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Abstract: Genetic recombination is used as a tool for modifying the composition of poxvirus genomes
in both discovery and applied research. This review documents the history behind the development of
these tools as well as what has been learned about the processes that catalyze virus recombination and
the links between it and DNA replication and repair. The study of poxvirus recombination extends
back to the 1930s with the discovery that one virus can reactivate another by a process later shown to
generate recombinants. In the years that followed it was shown that recombinants can be produced
in virus-by-virus crosses within a genus (e.g., variola-by-rabbitpox) and efforts were made to produce
recombination-based genetic maps with modest success. The marker rescue mapping method proved
more useful and led to methods for making genetically engineered viruses. Many further insights
into the mechanism of recombination have been provided by transfection studies which have shown
that this is a high-frequency process associated with hybrid DNA formation and inextricably linked
to replication. The links reflect the fact that poxvirus DNA polymerases, specifically the vaccinia
virus E9 enzyme, can catalyze strand transfer in in vivo and in vitro reactions dependent on the
3′-to-5′ proofreading exonuclease and enhanced by the I3 replicative single-strand DNA binding
protein. These reactions have shaped the composition of virus genomes and are modulated by
constraints imposed on virus–virus interactions by viral replication in cytoplasmic factories. As
recombination reactions are used for replication fork assembly and repair in many biological systems,
further study of these reactions may provide new insights into still poorly understood features of
poxvirus DNA replication.

Keywords: vaccinia virus; poxvirus; genetic recombination; marker rescue; DNA replication;
DNA polymerase; E9L; strand transfer

1. Biological Function of Recombination

Most of us learn about recombination in introductory genetics. There we studied the
pioneering work of T.H. Morgan and his students and how that led to the discovery that
inherited traits (genes) reside on chromosomes and can be mapped into linear arrays by
analyzing the frequency of recombination between fruit fly genes. In subsequent years,
such studies along with H. Muller’s new insights into the origins of mutations and J.B.S.
Haldane’s work on population genetics were to form the foundations of what J. Huxley
called the “Modern synthesis”. The modern synthesis united Darwin’s theory of natural
selection with these and other new (1940s) discoveries in genetics. It served to explain how
selection acting upon a population of organisms, each encoding (and sometimes expressing)
different combinations of recombining traits, could drive the evolution of a species. Al-
though Eugene Koonin has argued that “The edifice . . . has crumbled, apparently, beyond
beyond repair” [1], for most of us, the experimental foundations of the modern synthesis
still lie at the core of our understanding of genetics and genetic recombination.

From the author’s perspective, a problem with the way introductory genetics is
taught is that few of us instructors have time to explain why peas and flies are having
sex and recombining genes. The knowledge vacuum can lead students to adduce that
recombination mostly exists to eliminate bad gene combinations and generate good ones
(a solution to a problem called Muller’s ratchet [2]). However, selection only works in the
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here and now, it cannot anticipate the future advantages the recombination machinery
might offer. Therefore, what is the purpose of these systems? The simplest answer is that
genetic recombination serves an essential role in DNA repair and especially promotes
replication restart at stalled or broken replication forks.

This understanding emerged in the last few decades, although the links between
recombination and DNA repair had been known for many years. The E. coli recA gene was
the first recombination gene ever found, using a screen for mutagenized strains that did not
recombine in Hfr crosses [3]. Even then, it was noted that these recA mutants were also UV-
sensitive as are many of the other recombination-defective mutants that were later identified
in different organisms. These many disparate observations have been assembled into now
coherent models linking replication, repair, and recombination whose development has
been well-summarized in helpful reviews [4–7]. Derivatives of these models have since
been proposed for eukaryotes [8,9]. Interestingly, where viruses are concerned, one can see
that many potential links between repair, replication, and recombination were anticipated
by Anna Skalka and Gisela Mosig in their pioneering studies of bacteriophage T4 [10],
and lambda [11], replication. These studies in bacteria and phage have colored our own
investigations and I will return to reconsider the implications throughout this review.

