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Abstract: The plant microbiome can be used to bolster plant defense against abiotic and biotic
stresses. Some strains of endophytes, the microorganisms within plants, can directly inhibit the
growth of plant fungal pathogens. A previously isolated endophyte from wild Populus (poplar),
WPB of the species Burkholderia vietnamiensis, had robust in vitro antifungal activity against pathogen
strains that are highly virulent and of concern to Pacific Northwest agriculture: Rhizoctonia solani
AG-8, Fusarium culmorum 70110023, and Gaemannomyces graminis var. tritici (Ggt) ARS-A1, as well as
activity against the oomycete, Pythium ultimum 217. A direct screening method was developed for
isolation of additional anti-fungal endophytes from wild poplar extracts. By challenging pathogens
directly with dilute extracts, eleven isolates were found to be inhibitory to at least two plant pathogen
strains and were therefore chosen for further characterization. Genomic analysis was conducted to
determine if these endophyte strains harbored genes known to be involved in antimicrobial activities.
The newly isolated Bacillus strains had gene clusters for production of bacillomycin, fengicyn, and
bacillibactin, while the gene cluster for the synthesis of sessilin, viscosin and tolaasin were found
in the Pseudomonas strains. The biosynthesis gene cluster for occidiofungin (ocf ) was present in the
Burkholderia vietnamiensis WPB genome, and an ocf deletion mutant lost inhibitory activity against 3
of the 4 pathogens. The new isolates lacked the gene cluster for occidiofungin implying they employ
different modes of action. Other symbiotic traits including nitrogen fixation, phosphate solubilization,
and the production of auxins and siderophores were investigated. Although it will be necessary to
conduct in vivo tests of the candidates with pathogen-infected agricultural crops, the wild poplar
tree microbiome may be a rich source of beneficial endophyte strains with potential for biocontrol
applications against a variety of pathogens and utilizing varying modes of action.

Keywords: biocontrol; Rhizoctonia; Fusarium; Pythium; Gaemannomyces; plant pathogens; antimicrobial;
endophytes; Burkholderia; Rahnella

1. Introduction

Pathogenic microorganisms cause crop losses equivalent to billions of dollars annu-
ally worldwide. There has been an alarming trend of increasing numbers of new fungal
and oomycete plant pathogens [1], with fungal pathogens accounting for nearly 15% of
worldwide crop losses each year [2]. The plant pathogens Rhizoctonia solani, Fusarium cul-
morum, Gaeumannomyces graminis var. tritici (Ggt), and the oomycete, Pythium ultimum, are
widespread pathogens of economically important crops including wheat, rice and barley,
grain, legumes, and brassicas worldwide, causing root rot, take-all disease, and damping
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off [3,4]. Resistant plant varieties take decades to develop and pathogens often develop
resistance within several years [5]. Commercial growers rely on a variety of chemicals to
control the plant pathogens. However, widespread use of these chemicals comes at high
economic and environmental costs such as potentially harming beneficial microorganisms
and insects. Additionally, organic farmers are not permitted to use synthetic chemicals. An
alternative method is biocontrol that involves the use of non-pathogenic microbial strains
to combat the pathogens [5]. Specific strains of bacteria and fungi are known to suppress
growth of soilborne fungal pathogens of crop plants under controlled conditions [6,7],
but commercialization for the field involves additional criteria [8]. These include targeted
(pathogen-specific) activity, durability of activity in a range of soil types and environmental
conditions, and application method [9,10]. As such, bio-based products have developed
more slowly than synthetic products but represent a growing proportion of the pesticide in-
dustry. For soil-borne pathogens, seed treatment is considered to be the application method
of choice. Selection of biocontrol microbial isolates or their metabolites for commercializa-
tion purposes should ideally be based on multiple pathogen isolates of the same species
because genotypes of the plant, pathogen and biocontrol microbe appear to condition the
biocontrol interaction [11,12]. Understanding the mode of action of biocontrol metabolites
and their impact on the rhizosphere microbiome also will help in the development of a
successful bio-based product. The limited number of biocontrol strains in use, however, is
largely from the rhizosphere or soil, and as such, could easily be out-competed by other
soil microorganisms [13].

Endophytes, the non-pathogenic microorganisms within plants, represent a largely
untapped portion of the plant microbiome. In a screen of endophytes isolated from plants
growing on the west side of the Washington State Cascade Mountain Range, 21 percent of
cultured isolates from poplar (Populus) and willow (Salix) had in vitro antimicrobial activity
against at least 1 pathogen out of 4 tested [14]. This high frequency of anti-microbial activity
likely reflects the strong selective pressure in natural systems for resistance to a broad array
of pathogens. Because of this pressure towards mutualism with their host, endophytes
have developed a number of other traits that increase plant health, growth, yield, and stress
tolerance [15–18]. Bacterial endophytes can systemically colonize plants [19], giving them
a key advantage over rhizospheric strains and some fungal endophyte strains which can
be highly localized. Endophytes may therefore offer a more stable option for biocontrol
compared to existing methods, defending their host from pathogens from within.

Previous studies on potential biocontrol strains from poplar were based on endophytes
that had been isolated for other purposes such as nitrogen fixation [14]. For example,
several of the Burkholderia endophytes exhibited particularly robust inhibition in vitro
against several plant pathogens despite the original selection method being growth on
nitrogen-limited medium. A particularly robust antimicrobial strain, WPB, described
herein, is a strain of B. vietamiensis, a member of the Burkholderia cepacia complex (BCC),
a group found in a variety of ecological niches including soil, plants and animals but has
mambers which present health hazards [20].

