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Abstract: This study detected two potential pathogens, Vibro parahaemolyticus, which causes acute
hepatopancreatic necrosis disease (AHPND), and white spot syndrome virus (WSSV), in fishing bait
in South Korea. However, their infectious nature was not confirmed, possibly due to the degradation
caused by freezing/thawing or prolonged storage under frozen conditions. While infectivity was
not confirmed in this study, there is still a significant risk of exposure to these aquatic products.
Furthermore, fishing bait and feed should be handled with caution as they are directly exposed
to water, increasing the risk of disease transmission. In Australia, cases of WSSV infection caused
by imported shrimp intended for human consumption have occurred, highlighting the need for
preventive measures. While freezing/thawing is a method for inactivating pathogens, there are still
regulatory and realistic issues to be addressed.

Keywords: fishing bait; WSSV; AHPND; diseases of prawns; multiple infection

1. Introduction

The global seafood trade is on the rise, and with the increasing distribution of seafood,
the importance of quarantine inspection has also emerged to prevent the spread of diseases.
In particular, since the emergence of COVID-19, quarantine inspections are considered
almost the only measure for managing infectious diseases. Furthermore, there has been an
increasing trend in which each country’s government agencies related to seafood inspec-
tion also notify the WTO/SPS of emergency inspection measures for emerging infectious
diseases [1,2].

The risk and actual cases of disease transmission caused by seafood products such
as fishing bait (regardless of whether quarantine measures are implemented or not) have
been mentioned since ancient times [3]. This issue has remained a persistent concern in
the field of academia. Therefore, for seafood products that are not subject to quarantine,
the risk of disease transmission can be considerably higher. Recently, there have been
numerous occurrences of disease transmission caused by fishing bait or feed [4–7]. The
aquatic organism product used as fishing bait or feed is not subject to quarantine inspection
in South Korea, which increases the risk of introducing various pathogens. In addition,
since infected individuals are immediately exposed to aquatic environments, the risk of
disease transmission is very high. Due to these risks, countries have developed various
management strategies for seafood used as bait or feed [2,8,9]. In particular, although a
variety of species are cultured for use as fishing bait, shrimp and crab are major bait items
in South Korea [10].

Prawns, which are primarily used as a food source for human consumption in addition
to fishing bait, haave steadily increased in consumption since the early 2000s [11]. However,
it is estimated that several tons of prawns die each year due to various diseases [12].
Pathogens that cause significant damage to shrimp include white spot syndrome virus
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(WSSV), infectious hypodermal and haematopoietic necrosis virus (IHHNV), and Taura
syndrome virus (TSV), among others, and relatively recently reported diseases such as
covert mortality nodavirus (CMNV), Decapod iridescent virus 1 (DIV1), and Laem-Singh
virus (LSNV) also exist in addition to traditional pathogens [12–15]. In particular, there
have been recent cases of detection of WSSV and IHHNV in fishing bait [16] and examples
of significant damage caused by pathogens in natural aquatic environments. Therefore,
in this study, surveillance was conducted on diseases that could be transmitted to shrimp
through aquatic organism products used as fishing bait to investigate diseases that could
be hazardous factors for prawns.

The importance of seafood as a major source of protein and economic value cannot
be overstated. However, the increasing demand for seafood has led to various challenges,
including the spread of infectious diseases among aquatic organisms, which can have
severe consequences on the environment, the economy, and human health. In this regard,
the transmission of diseases caused by fishing bait and feed is a growing concern that needs
to be addressed. Despite the risks associated with the use of aquatic organism products as
fishing bait, there is a lack of surveillance and management strategies for diseases that can
be transmitted to seafood through fishing bait. Therefore, this study aims to investigate
and identify potential hazardous diseases that could be transmitted to prawns through
aquatic organism products used as fishing bait. The results of this study can help inform
the development of management plans and surveillance programs to prevent the spread
of diseases caused by fishing bait and feed, thus ensuring sustainable seafood production
and consumption.