2. Poxviruses

Far more comprehensive descriptions of the poxvirus infection cycle can be found
in many excellent reviews [12–21], and will not be reiterated here. However, if one has
an interest in virus recombination then there are features of poxvirus biology deserving
of special consideration. Of perhaps the greatest importance is the observation that these
viruses replicate in the cytoplasm of infected cells, in compact membrane-associated struc-
tures called virosomes or factories [22]. Historically called Guarnieri bodies, each of these
structures are now known to originate from a single infecting particle [23]. This mode
of replication isolates one virus from a second and constrains recombination between
co-infecting particles [24]. Cytoplasmic replication also restricts access to components
of the cell’s DNA replication and repair machinery, while exposing poxviruses to DNA
sensors that regulate innate immune responses [25]. This has likely driven the evolution
of large genomes, now known from sequencing [26], and other investigations to encode
many proteins required by processes like transcription and replication as well as immune
evasion. Although the nucleus is clearly not an impervious barrier to enzyme recruitment
(cellular DNA ligases can complement vaccinia virus (VACV) A48R mutations [27], and
topoisomerase II is found in VACV factories [28]), the demonstration that virus DNA
synthesis is still seen in enucleated cells [29], shows poxviruses possess a considerable
degree of nuclear autonomy. The fact that all these virus replication and assembly reactions
take place in the cytoplasm also provides microscopists with a clear view of these events,
unobscured by nuclear components.

Collectively, these features of virus biology offer the tools and impetus to look for
virus-encoded recombination activities.

3. Historical Insights

Poxvirus research has long been associated with smallpox research and dates back to
Jenner’s pioneering discovery that one could vaccinate against smallpox using a safer agent
than the variola virus (VARV) than in current use [30]. The specific virus Jenner was using
remains a subject of debate, but documentary and genomic evidence collectively suggests
that the modern smallpox vaccine (vaccinia virus) likely originated in horses as a horsepox
virus [31–34]. In turn, these strains share ancestry with physically larger and genetically
diverse families of Orthopoxviruses called cowpox viruses. While VACV remains the most
intensively studied of all poxviruses, the earliest studies with some relevance to virus
recombination did not use that virus. In 1936 Berry and Dedrick described how infectious
myxoma virus could be recovered from rabbits injected with a mixture of heat-inactivated
myxoma virus and infectious Shope (or rabbit) fibroma virus (SFV) [35]. Fenner et al. later
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argued that this was more likely the first illustration of poxvirus reactivation rather than
genetic transformation [36], which, as discussed later, employs a helper virus to recombine
and replicate the damaged DNA of a second poxvirus. Using the same methods and strains
that he had used a year previously to first document poxvirus recombination [37], it was
shown that reactivation reactions also generated VACV recombinants [36].

These experiments were complicated by a paucity of genetic markers and the diffi-
culties of assaying them. For example, the phenotypes scored by Fenner and Comben
in VACV-rabbitpox crosses included pocks on chorioallantoic membranes, virulence in
mice, rabbit lesions, haemagglutin activity, and heat resistance. Despite the challenges,
recombinants were still easily recovered leading these authors to offer the conclusion that
“Recombination was not an uncommon event . . . ” [37]. These pioneering studies were fol-
lowed by others in a series of papers from the John Curtin School where recombination was
used to detect and map rabbitpox “white” complementation and linkage groups [38,39],
and study hybridization among and between Orthopoxviruses and Leporipoxviruses [40].
The recovery of a putative hybrid between myxoma and Shope fibroma viruses [40], an-
ticipated the later discovery of a Leporipoxvirus called malignant rabbit virus and the
demonstration that it was indeed a viable genetic hybrid [41,42].

In the absence of sequence data, the fact that these methods could be used to delineate
the relationships between poxvirus strains was adapted to try and clarify the still uncertain
relationships between VARV and other Orthopoxviruses. The pursuit of that goal led Bed-
son and Dumbell to test whether hybrid viruses could be recovered using chorioallantoic
membranes as a culture environment and VARV to reactivate heat-inactivated cowpox and
rabbitpox viruses. Using semi-permissive growth temperatures to modulate VARV growth,
hybrids were recovered between rabbitpox and VARV minor (a.k.a. Alastrim), and between
cowpox and VARV major [43–45]. The products of these studies were later transferred
to the United States Center for Disease Control, and have reportedly been sequenced.
The continued existence of these unique strains remains a matter of controversy. There
have long been calls for their destruction because the knowledge gained from combining
sequence, virulence and host-range data [43,44], might provide unwelcome insights into
smallpox pathogenicity.