With the hypothesis that direct screening for antifungal activity of poplar endophytes
would allow for the isolation of a wider variety of potential biocontrol strains, a novel
method for screening plant extracts for antifungal endophytes was developed, without
any pre-screening or isolation steps required. Using this method, we isolated a variety
of new endophyte strains from wild poplar with in vitro antifungal activities and report
the genomic analysis on the potential inhibitory mechanisms. Genomic analysis of B. viet-
namiensis strain WPB indicated that occidiofungin, a known antimicrobial compound, could
be key to its effectiveness. Using targeted mutagenesis and phenotypical and biochemical
confirmation, it was shown that WPB inhibits pathogens through multiple modes of action.
Here, we also report on the genomic analysis of additional endophytes isolated from poplar
that inhibited selected pathogen strains in vitro. The goal of this study was to isolate strains
that employ different mechanisms of antimicrobial activities, reducing the risk of pathogens
developing resistance.
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2. Results
2.1. Antimicrobial Activities of Strain WPB

Burkholderia vietnamiensis strain WPB was originally isolated in a screen for nitrogen-
fixing endophytes of wild poplar [21]. The strain produces auxin and promotes plant
growth under nitrogen-limited conditions [22]. To determine if the strain also had potential
biocontrol activity against plant pathogens, the dual plate inhibition assay was used
against four virulent strains of agricultural pathogens of concern in the Pacific Northwest.
In vitro assays indicated that WPB strongly inhibited the growth of Rhizoctonia solani AG-8,
Fusarium culmorum 70110023, and Ggt ARS-A1 while the oomycete Pythium ultimum 217
was inhibited by WPB minimally (Figure 1, Table 1).

Pathogens 2022, 11, x FOR PEER REVIEW 3 of 22 
 

 

new endophyte strains from wild poplar with in vitro antifungal activities and report the 
genomic analysis on the potential inhibitory mechanisms. Genomic analysis of B. viet-
namiensis strain WPB indicated that occidiofungin, a known antimicrobial compound, 
could be key to its effectiveness. Using targeted mutagenesis and phenotypical and bio-
chemical confirmation, it was shown that WPB inhibits pathogens through multiple 
modes of action. Here, we also report on the genomic analysis of additional endophytes 
isolated from poplar that inhibited selected pathogen strains in vitro. The goal of this 
study was to isolate strains that employ different mechanisms of antimicrobial activities, 
reducing the risk of pathogens developing resistance.  

2. Results 
2.1. Antimicrobial Activities of Strain WPB 

Burkholderia vietnamiensis strain WPB was originally isolated in a screen for nitrogen-
fixing endophytes of wild poplar [21]. The strain produces auxin and promotes plant 
growth under nitrogen-limited conditions [22]. To determine if the strain also had poten-
tial biocontrol activity against plant pathogens, the dual plate inhibition assay was used 
against four virulent strains of agricultural pathogens of concern in the Pacific Northwest. 
In vitro assays indicated that WPB strongly inhibited the growth of Rhizoctonia solani AG-
8, Fusarium culmorum 70110023, and Ggt ARS-A1 while the oomycete Pythium ultimum 217 
was inhibited by WPB minimally (Figure 1, Table 1). 

 
Figure 1. Example in vitro antifungal activities. Wild-type (WT) Burkholderia vietnamiensis strain 
WPB and the ocf mutant against Rhizoctonia solani AG-8 and Gaemannomyces graminis var. tritici ARS-
A1. 

  

Figure 1. Example in vitro antifungal activities. Wild-type (WT) Burkholderia vietnamiensis
strain WPB and the ocf mutant against Rhizoctonia solani AG-8 and Gaemannomyces graminis var.
tritici ARS-A1.

Table 1. Zones of inhibition from wild-type Burkholderia vietnamiensis strain WPB and the oc-
cidiofungin ocf mutant. The distances from the bacterial colony and the pathogen strains were
quantified. Units are in millimeters. Standard deviation is indicated by ±.

Strain R. solani Ggt F. culmorum P. ultimum

WPB 5.03 ± 0.64 11.40 ± 1.25 4.44 ± 0.87 2.17 ± 0.98
WPB ocf 0.00 ± 0.00 5.46 ± 0.61 0.00 ± 0.00 0.00 ± 0.00

2.2. Isolation and Screening of New Anti-Fungal Endophytes

Strain WPB and our other previously isolated endophyte strains with in vitro antifun-
gal activities [14] had been selected based on other plant symbiotic traits. To more directly
isolate strains with potential biocontrol activity, hundreds of endophytes were isolated from
wild poplar trees and screened specifically for in vitro antifungal activity against R.solani
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AG-8. The active strains were then tested against the other plant pathogens using the dual
plate assay. Measurements of the zone of inhibition were recorded and then converted into
a qualitative scale for ease of comparison between the different fungal assays (Table 2). All
of the endophytes had some level of activity against at least two plant pathogen strains,
but the strength of the inhibitory response varied from pathogen to pathogen. For example,
strain AFE8 demonstrated a strong inhibitory effect on R. solani AG-8 but a weaker effect
on the growth of F. culmorum 70110023 or Ggt ARS-A1. The oomycete, P. ultimum 217,
appeared to be more resistant to endophyte-induced inhibition, with none of the strains
being capable of strong inhibition. Ggt, on the other hand, was strongly inhibited by 7
of the 11 endophytes. Only two endophytes, AFE4A and AFE5 inhibited all four of the
pathogen strains tested. The eleven most active endophyte strains were selected for strain
identification by rDNA sequencing (Table 2).

Table 2. Antifungal Endophytes. Species identification, sources and in vitro antifungal activity of
the eleven chosen Anti-Fungal Endophyte (AFE) strains as determined by the dual plate assay [-, no
activity; + very weak inhibition; ++ weak; +++ strong; ++++ very strong]. The pathogen strains were
R. solani AG-8, Ggt ARS-A1, F. culmorum 70110023, and P. ultimum 217.

