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Abstract: The present context is a pioneer attempt to verify the ability of copepod, Lernanthropus
kroyeri (L. kroyeri), to uptake and accumulate heavy metals. We primarily assess the prevalence of the
parasite in various seasons and its clinical signs, as well as post-mortem changes in sea bass (Moron
labrax). The morphological features of the parasite using a light microscope, the bioaccumulation
of heavy metals in the tissues of both L. kroyeri and M. labrax (gills, muscles) using Flame Atomic
Absorption Spectrometry, and the histopathological alterations were monitored. Fish (n = 200) were
obtained from Ezbet Elborg and examined for the parasite, L. kroyeri. The results revealed that the
total infection was recorded at 86%. The infested fish exhibited excessive mucous and ulceration
at the site of attachment. The post-mortem lesion in the gills revealed a marbling appearance with
destructed filaments. Various heavy metals (Zn, Co, Cu, and Cd) were detected in the tissues of
L. kroyeri and M. labrax and, surprisingly, L. kroyeri had the ability to uptake and accumulate a high
amount of Zn in its tissues. Infested fish accumulated a lower concentration of Zn in their tissue
compared with the non-infested ones. Within the host tissue, the accumulation of Zn was higher in
the gills compared with the muscles. The histopathological findings demonstrated scattered parasitic
elements with the destruction of the gill lamellae. Taken together, we highlight the potential role of
L. kroyeri to eliminate Zn and it can be utilized as a bio-indicator for metal monitoring studies for
sustaining aquaculture.
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1. Introduction

Recently, parasitic infestations have induced serious hazards, including higher mortal-
ities and diseases, to the freshwater fish in Egypt [1,2]. Parasitic copepods are commonly
present in wild and cultured marine fish [3]. Lernanthropus is the most common genus of
copepods and there are more than 100 species isolated from the gills of different species of
marine fish [4,5]. Lernanthropus causes the erosion and necrosis of gill filaments [6] with
severe desquamation and necrosis of the secondary lamellae and leukocytic infiltration [7].
At the site of parasite attachment, there is complete superficial tissue erosion with exposure
of the primary lamellar cartilage, exposure of the blood vessels, and hemorrhage resulting
from the grasping action of the mandibles and the maxillae of the parasite [6].

Pollution with heavy metals or toxic pollutants in the aquatic ecosystem is a global
problem, with potential concern as it can negatively affect fish with health-inducing phys-
iological, biochemical, molecular, and histopathological alterations [8–10]. Fish absorb
heavy metals from the surrounding water and accumulate in different tissues in various
amounts [11]. The metals can enter the bloodstream of fish and gradually accumulate in
their tissues [12,13], particularly in the hepatic tissue, where they reach the consumers
through the food chain or are bio-transformed and excreted [14].

Hence, parasites, as well as heavy metals, induce serious damage to the biochemical
and physiological processes that in turn induce severe impairments to the health and phys-
iology status of fish [15]. Recent reports have addressed various methods for heavy metal
chelation such as natural extracts, probiotics, and nanoparticles [13,16,17]. Fish parasites
are considered extra sensitive to pollution with heavy metals, as they not only uptake and
accumulate toxicants in their tissues, but also produce a physiological response to them [18].
Parasites can be used either as effective indicators or as accumulation indicators, because
of the different ways in which they react to anthropogenic pollution [19,20]. There is a
relationship between parasitism and pollution, and the role of parasites as bio-indicators of
heavy metals pollution [21]. Previous reports have addressed the ability of some parasites
to accumulate heavy metal concentrations, such as Acanthocephalans, Cestodes [22], and
parasitic nematodes [23,24].

Therefore, the current investigation was carried out to assess the impacts of L. kroyeri
infestation. We addressed the prevalence of the parasite in the different seasons, the clinical
signs, and the post-mortem changes. The body surface of L. kroyeri using a light microscope
was illustrated, besides the bioaccumulation of heavy metals in the tissues of both L. kroyeri
and M. labrax. Furthermore, histopathological alterations on the gills and muscles of
infected M. labrax were detected.

2. Materials and Methods
2.1. Research Ethics

The protocol of the current study complies with the guidelines and was carried
out according to the UK Animals (Scientific Procedures) Act, 1986, and the associated
guidelines of the EU Directive for Animal Experiments. The experimental procedures were
approved by the Institutional Aquatic Animal Care and Use Committee (IAACUC), Faculty
of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt. Approval
Code: IAACUC-KSU-038-2022

2.2. Fish Samples

A total number of 200 sea bass (Moron labrax) fish samples were collected alive or
freshly dead from the market of the Ezbet-El Borg area, Damietta Province, Egypt, during
the period between March 2019 until February 2020. The collected fish were transported
on thick ice polyethylene bags to the laboratory of the Animal Health Research Institute,
El-Mansoura Branch, where they were examined immediately.
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2.3. Clinical Examination

The fish were examined for the detection of any clinical abnormalities and external
parasites according to Eissa [25].

