produced by the B21 strain.

3.4.2. Effect of Bacterial Strains on Plant Growth Parameters

All of the tested strains promoted the growth of cucumber, as evidenced by the
enhanced seedling vigor compared to the control. The seeds’ germination percentage
varied among all strains, ranging from 76.7 to 90.7%. The bacterial strains B24 and B20 were
the most active in promoting germination (90.7%) and root growth (22.8%), respectively.
In addition, B27 and B24 resulted in the highest shoot length (10.4%) and seedling vigor
(63.4%), respectively (Figure 5).
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4. Discussion

Pythium aphanidermatum and Fusarium solani are major soilborne pathogens of veg-
etable crops, especially cucumber, in Oman and different parts of the world, causing up
to 100% mortality [5,11,16,50–53]. Although different methods are used for the control of
Pythium and Fusarium, biological control using antagonistic microorganisms has received
more attention during recent years. Pseudomonas fluorescens [54–56], P. aeruginosa [22,28,57],
P. resinovorans [32], Lysobacter sp. [58], Bacillus cereus [23,59], B. subtilis [25,60–62], and Serra-
tia marcescens [8,34] have shown antagonistic potential against several soilborne pathogens.

In this study the endophytic bacterial strain Exiguobacterium indicum (B28) inhibited
F. solani and Pythium aphanidermatum growth by up to 48.1% and 51.1%, respectively,
in a dual culture assay. Exiguobacterium species have been used industrially in many
applications, such as enzyme production and bioremediation. There are some reports that
have indicated the ability of Exiguobacterium sp. in promoting plant growth [23,63]. It has
been reported that E. acetylicum inhibited the growth of Rhizoctonia solani, Sclerotium rolfsii,
Pythium, and Fusarium solani [64]. In a previous study, Al-Hussini, et al. [65] reported that
E. indicum strain D1/8 inhibited the growth of P. aphanidermatum in vitro and reduced the
incidence of damping-off of tomato by 13%. The strain of E. indicum (B28) isolated in this
study was very effective in inhibiting F. solani and P. aphanidermatum growth.
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The bacterial strain Achromobacter xylosoxidans (B1) inhibited F. solani by 47.1%. A. xy-
losoxidans has been reported as a biocontrol agent against F. solani associated with melon
wilt [66]. A. xylosoxidans has also been found to increase yields and alleviate drought stress
in some crops [67,68]. Another study showed that A. xylosoxidans can be used in the control
of root-knot nematodes and improve the growth of eggplants [69].

Pantoea dispersa (B2) showed high inhibitory activity (~47%) against F. solani and
P. aphanidermatum. It has been reported as a biocontrol agent of sweet potato black rot [70].
P. dispersa also proved efficacious in managing Fusarium wilt of pigeon pea [71]. In
addition, P. dispersa has also been found to stimulate the growth of different crops [72–74].
However, no previous reports are available on the use of P. dispersa against F. solani or
P. aphanidermatum.

The mycelial growth inhibition of F. solani and P. aphanidermatum in the dual culture
assay plate in this study might be due to diffusible antimicrobial compounds released by
the antagonistic bacteria into the agar medium [29]. The differences in the antagonistic
potential among the bacterial strains against F. solani and P. aphanidermatum might be
related to the type of antimicrobial compounds produced by them and the sensitivity of
the pathogens.

The bacterial strains caused various morphological abnormalities to F. solani and
P. aphanidermatum hyphae, which could be related to the secretion of antifungal metabo-
lites that damage the mycelial cell wall [29,75–77]. Hydrolytic enzymes such as cellulase,
chitinase, glucanase, and protease are examples of antifungal metabolites that can cause
deformations in fungal mycelium [78–82]. Trichoderma [78,79,83], Aspergillus [29], and
Talaromyces [13,84] have been reported to produce cellulase enzymes as one of their bio-
control mechanisms. It is evident from this study that the antagonistic bacterial strains
induced shrinkage and deformation of the hyphae of the test pathogens. These findings
are similar to those reported by Al-Daghari, et al. [36], who recorded shrinkage of the
hyphae of Monosporascus cannonballus due to the antagonistic effects of Pseudomonas spp.
The shrinkage of hyphae indicates cell membrane damage and leakage of cytoplasmic
contents. Alterations in the intracellular osmotic pressure often result in hyphal distortion.

The bacterial strains improved the growth of cucumber seedlings. The bacterial strain
Achromobacter xylosoxidans (B1) resulted in the improvement of cucumber growth. Sev-
eral endophytes and rhizosphere bacteria have been characterized as growth-promoting
bacteria since they stimulate root development, improve water and mineral uptake, and
produce IAA. These include Bradyrhizobium, Alcaligenes, Azoarcus, Acetobacter, Pseudomonas,
Enterobacter, and Xanthomonas [85–93]. Achromobacter xylosoxidans was reported as a growth-
promoting bacterium in rice plants [67,94]. The growth-promoting activity of this bac-
terium could be explained by the high production of IAA, high nitrogenase activity, and
P-solubilization. In our study, the high IAA production by this bacterium could be the
reason for its high efficacy in promoting cucumber growth. Our study also showed that
the antagonistic activity and the growth-promoting activity of the bacteria were different,
which may indicate that there is no relationship between the two parameters.

5. Conclusions

This study revealed that bacterial strains isolated from C. colocynthis have the potential,
as biocontrol agents, to prevent damage caused by F. solani, P. aphanidermatum, and other
phytopathogens to vegetable crops, and enhance plant growth. The strains Pantoea dispersa
and Exiguobacterium indicum showed the most antifungal activity against F. solani. The
mycelial growth of P. aphanidermatum was suppressed significantly by Bacillus cereus and
Exiguobacterium indicum. This is the first study to report the efficacy of these bacterial strains
from C. colocynthis against F. solani and P. aphanidermatum. Future studies will be required
to examine the efficiency of these strains under field conditions, and to prepare their stable
bioformulations.
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