Strain Species Source R. solani Ggt F. culmorum P. ultimum

AFE 1 Rahnella sp. Snoqualmie River wild poplar 4 ++ ++++ ++ −
AFE 3 Rahnella sp. Snoqualmie River wild poplar 4 − ++++ − +

AFE 4A Bacillus velezensis Snoqualmie River wild poplar 4 ++++ ++++ +++ +
AFE 5 Pseudomonas sp. Snoqualmie River wild poplar 4 +++ ++ + +
AFE 8 Pseudomonas sp. Yakima River wild poplar 12 +++ ++ ++ −
AFE 9 Rahnella aquatilis Yakima River wild poplar 12 ++ +++ − ++
AFE 11 Aureobasidium pullulans Skykomish River wild poplar + ++ − −
AFE 14 Pantoea agglomerans Skykomish River wild poplar − ++ − −
AFE 16 Pseudomonas graminis Skykomish River wild poplar + +++ − −

AFE 21B Bacillus velezensis Skykomish River wild poplar ++ ++++ ++ −
AFE 22 Rahnella sp. Skykomish River wild poplar − +++ − +

2.3. Analyses for Potential Antimicrobial Mechanisms
2.3.1. In silico Analysis of Antimicrobial Biosynthetic Gene Clusters in Strain WPB

The antiSMASH analysis predicted several biosynthetic gene clusters (BGCs) with
antimicrobial activities in WPB, including clusters for occidiofungin A, the polyketide
cepacin A, and the siderophore ornibactin (Table 3). The antiSMASH analysis did not
identify any BGCs for other antifungal compounds, such as pyrrolnitrin, cepacidine A,
and the putative lipopeptide AFC-BC11, that have been identified in other members of
the BCC [23]. Occidiofungin, originally isolated from Burkholderia contaminans MS14, has
broad-spectrum antifungal activity against plant and animal pathogens [24]. WPB contains
an occidiofungin A cluster with 94% similarity to the MIBiG reference gene cluster from
Burkholderia pyrrocinia Lyc2 (Figure 2), a plant-associated strain showing strong antifungal
activity against Aspergillus flavus, Cladosporium sp, Cochliobolus heterostrophus, Colletotrichum
acutatum, Gaeumannomyces graminis var. tritici, Geotrichum candidum, Glomerella cingulata
and Thielaviopsis basicola [25].

WPB also contains a BGC for the siderophore ornibactin, which has been shown to have
antibacterial activities against the plant-pathogenic bacteria Erwinia amylovora, Xanthomonas
citri pv. malvacearum, and Clavibacter michiganensis subsp. michiganensis [26]. In members
of the BCC, ornibactin has been implicated in complications in immunocompromised
individuals, particularly those with cystic fibrosis [27]. While the ornibactin cluster in WPB
has a 93% genes similarity to the B. cepacia 89 reference cluster (Figure 2), it lacks the orbK
gene, which is consistent other members of the B. vietnamiensis species, including the type
strain B. vietnamiensis LMG 10929, a plant-associated strain isolated from the rhizosphere
of rice [28].
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Table 3. Known antimicrobial biosynthetic gene clusters. WPB and the AFE strains carry a variety
of biosynthetic gene clusters with known antifungal and antibacterial activity.

Strain Total # of BGC BGC’s with Known
Antimicrobial Activity 1 Activity

WPB 12 cepacin A (62%) antibiotic/antioomycetes
ornibactin (93%) antibiotic

occidiofungin (94%) antifungal

AFE 1 7 -

AFE 3 6 -

AFE 4A 21 difficidin 2 (100%) antibacterial
macrolactin (100%) antibacterial/antifungal
bacillaene (100%) antibacterial

fengycin (86%) antibacterial
bacilysin (100%) antibacterial/antifungal

bacillibactin (100%) antibacterial
lanthipeptide class II antibacterial

AFE 5 18 sessilin 2 (100%) antifungal

AFE 8 14 viscosine (100%) antifungal
tolaasin (60%) antibacterial/antifungal

AFE 9 5 -

AFE 16 5 -

AFE 21B 21 difficidin (100%) antibacterial
macrolactin (100%) antibacterial/antifungal
bacillaene (100%) antibacterial

fengycin (80%) antibacterial
bacilysin (100%) antibacterial/antifungal

bacillibactin (100%) antibacterial
surfactin (52%) antibacterial

AFE 22 7
1 Only clusters with a similarity > 50% are reported. In parentheses are similarity scores with the reference
cluster. 2 The BGC for difficidin (AFE4A: NODE 3, NODE 2, and NODE 14) and sessilin (AFE 5: NODE 40 and
NODE 26) were fragmented over different contigs and completeness was assessed after manual curation of the
antiSMASH analysis.
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Figure 2. Organization of the biosynthetic gene clusters identified in Burkholderia vietnamiensis
WPB. Orthologous genes shared between the BGCs in WPB and reference strain are shown with the
same color for (A) occidiofungin (A,B) ornibactin, and (C) cepacin A. The genes not shared between
WPB and the reference strain are in white.

The third BGC identified in WPB, the polyketide cepacin A, a hserlactone with potent
activity against both Gram-positive bacteria and the plant pathogen Pythium ultimum, the
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parasitic oomycete formerly classified as fungi [23]. While the cepacin A BGC in WPB
shares only a 62% gene similarity with the B. ambifaria IOP40-10 cepacin A reference cluster
in MIBiG (Figure 2), it shares high similarity with other B. vietnamiensis strains, including
the type strain LMG 10929 (Appendix A Figure A1). The B. vietnamiensis cepacin A clusters
contained two hypothetical proteins of unknown function, as well as several biosynthetic,
transport, and regulatory genes not found in the B. ambifaria cluster (data not shown).