2.4. Parasitological Examination

Examination of the external surface of the fish body was carried out with naked eyes
and a hand lens to detect any abnormalities, the gill opercula were removed using scissors,
and the gill filaments were transferred to slides with some normal saline and then covered
by a cover slide and examined microscopically [26]. The detected crustacean parasites
were carefully collected using a fine brush and special needle, transferred into Petri-dish,
and washed several times in distilled water then preserved in 70% ethanol and cleared in
lactophenol, and then mounted with polyvol [27].

2.5. Heavy Metals Analysis

The samples were dried at 60 ◦C for 48 h. Then, the samples were ground to a fine
powder and stored in plastic bags until analysis. One gram of each sample was dry-ashed
in a muffle furnace at 450 ◦C for 5 h, and extracted with 20% hydrochloric acid. The samples
were measured by Flame Atomic Absorption Spectrometry FAAS (GBC Avanta E, Victoria,
Australia; Ser. No. A5616). All of the equipment used was calibrated and uncertainties were
calculated. Internal and external quality assurance systems were applied in the Central
Laboratory of Environmental Studies at Kafr-Elsheikh University according to ISO/IEC
17025 (2005). All of the measurements, blanks, triplicate measurements of elements in the
extracts, and analysis of certified reference materials for each metal (Merck) were routinely
included for quality control.

2.6. Histopathological Examination

Tissue specimens were collected from the gills and immediately fixed in 10% neutral
buffered formalin solution for at least 24 h, then processed using the conventional paraffin
embedding technique. Five-micron sections were prepared and then routinely stained
with Hematoxylin and Eosin (H&E) according to Suvarna et al. [28], and then examined
microscopically.

3. Results
3.1. Clinical Examination of Infected Fish

The clinical signs of the infected fish were hemorrhagic areas on different parts of the
body surface (Figure 1, red arrows) and the gills showed a marbling appearance (area of
redness and paleness) (Figure 1, white arrows). The gill tips were attached in some areas
with mucous secretion and L. kroyeri was seen macroscopically as black filaments (Figure 1,
black arrows).
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Figure 1. Moron labrax showing hemorrhagic areas on different parts of the body surface (red arrows),
a marbling appearance (white arrows), and gill tips that were attached in some areas with mucous
secretion, and the parasites were seen by naked eyes as black filaments (black arrows).
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3.2. Parasitological Examination
3.2.1. Morphological Description of L. kroyeri Van Beneden, 1851

The parasite was found to be attached to the gills of M. labrax. It appeared to have
a white to yellowish color in the fresh samples. The female was easily recognized by the
presence of the two egg-sacs, which were clearly seen by the naked eyes (Figure 2). The
bodies of isolated copepods appeared elongated in both sexes.
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The cephalothorax had a dorsal shield narrower anteriorly, and was slightly concave
on the posterior margin, with rounded posterolateral corners and the anterolateral ex-
tended ventrally as prominent, rounded lobes. A deep constriction was found between the
cephalothorax and pregenital trunk. There were four pairs of thoracic legs, the first one
was biramous (Figure 3).
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Figure 3. (A): L. kroyeri premature stage. (B): male L. kroyeri. (C): female L. kroyeri. a1; 1st antenna. a2;
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3.2.2. Prevalence of L. kroyeri in Infected M. labrax

One hundred sixty-two out of two hundred examined M. labrax were infected with
L. kroyeri (81%). The highest infection was recorded during spring (94%), followed by
summer (90%) and then autumn (78%), and the lowest infections were recorded in winter
(31%), as depicted in Table 1 and Figure 4.

Table 1. Prevalence of L. kroyeri among examined M. labrax along the monitored season.

Winter Spring Summer Autumn Total

Nu
Ex

Nu
In % Nu

Ex
Nu
In % Nu

Ex
Nu
In % Nu

Ex
Nu
In % Nu

Ex
Nu
In %

50 31 62 50 47 94 50 45 90 50 39 78 200 162 81

Nu.Ex: number of examined M. labrax. Nu.In: number of infected M. labrax. %: Percentage of infection.
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Figure 4. Seasonal prevalence of L. kroyeri infestation among the examined M. lebrax fish along the
monitored seasons. Bars demonstrate the percentage of infested fish in each season.