2. Materials and Methods
2.1. Samples Preparation
2.1.1. Sampling

In this study, fishing bait (crustaceans and mollusks), whose origins were verified by
the seller, was purchased and utilized for analysis. Every effort was made to secure samples
from diverse regions within South Korea (Table 1). To determine the species of the samples,
16S rRNA sequencing was performed according to the methodology of [17], which involves
molecular biological identification and identification of the correct scientific name.

Table 1. Sampling locations and origins of fishing bait analyzed in this study.

No. Samples Sampling Locations Origins

1

Metapenaeus joyneri,
Portunus

trituberculatus,
Uroteuthis duvaucelii

Jeonnam China

2 Eriocheir sinensis Jeonnam China

3

Perinereis aibuhitensis,
Marphysa sanguinea,
Metapenaeus joyneri,
Euphausia superba

Jeonnam China, Antarctic
Ocean

4

Perinereis aibuhitensis,
Loliolus beka, Todarodes

pacificus,
Amphioctopus fangsiao,

Palaemon orientis,
Euphausia superba,

Metapenaeus joyneri,
Penaeus vannamei

Chungnam Vietnam, Antarctic
Ocean

5 Loliolus beka Jeonnam China

6 Artemia franciscana Internet Market China
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Table 1. Cont.

No. Samples Sampling Locations Origins

7 Perinereis aibuhitensis,
Atrina pectinata Jeonbuk China

8 Artemia franciscana Chungnam United States

9 Todarodes pacificus Gyeongnam China

10
Penaeus vannamei,
Euphausia superba,

Perinereis aibuhitensis
Jeju China, Antarctic

Ocean

11
Marphysa sanguinea,
Penaeus vannamei,

Metapenaeus joyneri
Gyeonggi China

12 Eriocheir sinensis Jeonbuk China

13 Perinereis aibuhitensis,
Marphysa sanguinea Jeonnam China

14

Perinereis aibuhitensis,
Marphysa sanguinea,

Dosidicus gigas,
Euphausia superba

Kangwon China, Argentina,
Antarctic Ocean

15 Metapenaeus joyneri,
Perinereis aibuhitensis Gyeongbuk China

2.1.2. Preparation of Tissues for Analysis

When feasible, dissected samples including hepatopancreas, gill, muscle, pleopods,
and subcuticular epithelial tissue were extracted for analysis. In cases of severe degradation,
the entire cephalothorax was homogenized and utilized for analysis. In instances where
the size of the prawn was small, the entire sample was used for analysis.

2.2. Identification of Hazardous Factors of Imported Prawns

The present study involved the identification and classification of potential pathogens
that may enter South Korea through the import of designated aquatic organisms for quar-
antine purposes. The identification of hazards was based on ¶ the scientific literature
and statistical data, · case studies from other countries that have experienced risks as-
sociated with import routes and quarantine-designated items, ¸ expert opinions from
fisheries-related and import risk analysis fields, and ¹ aquatic organism disease pathogens
designated by the World Organization for Animal Health (WOAH).

Risk factors were determined using the following criteria: ¶ the relevance to quarantine-
designated items, · the distribution of susceptible species in South Korea and their potential
for causing severe diseases, ¸ the presence of the pathogen in exporting countries, and
¹ the management of the disease by the competent authorities of the exporting country (re-
porting of disease outbreaks, operation of control and eradication systems). Furthermore, if
the pathogen was present in South Korea, hazard factors were selected based on ¶ whether
the pathogen in the exporting country was highly pathogenic, and · whether there are
areas in South Korea where the pathogen does not occur or occurs at low levels.

Finally, hazard identification was conducted to determine the potential for diseases
of prawns to be introduced as a pathogen that negatively affects domestic aquatic life
or aquatic ecosystems and the environment due to the import of specific designated
quarantine items.
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2.3. Molecular Biological Analysis
2.3.1. DNA Extraction

Genomic DNA from the tissues from target organs was extracted using AccuPrep®

Genomic DNA Extraction Kit (Bioneer, Daejeon, Republic of Korea) following the manu-
facturer’s guidelines. However, in the case of Artemia franciscana, samples were pooled in
0.1 g units due to their small size and used for analysis.