2.3.2. In Silico Analysis of Antimicrobial Biosynthetic Gene Clusters in the AFE Strains

The genomes of the AFE strains were mined using antiSMASH to detect BGCs pu-
tatively involved in the antifungal activity observed in the plate inhibition assays. AFE
strains showing low or no antifungal activity were also included in this analysis since
BGC can be silent under the experimental condition used for testing [29]. As expected,
the AFE strains with the highest number of BGCs were those belonging to the species
Pseudomonas and Bacillus, while Pseudomonas AFE16 and the Enterobacteriaceae AFE strains
carried the lowest number of BGCs. All the Pseudomonas strains, except AFE16, carried at
least one BGC involved in the synthesis of a secondary metabolite with antimicrobial activ-
ity (Table 3). Specifically, Pseudomonas sp. AFE8 carried one BGC sharing 100% similarity
score against the viscosin BGC from Pseudomonas fluorescens SBW25, and a BGC showing
a 60% similarity with the tolaasin I / tolaasin F from Pseudomonas costantinii DSM 16734
(Figure 3). When compared to the tolaasin reference cluster, the BGC from AFE8 shows
only a partial conservation of core and auxiliary biosynthetic genes, suggesting that this
cluster could be involved in the synthesis of a tolaasin-like non ribosomal peptide with a
different structure and activity from tolaasin (Figure 3). AFE5 carried two BGCs, respec-
tively involved in the synthesis of tolaasin and sessilin, and sharing a score similarity of 80
and 66%. These two clusters were both detected at the edges of contigs. A close inspection
indicates that sessilin and tolaasin BGC in AFE5 are part of a single cluster involved in
the synthesis of sessilin (Figure 3). Tolaasin, sessilin, and viscosin are well-characterized
non-ribosomal peptides with antifungal activity. The tolaasin was first characterized in
the fungal pathogen Pseudomonas tolaasii which is the causative agent of the Brown blotch
disease, while viscosin and sessilin have been found to be effective against Aspergillus
fumigatus, Batrachochytrium dendrobatidis, Rhizoctonia solani, and Pythium myriotylum [30,31].
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The Bacillus AFE strains AFE4A and AFE21B carried the highest number of BGCs
with antifungal and antimicrobial activity. Both AFE4A and AFE21B shared one copy of
the BGCs difficidin, macrolactin H, bacillaene, fengycin, bacilysin, bacillomycin D and
surfactin. Among these, macrolactins, bacillomycin and fengycin have been shown to
inhibit the growth of several plant pathogens including Fusarium graminearum, Botrytis
cinerea, Colletotrichum acutatum, Rhizoctonia solani, Magnaporthe grisea, and Gaeumannomyces
graminis var. tritici [32–34]. Interestingly, in both AFE4A and AFE21B, the bacillomycin
D and fengycin BGCs were located in the same chromosomal region, suggesting that
these antifungal agents could act synergistically in the inhibition of the fungal pathogen
(Figure 4).
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2.3.3. Occidiofungin Mutant of WPB

Gu and colleagues demonstrated through Tn5 mutagenesis of Burkholderia contaminans
that an occidiofungin gene cluster was required for antifungal activity against Rhizoctonia
solani, Pythium ultimum and others [35]. Since strain WPB contains the same gene cluster,
we chose one of the genes, ocf E, as a mutagenesis target to determine if the compound
was responsible for the in vitro antimicrobial activities we observed. Extracts from the
wild-type and mutant strains were tested by mass spectrometry. Wild-type WPB grown
with R. solani AG-8 produced a higher level of occidiofungin than when grown without the
fungus, indicating it may be inducible (Figure 5, comparing black and blue chromatograms).
Furthermore, the mass spectrometry results confirmed that the ocf mutant did not produce
occidiofungin (Figure 5, red chromatogram). The ocf mutant retained minimal ability to
inhibit R. solani AG-8 growth (Table 1 and Figure 1), implicating this pathway as a major
mechanism this strain uses to directly block pathogenic fungi. This was further supported
by the loss of inhibition by the mutant toward the fungi F. culmorum 70110023 or P. ultimum
217. However, the mutant retained inhibitory activity against Ggt ARS-A1, indicating that
a different mode of action is utilized (Figure 1).

2.3.4. Confirmation of the Lack of Occidiofungin from AFE Strains by LC-MS-MS

Since occidiofungin was a key antimicrobial compound from strain WPB, the AFE
strains were also screened by mass spectrometry to confirm in silico gene analysis indicating
a lack of the occidiofungin gene cluster. None of the strains displayed a peak indicative of
occidiofungin (data not shown).

2.4. Symbiotic Traits of the AFE Strains

Siderophore production is a common trait of plant-associated microorganisms that is
thought to play a biocontrol role by sequestering iron away from pathogens and preventing
their growth. The siderophore production assay was used to determine this activity in
the endophytes. Seven of the eleven strains exhibited strong to very strong siderophore
production (Table 4).
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Figure 5. Confirmation of occidiofungin production in strain WPB by mass spectrometry. Top
panel: Black line indicates wild-type WPB grown with Rhizoctonia solani AG-8; red line indicates the
ocf mutant; blue line indicates wild-type WPB grown in the absence of fungus. Vertical line indicates
the occidiofungin peak. Lower panel: M+H molecules present in the occidiofungin peak.

Table 4. Siderophore production in the AFE strains. Data converted to qualitative scale [−, no
yellow halo; +, weak; ++ strong; +++ very strong].

Strain Level of Siderophore Production

AFE 1 ++
AFE 3 ++

AFE 4A −
AFE 5 +++
AFE 8 +++
AFE 9 ++

AFE 11 −
AFE 14 ++
AFE 16 +

AFE 21B −
AFE 22 +++

Tests indicative of other symbiotic traits including phytohormone production, ni-
trogen fixation and phosphate solubilization were performed on the 11 active strains.
Strains AFE 3, 9, 14, and 22 were strong producers of auxins (Appendix A Figure A2)
so they may enhance root growth. Most of the strains were able to solubilize tricalcium
phosphate, especially strains AFE 1, 3, and 14. Though solubilization of other phosphate
salts such as iron phosphate and aluminum phosphate should be tested [36], solubility of
tricalcium phosphate can be an indicator of the ability to increase the bioavailability of
phosphate, an important macronutrient [37]. Strains AFE3 and 9 produced a nitrogenase
gene PCR product and were positive in the acetylene reduction assay for nitrogenase
activity (Appendix A Figure A3).

2.5. Phylogenomic Analysis of WPB and AFE Strains for Suitability for Use in Agriculture

For the strains to be used directly in agriculture, they must not be phylogenetically
affiliated to known human and plant pathogens. Therefore, a phylogenomic analysis
was carried out to place WPB and the AFE strain into clusters of phylogenetically related
genomes at the species level.

Whole-genome taxonomic classification identified WPB as B. vietnamiensis, matching
most closely with the type-strain B. vietnamiensis LMB 10929, and clustering with other
members of the BCC. Additionally, WPB was predicted by PathFinder as being a potential
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human pathogen with high probability (0.843), identifying 246 sequences belonging to a
pathogenic protein families and 24 sequences belonging to non-pathogenic protein families.