3.2.3. Heavy Metal Accumulation by L. kroyeri and Fish Host

Mean ± SEM of heavy metal concentrations in the gills and muscle of both infected
and non-infected fish, as well as in parasitic tissue, are illustrated in Table 2 and Figure 5.
Zinc was accumulated in higher levels in the gills (374.0 ± 2.51 mg/kg) and muscles
(270.5 ± 3.03 mg/kg) of non-infested fish compared with the gills (275.0 ± 3.11 mg/kg)
and muscles (124.8 ± 2.15 mg/kg) of infested fish. Surprisingly, the parasite accumulated
Zn in its tissue (237.5 ± 2.86 mg/kg). The differential concentration of Zn in the gills,
muscle, and parasitic tissue were analyzed by an unpaired t-test, while the concentrations
of other elements were recorded under the detection limit (UDL; <0.3 mg/kg for Co and
Cu or <0.03 mg/kg for Cd).
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Table 2. Mean of heavy metal concentration in fish tissues and parasites.

Element Organ Non-Infected Infected p Value

Zn Fish
Gills 374.0 ± 2.51 275.0 ± 3.11 <0.0001

Muscle 270.5 ± 3.03 124.8 ± 2.15 <0.0001

Parasite 237.5 ± 2.86

Co Fish
Gills UDL UDL -

Muscle UDL UDL -

Parasite UDL

Cd Fish
Gills UDL UDL -

Muscle UDL UDL -

Parasite UDL

Cu Fish
Gills UDL UDL -

Muscle UDL UDL -

Parasite UDL
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3.3. Histopathological Results

Various sections from crustacean parasitic elements randomly distributed in the gills
were noticed (Figure 6A,B). The adjacent primary filaments were bent, stunted, and dis-
organized with the partial or complete destruction of the secondary lamellar epithelium
(Figure 6A,B). Metaplasia of some surface epithelium to goblet cells was evident. Some-
times, intense hemorrhage on the gill surface, excess mucous exudate, and parasites were
also observed (Figure 6C). Moreover, complete destruction of the secondary lamellar ep-
ithelium from both sides of the gill filaments leaving the primary filaments denuded could
be seen (Figure 6D).
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Figure 6. Photomicrograph of M. labrax gills stained with H&E. (A) Parasitic elements embedded
between gill filaments (arrows) with stunted, bent, and disorganized primary filaments (arrowhead).
(B) High power of the previous picture showing parasitic sections (arrows) with partial destruction
of the lamellar epithelium (arrowhead) or metaplasia to mucus-secreting cells. (C) Gills showing
parasitic sections (thin arrow), intense hemorrhage on the gill surface (arrowhead), and mucous
exudate (thick arrow). (D) Gills showing denuded of primary filaments (arrow) with complete
destruction of the secondary lamellae of some filaments. Scale bar = 100 µm.

Other gill filaments showed compensatory hyperplasia and hypertrophy of the sec-
ondary lamellar epithelium, which resulted in their fusion (Figure 7A). The blood vessels
of the gill filaments and arches revealed telangiectasis beside edema in the surround-
ing tissue (Figure 7B). Sometimes, lymphocytes and eosinophils granular cells besides
melanomacrophage cells were focally scattered in the gill filaments and arches and the
sloughing of epidermal tissue of the gill arch in addition to metaplasia to the mucus secre-
tory cells were common (Figure 7C). The gill raker had erosion of its covering epithelium
besides necrosis and hyalinization of the muscles (Figure 7D).
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Figure 7. Photomicrograph of M. labrax gills stained with H&E. (A) Showing compensatory hyper-
plasia and hypertrophy of the secondary lamellar epithelium (arrow) of some adjacent gill filaments.
(B) Gill arch showing telangiectasis of blood vessels (arrow) and edema (arrowhead). (C) Gill arch
showing partial sloughing of the epidermal covering (arrowhead) and metaplasia of the mucus
secretory cells (goblet cells) in superficial cells (arrow). (D) Gill raker showing erosion of the covering
epithelium (arrow) with necrosis and partial hyalinization of muscles (arrowhead). Scale bar = 100
µm.

4. Discussion

Lernanthropus is the most common genus of parasitic copepods. There are more than
100 species described from the gills of different marine fish [5]. The current investigation
revealed hemorrhagic areas on the body surface with excessive mucous secretion and a
marbling appearance of the gills of infected M. labrax with L. kroyeri. These lesions could be
attributed to the attachment of the parasites by their rigid claws, feeding activity, severe
irritation caused by parasitic movement, and mucous increase as a defense mechanism
from the host to overcome the infection, as reported by Abdel-Mawla et al. [29].