2.3.2. Conventional PCR for Pathogen Detection and Real-Time PCR for Viral Copies

WOAH’s Aquatic Manual or internationally recognized test methods were used for
primers used in the experiment (Table S1). A verified synthetic plasmid was used as
a positive control, and the target band was confirmed through electrophoresis on 1.5%
agarose gel.

For quantitative analysis, a positive control plasmid was constructed, diluted 10-fold,
and then a standard curve was prepared using qPCR. The quantitative analysis was
followed by protocols of [18].

2.3.3. Definitive Diagnosis

When the target band was confirmed as a result of PCR analysis, a definitive diagnosis
was made through Sanger sequence analysis. Before sequence analysis, amplicon was
extracted using a QIAquick® gel extraction kit (Qiagen, Hilden, Germany), following
the manufacturer’s protocol. The purified PCR products were cloned into pGEM® T-
easy vector (Promega, Madison, WI, USA) and transformed into Escherichia coli JM109
competent cells according to the standard protocol. After full propagation, plasmid DNA
was extracted using a Hybrid-Q™ plasmid rapidprep kit (GeneAll®, Seoul, Republic of
Korea) and sequenced using the universal M13 primer set. Nucleotide sequence matching
was performed for the identification of pathogen using the basic local alignment search tool
(BLAST) algorithm of the National Centre for Biotechnology Information (https://blast.
ncbi.nlm.nih.gov/Blast.cgi (accessed on 31 December 2022)).

2.4. Histopathological Analysis

Histopathological analysis was performed on the pathogen detected samples. Each
sample was fixed in 10% neutral-buffered formalin for 24 h. After fixation, all samples
were collected and refixed in the same solution (10% neutral-buffered formalin) for 24 h
before being gradually dehydrated with the ethanol series (70–100%). The samples were
further cleared with xylene, then embedded in paraffin and sectioned into slices of 4 µm
thickness. Finally, the sections were stained with hamatoxylin-eosin (H&E) following
general protocols. Stained samples were examined under an optical microscope (Leica
DM2500, Wetzlar, Germany).

2.5. Transmission Electron Microscopy (TEM) Analysis

For the ultramicroscopic observation of the pathogens in samples, 1 mm3 of the frozen
samples were fixed in 2.5% glutaraldehyde, refixed in 2% osmium tetroxide, embedded in
epoxy (EMS Embed 812, Electron Microscopy Sciences, Hatfield, Montgomery County, PA,
USA), dehydrated through a graded acetone series, sectioned to 80 nm, and stained with
uranyl acetate and lead citrate. The sections were observed using a transmission electron
microscope (Thermo Scientific Talos L120C, Waltham, Middlesex County, MA, USA).

2.6. Infectiousness Assessment

To confirm the activity and pathogenicity of the pathogen, an experimental infection
was performed using the detected sample. Among pathogens identified as hazardous
factors, pathogens that can be cultured were preferentially cultured. In the case of viral
pathogens without a separate cell line, mortality was observed for two weeks by directly
feeding the detected tissue.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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3. Results
3.1. Sample Acquisition Status

In order to analyze the pathogens identified as hazardous factors for prawns, a total
of 958 samples were obtained, comprising 574 samples of seven species of crustaceans,
384 samples of eight species of mollusks, and 24 pooled samples of Artemia franciscana (as
presented in Table 2).

Table 2. The species and quantity of fishing bait investigated for pathogens confirmed as hazardous
factors in this study.

Phylum Species and Quantity

Crustacean

11 of Portunus trituberculatus
159 of Metapenaeus joyneri

60 of Eriocheir sinensis
210 of Euphausia superba
30 of Palaemon orientis

104 of Penaeus vannamei
24 pooled samples * of Artemia franciscana

Semi-total 574 samples of 7 species + 24 pooled samples *

Mollusks

11 of Uroteuthis duvaucelii
20 of Loliolus beka

199 of Perinereis aibuhitensis
57 of Marphysa sanguinea
68 of Todarodes pacificus

10 of Amphioctopus fangsiao
1 of Atrina pectinata
18 of Dosidicus gigas

Semi-total 384 animals of 8 species

Total 1556 samples of 37 species (+ 24 pooled samples *)
* In the case of A. franciscana, since the sample size was tiny, a pooled sample of 0.1 g per section was prepared.