All Enterobacteriaceae AFE strains were included in already known species clus-
ters (Table A2). The Rahnella strains AFE22 and AFE3 were identified as R. variigena
and R. victoriana, respectively, and the reference strains of the species are potential plant
pathogens being isolated from various oak species exhibiting symptoms of Acute Oak
Decline (AOD) and exhibited a mild hypersensitive response on tobacco plants [38].
On the other hand, the AFE9 strain was identified as Rahnella aceris, which includes
only non-pathogenic plant-associated Rahnella isolated from Acer pictum sap [39]. The
last Enterobacteriaceae strain, Erwinia AFE1, was identified as Erwinia billingiae. While
Erwinia species include several renowned plant and human pathogens, the represen-
tative strain of the E. billingiae species cluster lacks several virulence-associated genes
found in the plant pathogens E. amylovora, E. pyrifoliae, and E. piriflorinigrans [40,41]. The
E. billingiae species clusters include 7 genomes from soil and host-associated (plants and
Caenorhabditis elegans) isolates.

The Bacillus strains AFE21B and AFE4A were identified as members of the Bacillus
velezensis species (Table A2) which include strains already proposed to EPA and EFSA for
use in agriculture as a biopesticide, and as an additive in animal feed [42,43].

Pseudomonas strains AFE8 and AFE5 were affiliated to species-clusters of the P. fluorescens
complex which currently includes 48 known Pseudomonas species. Specifically, AFE8 and
AFE5 were classified as P. lurida and P. kitaguniensis, respectively (Table A2). The P. lurida
species-cluster consists of 25 Pseudomonas strains mostly identified as environmental and
host-associated (C. elegans) isolates, while only one strain, i.e., AU10973 (GCA_000801835.1),
was isolated from cystic fibrosis (CF) patients [44]. While P. fluorescens strains are not con-
sidered an etiologic agent of pulmonary diseases, members of the P. fluorescens species
complex are identified at a low frequency in clinical samples from CF patients. It is worth
mentioning that given their extreme metabolic versatility, members of the P. fluorescens
complex are naturally occurring at low levels in the indigenous microbiota of various
body sites, and are also moderately abundant in the respiratory microbiota [45]. Despite
this, P. fluorescens is rarely associated with acute infections [46]. Finally, the Pseudomonas
strain AFE5 was placed within a species cluster representative of 5 plant-associated Pseu-
domonas, with the isolate MAFF 212408 being type-strain for the species P. kitaguniensis.
The P. kitaguniensis strain MAFF 212408 (GCF_009296165.1) was identified as the causative
agent of the ‘bacterial rot disease of Welsh onion’.

3. Discussion

The goal of this study was to isolate endophyte strains that could inhibit key pathogen
strains of concern in the Pacific Northwest. To select for such activities, it is necessary to
conduct the initial testing in vitro. Once candidate strains are identified, the next phase is
to complete genomic sequencing and analysis for genes known to be involved in human
pathogenicity since the ultimate goal is to use the inhibitory strains in agriculture. A
case in point is that, in a previous study, the endophytes showing the strongest in vitro
antifungal activity were of the genus Burkholderia [14]. Burkholderia have been studied for
their abilities in plant growth promotion, phytoremediation, endophytic nitrogen fixation,
reducing plant abiotic stresses and as biocontrol agents [47–51], while others are known
as human pathogens [20]. Since the original Burkholderia genus includes such diverse
species, molecular signature and phylogenomic analysis were performed that divided
them into Burkholderia and Paraburkholderia genera [52]. A number of root-associated
Burkholderia strains also lacked genes associated with human pathogenicity [53]. Subse-
quently, a new genus, Caballeronia gen. nov.was proposed that contains non-pathogenic and
plant-associated members of both Burkholderia and Paraburkholderia [54]. The previously
isolated strain of Burkholderia vietnamiensis, WPB, was included in this study of potential
mechanisms of antimicrobial activities, although it would not be used in agriculture since
this strain falls within the Burkholderia BCC and was determined to harbor genes associ-
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ated with human pathogenicity. Nonetheless, it served to provide valuable insight into
inhibitory mechanisms.

Interestingly, when studying poplar leaves growing along the Snoqualmie River in
Washington State, nearly one-fourth of the bacterial microbiome was found to be of the
Burkholderia/Paraburkholderia genus (unpublished data). In a recent study, the Burkholderi-
aceae, along with Pseudomonadaceae and Enterobacteriaceae, was one of the most abundant
families detected in the core microbiome of wild poplar inhabiting xeric riparian zones,
and riparian zones with mid hot-dry and moist (mesic) climates [55]. Our study further
supports the concept that antimicrobial/antifungal producing strains are a core component
of the poplar microbiome, and not linked to a specific environment. The high prevalence of
Burkholderia points to the importance of this genus in the plant microbiome.

In an effort to isolate a broader biodiversity of endophytes, a different technique was
employed in this study. Rather than testing individual isolates for antifungal activity,
poplar extracts containing endophytic microorganisms were challenged directly against
a fungal pathogen. Microbes were then isolated from zones of inhibition. Though all
the strains were originally selected for the ability to inhibit R. solani AG-8, many of them
also inhibited other fungal pathogen strains regardless of evolutionary distance. Due to
the vast evolutionary distance from the fungi to oomycetes, it was not surprising that
few of the strains had activity against P. ultimum. However, this method of challenging
extracts rather than single isolates could be applied to any pathogen strains of interest to
rapidly select potential biocontrol strains. Though strains AFE 3, 14, and 22 were originally
isolated with apparent inhibitory activity against R. solani AG-8, when fully purified, they
were no longer active against this pathogen. It is possible that they required a microbial
partner or phytochemicals mimicking host-like conditions that were lost during the strain
purification phase. For instance, the expression of T6SS, which can be used to deliver
antifungal effectors, is silent unless host-like conditions are mimicked [56].

One goal of this study was to isolate strains that each employed different mechanisms
of inhibiting plant pathogens. Application of a consortium of strains with complemen-
tary antimicrobial activities would be ideal in biocontrol situations, allowing for possible
synergies between modes of action and reducing the risk of pathogens developing resis-
tance. In this respect, it has been demonstrated that a combination of three biocontrol
species was superior for inhibiting Fusarium [57]. Some of the antimicrobials produced
by the Pseudomonas AFE strain have similar modes of action. For instance, the most likely
action of the cyclic lipodepsipeptides (CLPs) of the Viscosin-groups involves the direct
interaction with the cellular membrane through pore-formation [58]. A similar activity
was observed for the lipopeptides of the Tolaasin-group which have the ability to form
ion channels into lipid bilayer [59]. Despite this, prior to the development of a microbial
consortium with enhanced antifungal potential, the positive interaction between members
of the consortium must be assessed. Indeed, Bacillus and Pseudomonas could compete for
the same niche, where Bacillus lipopeptides are used to counteract and reduce the toxicity
of the lipopeptides synthesized by Pseudomonas [60].