The present study recorded the isolation of L. kroyeri from the gills of M. labrax. Like-
wise, Toksen et al. [30], Henry et al. [31], and Eissa et al. [32] isolated the same parasite from
the same host and the same site. Meanwhile, El-Deen et al. [33] and Hassanin [34] isolated
L. kroyeri from the gills of other fish species such as Mugil cephalus and Moolgarda seheli.
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In the current prospective study, the prevalence of L. kroyeri was 81%, concurrent
with a previous study by Aneesh et al. [35] that recorded 81.4% infection of Strongylura
strongylura by L. kroyeri. Additionally, Toksen [5] reported a higher infection rate (100%) by
L. kroyeri in Dicentrarchus labrax. Nevertheless, Manera and Dezfuli [6] obtained a lower
infection rate (35%) with L. kroyeri in D. labrax. Our paper reports that L. kroyeri infection
was the highest during spring (94%), followed by summer (90%), then autumn (78%),
and finally winter (31%). This sequence is nearly in agreement with Eissa [25], who also
reported that the infection rate with L. kroyeri reached its maximum rate during spring
and summer, while the lowest infection was recorded during autumn. These results were
inconsistent with Samak and Said [36], who reported that the infection rates with the same
parasite reached their maximum rates in autumn and winter (42.5% and 35%), respectively,
while their minimum value was 7.5% in spring. These variances in the total infection and
seasonal dynamics could be a result of the difference in fish species and the difference in
the locality of fish collection.

Zn is an essential heavy metal with a permissible limit in the fish muscle of 40 mg/kg [37]
or 100 mg/kg [38]. The toxic effect of zinc on aquatic animals depends on several environmen-
tal factors, especially temperature, water hardness, and dissolved oxygen concentration. An
acute toxic concentration of zinc kills fish by destroying gill tissue and at a chronic toxic level,
it induces stress that results in the death of fish [39]. Certain fish parasites can accumulate
heavy metals at concentrations significantly higher than those in host tissues or the environ-
ment [40–44]. The data of our study revealed that there was a high concentration of Zn in
the collected samples, while the concentrations of Cu, Cd, and Co were under the detection
limit. In general, the accumulation of Zn was significantly higher in the non-infested tissue in
comparison with the infested tissue samples. It is thought that L. kroyeri can absorb Zn from
the fish tissue through its alimentary canal and that it accumulates in the parasite tissue, and
this finding was verified by analysis of Zn in the parasite tissue. In the same manner, a recent
study by Hassanine and Al-Hasawi [45] reported that acanthocephalan accumulates higher
concentrations of heavy metals. Concurrent with another study, Szefer et al. [46] suggested
that the bioaccumulation of parasites may reflect the higher ability of the host to clear heavy
metals. In addition, Thielen et al. [44], Sures and Siddall [47], and Malek et al. [48] considered
the parasites beneficial and that they could act as a heavy metal sanitizer for the host. Gills
accumulated a higher Zn value compared with the edible part of its fish host. The low ratio of
Zn concentration in the host muscle could be a result of the longer exposure time as metal
uptake occurs faster in parasites, as stated by Sures [40].

Considering the histopathological findings, we illustrated sections of L. kroyeri were
distributed in the gills. Similarly, a recent study by Eissa et al. [7] reported the occurrence
of L. kroyeri fragments in the gills of D. labrax. The destruction of the secondary lamellar
epithelium, goblet cell metaplasia with hemorrhage, and excess mucous secretion could be
induced as a tissue reaction to decrease the irritation against the infestation. Concurrent
with previous studies, Abdel-Mawla et al. [29], Lester and Hayward [49], Manera and
Dezfuli [6], and Ragias et al. [50] reported extensive hemorrhage due to the feeding activity
of this parasite. Lymphocytes and eosinophils were found in the gill filaments and arches,
and these outcomes have been previously reported [4–6,51,52]. In addition, erosion of the
gill raker as well as necrosis of the muscles was seen; likewise, Vinoth et al. [53] reported
pale gills induced by copepod parasites due to the loss of the gill raker.

Our investigation concluded that, although L. kroyeri has a negative effect on the
infected M. labrax, it also plays an important role in the elimination of heavy metals from
the tissue of the infected fish through its ability to accumulate heavy metals in its body,
which can be advantageous for the infected hosts, allowing them to tolerate much higher
concentrations of certain metals. The present results also confirm that L. kroyeri seems to be
a good indicator of environmental pollution.
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5. Conclusions

To date, our perspective study represents a premier work to report on the efficacy
of L. kroyeri to uptake and accumulate heavy metals (zinc). However, L. kroyeri infests
M. labrax with a high prevalence in spring and summer and demonstrates excessive mucous
secretion, ulceration, marbling appearance of gills, and various histopathological changes
in the gills of the infested fish. By detecting various heavy metals (Zn, Co, Cu, and Cd) in
the tissues of L. kroyeri and M. labrax, surprisingly, L. kroyeri was found to uptake the highest
concentration of Zn in its tissues. Conclusively, the parasitic infestation is an eco-friendly
method to uptake heavy metals, and L. kroyeri can be utilized as a natural antitoxic agent,
as well as be considered a bio-indicator of toxicity with heavy metals and to lessen the
hazardous impact on the aquatic environment for sustaining aquaculture. Future studies
are needed to test the activity of other parasites to chelate heavy metals, as well as studies
on various fish species.
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