3.2. Pathogen Detection
3.2.1. Identification of Hazardous Factors

A hazard identification was conducted to evaluate diseases that have been associated
with outbreaks in prawns. The diseases identified as potential hazards were subsequently
analyzed to identify the specific pathogens involved and establish a disease surveillance
program. In this study, pathogen screening was conducted for a total of twelve hazardous
factors including CMNV, DIV1, EHP, IHHNV, IMNV, LSNV, NHP, TSV, AHPND, WSSV,
WTD, and YHV1. The diseases that were subject to surveillance are detailed in Table S2.

3.2.2. Prevalence of VpAHPND and WSSV

WSSV was detected in Metapenaeus joyneri and Penaeus vannamei, and the VpAHPND
gene was also detected in some P. vannamei in which WSSV was detected. The prevalence
of WSSV and VpAHPND is described in Table 3. Pathogens other than VpAHPND and WSSV
were not detected.

Table 3. The detailed sampling regions, species, origins, and disease prevalence of samples with
positive molecular biological test results for pathogens confirmed as hazardous factors in this study.

No. Detailed Region Species Origin Prevalence

1 Jeonnam Mokpo M. joyneri China 20% (6/30) of WSSV
2 Jeonnam Jindo P. vannamei Vietnam 100% (24/24) of WSSV

3 Jeju Hamduk P. vannamei Vietnam 100% (25/25) of WSSV and 28%
(7/25) of VpAHPND

4 Incheon Ganghwa M. joyneri Vietnam 26.7% (8/30) of WSSV
5 Incheon Ganghwa P. vannamei Vietnam 100% (25/25) of WSSV
6 Gyeongbuk Ulgin M. joyneri China 30% (9/30) of WSSV
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3.2.3. Viral Copies of WSSV

The viral genome copies of WSSV are distributed on average at 2.66 × 104 copies/g
(2.67 × 10 to 5.06 × 105 copies/g) in the muscle and 5.84 × 105 copies/g (3.77 × 10 to
1.04 × 107 copies/g) in the midgut.

3.3. Infectiousness Assessment of Detected Pathogens
3.3.1. Infectiousness Assessment of VpAHPND

An attempt was made to isolate the pathogen from the tissue in which VpAHPND was
detected, but it was presumed that the bacteria were not cultured and thus not a living
pathogen, so an infectiousness assessment was not performed.

3.3.2. Infectiousness Assessment of WSSV

There was no developed cell line in the case of the detected WSSV yet, so oral infection
was attempted like in [19–21], but the infectiousness was not confirmed as in the [22]
study results.

The experiment was conducted on seven segments, including a negative control for
all different species in the six regions where each prawn was detected (to trace the origin of
infectiousness). Except for one mortality in each of the 2nd and 5th segments on the 13th
day of the experiment, no other mortalities occurred, and WSSV was not detected in any of
the specimens after the experiment concluded. Twenty-five whiteleg shrimp (P. vannamei)
were stocked per segment in a 300 L rectangular tank. The temperature was maintained
at 24 ± 1 ◦C, dissolved oxygen at 8.0 ± 0.3 mg/L, salinity at 30 ± 0.4, and pH at 7.7 ± 0.1
throughout the experiment, which lasted for 14 days.

3.4. Histopathology

Following histopathological analysis, evidence of necrosis indicative of inflammation
was observed surrounding the sub-cuticular epithelial cells (Figure 1). Furthermore, trans-
mission electron microscopy (TEM) analysis confirmed the presence of WSSV-like particles
in the sub-cuticular epithelial cells (Figure 2). In contrast, no specific bacterial pathogen
was observed in the VpAHPND-infected sample.
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4. Discussion