In this study, AFE4A was the best performing strain in terms of breadth and strength
of in vitro antifungal activities. AFE4A typically had wide zones of inhibition implying
an antifungal mechanism based on the secretion of multiple secondary metabolites with
antifungal activity. This is in partial agreement with the antiSMASH analysis which iden-
tifies AFE4A, and also AFE21B, as the AFE strains with the greatest antifungal potential.
AFE4A and AFE21B were isolated from wild poplars inhabiting two different river sys-
tems. Despite this, both strains carried the same BGC’s with antifungal activities and
yet had strikingly different inhibition patterns. This would provide an opportunity to
study the molecular mechanisms underlying the biosynthesis of the antifungals rather
than focusing on comparative genome analysis. The presence of a single lanthipeptide
antibiotic gene cluster was found to distinguish AFE4A from AFE21B. Since AFE4A had
the most widespread activity against all pathogens tested and the most effective antifungal
activity, this defining lanthipeptide (Lantibiotics) gene cluster merits further investigation.



Pathogens 2023, 12, 13 11 of 20

However, all the Lantibiotics characterized so far in Bacillus species possess antimicrobial
activity, while Pinesin A and B, which are produced by the Gram-negative Chitinophaga
pinensis, are the only known Lantibiotics with antifungal activity [61,62]. Therefore, the
differences observed between AFE4A and AFE21B could be explained only by different
antifungal mechanisms or by differing levels of expression of the BGC’s.

The genome of the yeast strain AFE11, Aureobasidium pullulans, was not sequenced.
However, A. pullulans is known to produce a variety of antimicrobial compounds including
toxins, volatile compounds, degradative enzymes, and siderophores [42,63]. Described
as being a generalist biocontrol strain, it may be the simultaneous production of such a
diverse arsenal that leads to its success.

The genome of WPB was found to contain the biosynthetic genes required for the pro-
duction of occidiofungin, a known antifungal compound. Mutagenesis of the biosynthetic
gene ofcE in WPB highlighted the importance of this antimicrobial to the powerful inhibi-
tion exhibited by this strain. The results also indicated that other inhibitory activities are at
play, although the mechanism still needs to be resolved as no additional BCGs with known
antifungal activities were found in WPB. As a genus, Burkholderia possess large, complex,
and variable genomes and ongoing efforts to identify novel antimicrobial compounds will
continue to benefit from rapidly growing libraries of sequenced genomes, including the
sequencing and assembly of the genomes from 450 members of Burkholderiaceae completed
by Mullins et al. (2020) [64]. The ofc mutant retained strong inhibition of Ggt ARS-A1
despite the lack of occidiofungin production. Genomic analyses and confirmation through
LC-MS has shown that the AFE strains also lack the capability to produce occidiofungin.
This implies antifungal mechanisms in all strains tested that are distinct from occidiofungin.

It may be that endophytes are uniquely positioned to evolve antifungal mechanisms
that are targeted specifically against pathogens. Populus associates with both ectomycor-
rhizal and arbuscular mycorrhizal fungi; therefore, forcing co-evolution of the bacterial
endophytes with these essential fungal partners. Bacterial endophytes must therefore
be capable of co-habitation with these beneficial fungi despite the anti-fungal activities
demonstrated here against pathogens. Living with a host plant would apply a heavy
evolutionary pressure to develop mechanisms to differentiate between pathogens and
beneficial endophytic fungi. The unique niche occupied by endophytes has encouraged
the development of several other beneficial traits including nitrogen fixation, phosphate
solubilization, and phytohormone production. Though the strains isolated in this study
were selected for the ability to inhibit pathogens, several had these beneficial traits as well.
Endophytes are a rich resource with great potential to improve the resilience of crops to
environmental challenges, both abiotic and biotic.

4. Materials and Methods
4.1. Pathogen Strains

The pathogen strains were sourced and maintained as described [14]. Rhizoctonia solani
AG-8 isolate C1 and Fusarium culmorum 70110023 were maintained on potato dextrose agar
(PDA). Pythium ultimum 217 was cultured on SY agar. Gaemannomyces graminis var. tritici
ARS-A1was maintained on 1/5 X PDA. The pathogen strains used in this study are highly
virulent and of concern to Pacific Northwest agriculture.

4.2. Endophyte Extraction from Plant Tissue

Anti-fungal endophyte (AFE) strains were isolated from wild poplar stems collected
from the riparian zones of the Snoqualmie, Skykomish, and Yakima Rivers of Washington
State, USA. Branches were surface-sterilized with 10% commercial bleach for 10 min and
1% Iodophor for 5 min, followed by three sterile water rinses. Tissue was ground directly
into rich media using a mortar and pestle. Extracts were transferred to sterile conical tubes
and large particles allowed to settle out before use.
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4.3. High-Throughput Antifungal Screen and Inhibition Assays

Endophytes from the poplar extracts were screened for activity before isolation by
pipetting diluted plant extract in a circle around the entire perimeter of PDA plates, which
had been centrally inoculated with Rhizoctonia solani AG-8. As the pathogen grew, reaching
the extract along the border, zones of inhibition were observed. The mixed population
bacterial growth central to the inhibition was then streak-purified on MGL agar with
incubations at 30 ◦C. Purified strains were tested for antifungal activity using the dual plate
inhibition assay as described [14]. New isolates with antifungal activity were cryogenically
stored in glycerol at −80 ◦C and named with the AFE designation. All subsequent testing
of inhibition by the AFE strains as well as WPB and the WPB ocf mutant were done through
the dual plate inhibition assay as well. Individual assays were performed in duplicate (two
bacterial spots per plate) with three plates per assay. The Petri dishes were 100 × 15 mm.

4.4. Endophyte Identification

Strain WPB was previously isolated from wild poplar [21] and described [22]. New
AFE strains were identified through PCR amplification of the 16S rRNA gene of each
strain, or 28S rRNA gene of AFE11, using 8F (AGAGTTTGATCCTGGCTCAG′) and 1492R
(GGTTACCTTGTTACGACTT-3) primers, or D1/D2 (F63 5′-GCATATCAATAAGCGGAGG
AAAAG-3′ and LR3 CGTCCGTGTTTCAAGACGG) for the 28S gene of AFE11. The genetic
sequences were then compared to those in the NCBI’s GenBank using the BLASTN webserver.

4.5. Genomic Sequencing and Analysis

The WPB genome had previously been sequenced and assembled at the Department of
Energy Joint Genome Institute (JGI) as part of the research topic “Defining the poplar root
microbiome”. The assembled genome was submitted to the Rapid Annotation Subsystems
Technology (RAST) [65] for annotation and the predicted protein-encoding genes (PEGs)
submitted to KEGG KofamKOALA [66] for functional annotation and KEGG Ortholog (KO)
assignment. Genome annotation, performed at the JGI, was carried out using the DOE-JGI
Microbial Annotation Pipeline (DOE-JGI MAP) [67]. Whole-genome-based taxonomic
classification was completed via the Type (Strain) Genome Server (TYGS) [68], and the
potential for human pathogenicity predicted using PathogenFinder (v1.1) [69] at the Center
for Genomic Epidemiology. The WPB genome is available through the NCBI GenBank
database under accession GCA_900102765.1

Of the new AFE isolates, only endophytes showing strong in vitro inhibitory effects
against at least one fungal crop pathogen were selected for genomic sequencing, species
identification, and in silico analysis of antifungal gene clusters. Strains AFE 1, 3, 4A, 5,
8, 9, 16, 21B and 22 were grown in 10mL MG/L broth, pelleted, and resuspended in Tris
buffer (pH 8). Cells were lysed via incubation with 10% SDS (sodium dodecyl sulfate) and
5M sodium chloride at 68C for 30 min. Following RNaseA and Proteinase K treatments,
the samples were subjected to phenol-chloroform extractions and ethanol precipitation.
The paired-end libraries were constructed from approximately 376 ng of gDNA using the
Nextera DNA Flex Library preparation kit, and loaded in one flow cell. Each library was
barcode sequenced using a 2 × 250-bp format. The MiSeq run was performed using the
MiSeq Reagent Kit v3 (600 cycles) chemistry. The following steps were then performed
for assembly: (1) BBMap package was used to remove adapters and keep high-quality
reads; (2) filtered reads were assembled using SPAdes (version v3.13.0; —-phred–offset 33
—-cov–cutoff auto –t 16 –m 64 —-careful –k 55,97,127) [70]; (3) contigs were discarded if the
length was <1kbp (BBTools reformat.sh: minlength).

Assembly and annotation stats are reported in Appendix A Table A1. Open reading
frame (ORF) prediction was performed using RAST [71]. For the taxonomic classification
of the AFE strains we used the Genome Taxonomy Database (GTDB-Tk) version 2.1.0 [72].
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4.6. In Silico Analysis of Antimicrobial Biosynthetic Gene Clusters in WPB and AFE Strains

The presence of biosynthetic gene clusters (BGCs) encoding for putative non-ribosomal
peptidase synthetase (NRPS), polyketide synthases (PKSs), and other enzymes involved
in the synthesis of secondary metabolites with predicted antimicrobial activities was per-
formed by using the antiSMASH (v6.1.1) [73]. The analysis included the antiSMASH
options for MIBiG comparison, ClusterBlast and KnownClusterBlast similar gene clusters,
and the Pfam and TIGRFAM domains.

4.7. Occidiofungin Mutant Construction

A plasmid was first constructed for directed mutagenesis of endophyte strains. To
ensure the selectable marker would be functional in the endophyte, the kanamycin resis-
tance gene was cloned from pBHR-GFP into the EcoRI site of pUC18 using pGEM-T-Easy
(Promega), and named pMUT0. Using the approach of Zuniga and colleagues [74], the ofcE
gene of WPB was targeted. Primers were designed to amplify a 1Kb portion of the ocf E
gene from WPB, and BamHI sites were added to the primers to facilitate cloning into the
BamHI site of pMUT0. Sequences of the primers were as follows:

Forward primer, TAACGAAAGCTTAAACCGTGTACGACGCCTAT
Reverse primer TAACGAGGATCCCTGCTGAAGTACGCATCCGA
The resulting plasmid was purified and electroporated into electrocompetent WPB

cells. Kanamycin resistant colonies were verified by PCR to have a disruption of the
ofcE gene.

4.8. Chemical Extraction and Analysis of Secreted Antimicrobials

Rhizoctonia solani (RS) was inhibited by strain WPB and most of the AFE bacterial
strains (AFE 1, 3, 4A, 5, 8, 9, 16, 21B, and 22), and was therefore chosen for antifungal
chemical discovery. R. solani was grown on PDA (potato dextrose agar). Square plugs
(0.8 cm) were then taken from the active margin of R. solani, and transferred to new PDA
plates. After 24 h of fungal growth, 4 drops (2.5 microliters per drop) of a 0.2 OD600
culture were added equidistantly to the periphery of the plate. Plates were incubated
for another 6 days at 20 ◦C before the zone of inhibition was cut out for extraction. In
order to extract the most compounds, a mixture of acetonitrile, water, and methanol
(ACN:H2O:MeOH; 2:1.5:0.5) was used with 0.1% formic acid. Extracts were run on the
AB Sciex 5600 QTOF Tandem Quadrupole mass spectrometer in positive mode using
reverse phase chromatography at the University of Washington Medicinal Chemistry Mass
Spectrometry Center. The occidiofungin peak was determined by the known masses of
occidofungin A and B [24].