In this study, among 12 identified pathogens posing a threat to prawns, VpAHPND and
WSSV were detected; however, the infectious nature of these pathogens was not confirmed.
The failure to confirm infectivity is presumed to be due to the degradation of viral genes or
envelope proteins caused by repeated freezing/thawing or prolonged storage under frozen
conditions. Among the hazardous factors analyzed in this study, it has been reported that
VpAHPND failed to cause infection after infected shrimp were frozen and re-infected [23]. In
contrast, IHHNV maintained its infectivity even after repeated freezing/thawing cycles of
infected tissues [24–26], and for WSSV, multiple studies have shown that it retains infectivity
under freezing conditions ranging from −20 to −70 ◦C [27–33]. However, no infectivity
was detected in the WSSV detected in this study. To demonstrate this, histopathological
and ultramicroscopic analyses were performed, revealing severe tissue necrosis and the
inability to determine the shape of VpAHPND. Moreover, the particles suspected to be WSSV
were not intact.

In this study, some cases of co-infection involving VpAHPND and WSSV were observed.
Such co-infections are a common phenomenon in natural environments and can induce
synergistic or antagonistic reactions within the host [34–38]. From the perspectives of
quarantine and disease control, heightened management may be necessary in cases where
interactions between endemic diseases prevalent domestically and those that could have
entered from abroad are anticipated to be lethal to the hosts. In particular, co-infections
involving pathogens known to inhibit host growth (such as IHHNV or EHP) and those capa-
ble of causing higher mortality rates (or prevalence) during juvenile stages (such as YHV1)
can inflict significant damage on aquaculture facilities or natural environments [26,39,40].

Nevertheless, given the high proportion of detected cases and the timing of the sam-
pling period coinciding with the global economic downturn caused by the COVID-19 pan-
demic, there is a risk of exposure to the domestic market while maintaining pathogenicity if
the popularity of leisure activities such as fishing increases, leading to greater consumption
and increased imports with a simplified distribution process. Therefore, despite the uncon-
firmed infectiousness, the risks associated with exposure to aquatic products (bait and feed)
remain significant. Moreover, it is necessary to exercise greater caution with fishing bait or
feed as they are directly exposed to the water, leading to the risk of disease transmission.
In Australia, there have been cases of WSSV infection caused by imported shrimp intended
for human consumption, underscoring the urgent need for measures to prevent misuse [7].
Furthermore, instances of disease transmission resulting from such changes in land use
have been a consistent concern raised in recent years [3].
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Particular attention is required for fishing (paste) bait, as it can directly transmit
pathogens to susceptible hosts. Moreover, in South Korea, there are no separate processing
standards or regulations for seafood products intended for bait or feed, which may lead
to the possibility of infection through waste disposal. The importation of designated
quarantine inspection materials is regulated by law, allowing imports only from places
where there are frozen storage facilities for carcasses or waste (Article 35, Enforcement
Regulation of the Aquatic Organism Disease Control Act). Therefore, it is necessary to
establish policies that encourage the installation of such facilities not only in fishing gear
stores but also in aquaculture facilities.

Repetitive freezing/thawing is an unavoidable process in the distribution of commer-
cial seafood products and can also be considered as one of the methods for inactivating
pathogens that can be presented as an imported hygiene condition. However, many reg-
ulatory/realistic issues need to be addressed to track or demonstrate freezing/thawing.
Therefore, it may be possible to assume that there is no pathological activity for specific
pathogens, by supporting the research results that state the loss of pathogenicity after a
certain period of frozen storage, ranging from a few hours to several days, and proving
that it has been stored frozen for a certain period. Such data will be important information
for export/import inspections. Therefore, future studies will investigate the inactivation
period of diseases identified as risk factors in this study under frozen conditions.

5. Conclusions

We detected VpAHPND and WSSV in fishing bait that was not subject to quarantine
measures in South Korea. However, their infectivity was not confirmed, and this was pre-
sumed to be due to repeated freezing/thawing cycles or prolonged freezing/refrigeration
storage. Histopathological and ultramicroscopic analysis revealed collapsed viral particles,
which were suspected to be WSSV. Although infectivity was not confirmed in this study,
the importation of aquatic products infected with pathogens without undergoing separate
quarantine measures into South Korea is highly risky. Therefore, there is a need to perform
quarantine measures on such non-quarantine-targeted aquatic products, and additional
research is required to establish import hygiene conditions such as freezing and heating.
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