4.9. Assays for Symbiotic Traits

The production of auxins as well as tricalcium phosphate solubilization were quanti-
fied as described [14]. The presence of the nitrogenase subunit nif H gene was determined
as described [14]. Nitrogen fixation was assessed using the acetylene reduction assay as
follows. Cell suspensions were adjusted to an optical density (OD600) of 0.4 in nitrogen-free
medium. One hundred microliters were transferred to 15mL amber vials containing 6ml of
NL-CCM agar [75]. Vials were dosed with 0.1ml acetylene gas and incubated for 3 days at
30C. Headspace was analyzed with a gas chromatograph equipped with a flame ionization
detector as described [76]. Strain WP5 [21], a diazotrophic endophyte, was included as a
positive control. AFE3 and AFE9 were tested in triplicate while the remaining AFE strains
that were all negative by PCR for the presence of the nitrogenase gene were tested in singlet
and in total served as negative controls.

5. Conclusions

This study expands our understanding of the potential for bacterial endophytes to be
used in biocontrol applications. Direct in vitro screening for antimicrobial activity led to
the discovery of many endophytes of poplar that had potential for use in biocontrol. While
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occidiofungin was determined to be the primary mode of action for the Burkholderia strain,
the lack of this biosynthetic gene cluster in the new isolates points to different mechanisms
at work. Several of the strains harbored genes encoding known antimicrobial compounds,
while others had none, indicating novel antifungal pathways yet to be discovered. These
varying and perhaps novel mechanisms of antimicrobial activities may be required to
reduce the risk of the development of resistance by pathogens. The next phase of this
research would be to conduct in vivo tests with pathogen-infected agricultural crops to
determine if consortia of strains with these in vitro pathogen inhibition activities will protect
the host plants. It will also be necessary to test more strains of each pathogen species to
assess the applicability. In addition to their biocontrol potential, some of the endophyte
strains could have the ability to be beneficial in other ways such as providing essential
nutrients, including nitrogen and phosphorus. With the ability of many endophytes to
colonize a broad spectrum of crop species, and to colonize systemically, the endophytes
studied here likely have the tools required to chemically defend their host while also
strengthening it from within.

6. Patents

The work was not patented but reported in the University of Washington Report of
Innovation #48629.
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Table A1. Assembly and annotation statistics.

Strain Genus Genome
Size (Mbp) Scaffolds N50 GC % ORF CDS

AFE1 Erwinia 5.30 19 708,447 54.9 5055 4982

AFE3 Rahnella 5.46 22 420,146 53.5 5177 5099

AFE4A Bacillus 3.96 25 422,228 46.4 4163 4070

AFE5 Pseudomonas 5.91 68 154,070 59.5 5514 5453

AFE8 Pseudomonas 6.14 30 506,261 60.5 5740 5678

AFE9 Rahnella 5.76 52 204,001 52.2 5668 5589

AFE16 Pseudomonas 5.95 57 181,015 60.5 5690 5627

AFE21B Bacillus 4.12 22 585,429 46.2 4351 4269

AFE22 Rhanella 5.52 47 200,569 52.1 5339 5262

Table A2. Summary of GTDB-tk taxonomic classification of AFE strains.

AFE Strain
ID Classification Closest GTDB-tk

Type-Strain Is Type Strain Closest Type-Strain
NCBI Accession Species Cluster Link

AFE1 Erwinia billingiae Erwinia billingiae Eb661 YES GCF_000196615.1 https://gtdb.ecogenomic.org/species?
id=Erwinia%20billingiae

AFE16 Pseudomonas_E
graminis_D Pseudomonas graminis WP8 NO GCF_004364335.1 https://gtdb.ecogenomic.org/species?

id=Pseudomonas_E%20graminis_D

AFE21B Bacillus velezensis Bacillus velezensis
NRRL B-41580 YES GCF_001461825.1 https://gtdb.ecogenomic.org/species?

id=Bacillus%20velezensis

AFE22 Rahnella variigena Rahnella variigena
CIP 105588 YES GCF_003610915.1 https://gtdb.ecogenomic.org/species?

id=Rahnella%20variigena

AFE3 Rahnella victoriana Rahnella victoriana
DSM 27397 YES GCF_004330295.1 https://gtdb.ecogenomic.org/species?

id=Rahnella%20victoriana

AFE4A Bacillus velezensis Bacillus velezensis
NRRL B-41580 YES GCF_001461825.1 https://gtdb.ecogenomic.org/species?

id=Bacillus%20velezensis

AFE5 Pseudomonas
kitaguniensis

Pseudomonas kitaguniensis
MAFF 212408 YES GCF_009296165.1 https://gtdb.ecogenomic.org/species?

id=Pseudomonas_E%20kitaguniensis

AFE8 Pseudomonas lurida Pseudomonas lurida
LMG 21995 YES GCF_002563895.1 https://gtdb.ecogenomic.org/species?

id=Pseudomonas_E%20lurida

AFE9 Rahnella aceris Rahnella aceris SAP-19 YES GCF_011684115.1 https://gtdb.ecogenomic.org/species?
id=Rahnella%20aceris

https://gtdb.ecogenomic.org/species?id=Erwinia%20billingiae
https://gtdb.ecogenomic.org/species?id=Erwinia%20billingiae
https://gtdb.ecogenomic.org/species?id=Pseudomonas_E%20graminis_D
https://gtdb.ecogenomic.org/species?id=Pseudomonas_E%20graminis_D
https://gtdb.ecogenomic.org/species?id=Bacillus%20velezensis
https://gtdb.ecogenomic.org/species?id=Bacillus%20velezensis
https://gtdb.ecogenomic.org/species?id=Rahnella%20variigena
https://gtdb.ecogenomic.org/species?id=Rahnella%20variigena
https://gtdb.ecogenomic.org/species?id=Rahnella%20victoriana
https://gtdb.ecogenomic.org/species?id=Rahnella%20victoriana
https://gtdb.ecogenomic.org/species?id=Bacillus%20velezensis
https://gtdb.ecogenomic.org/species?id=Bacillus%20velezensis
https://gtdb.ecogenomic.org/species?id=Pseudomonas_E%20kitaguniensis
https://gtdb.ecogenomic.org/species?id=Pseudomonas_E%20kitaguniensis
https://gtdb.ecogenomic.org/species?id=Pseudomonas_E%20lurida
https://gtdb.ecogenomic.org/species?id=Pseudomonas_E%20lurida
https://gtdb.ecogenomic.org/species?id=Rahnella%20aceris
https://gtdb.ecogenomic.org/species?id=Rahnella%20aceris
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