The adoption of tissue culture methods in the 1960s facilitated the production and
characterization of new poxvirus mutants; these and other advances in virus biology and
biochemistry were reviewed by Joklik in 1968 [46]. Recombination was being used at the
time to build detailed maps of bacteriophages [47], but with poxviruses complementation
and recombination analysis found a more limited use as tools for differentiating between
mutants [48,49]. In an interesting study, it was shown that at least one of the two co-
infecting viruses has to be replicating and that a delay in adding a second infectious virus
reduced the recombination frequency (Rf) in a time-dependent manner [50]. Although
its role in recombination was still to be documented, it was also discovered that VACV
infection led to the appearance of a new DNA polymerase [51–53] bearing a single-strand
exonuclease activity [54]. In addition, advances in electron microscopy put this work
into a cellular context and began to establish all the now understood events in the VACV
life-cycle including the relationships between sites of cytoplasmic DNA replication and
virion assembly [55,56].

The later 1960s and 1970s was an extraordinarily interesting and productive period
as the molecular biology revolution swept through the field of virology. It was shown
that VACV infection induced the expression of many other enzymatic activities relating
to nucleic acid metabolism including a thymidine kinase [57], DNA-dependant RNA
polymerase [58], DNA-dependent ATPase [59], and a DNA ligase [60]. Gene expression
was regulated in a manner resembling the early and late genes of bacteriophage [61,62],
by an array of proteins and regulatory elements (reviewed in [63]). The fact that some
enzymes were packaged in the virion was also becoming apparent. Viruses offered tractable
models for researchers who were perhaps more interested in cellular biology, but it was
soon clear that poxviruses were unusually large viruses with some of the pre-restriction
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mapping estimates for the size of a VACV genome ranging from 190,000–260,000 bp [64,65].
These genomes are also cross-linked at the telomeres [65] and, during replication, form
rapidly sedimenting, protein-coated complexes [66–68]. This period of transition and
discovery is perhaps naturally bookmarked by the publication in 1977 of the VACV HindIII
restriction map, which also hinted at what were later shown to be inverted duplications in
the telomeres [69]. A legacy of these early maps is the HindIII-based naming convention
that is still used to label VACV genes and proteins [26].

During this period there were also some continuing efforts to assemble and genetically
map collections of temperature-sensitive and/or drug-resistant mutants [70–73]. One such
study [74], used three-factor crosses and mutations later mapped to D12L and D13L [75,76],
to construct a linear recombination map of the region. A molecular interpretation of
these data is complicated by the fact that temperature sensitivity and rifampicin-resistant
phenotypes overlap in D13L, and by the many mutations introduced by chemical muta-
gens [77]. However, as a first approximation one can estimate that such crosses yield ~1%
recombinants per 1 kbp.

These studies were followed by more extensive efforts to generate recombination-
based maps of VACV genes or genomes [78–80]. The experiments involved co-infecting cells
with two viruses at a high multiplicity of infection, so minimizing the odds of a cell being
infected with just one of the two genotypes—which cannot yield recombinants. Because of
later research [75,81–83], one can approximate the physical location of many of the markers
used in these crosses and, therefore compare the genetic and physical maps. However, as
we have shown from a meta-analysis of these data [84], the classical relationship between
Rf and physical distance is obscured by experimental noise in virus-by-virus crosses. At
distances <20 kbp, these and other experiments detect ~1.5% recombinants per 1 kbp,
but the variance in intra- and inter-genic crosses [83], is generally too great to use the
relationships to easily and accurately assemble Rf-based genetic maps. Linkage is lost at
longer distances, but even in long-distance crosses one never recovers 50% recombinants.
Since these studies incorporated the necessary two-fold correction for there being two
(assumed) reciprocal classes of recombinants, it suggests that other factors operate to limit
recombinant production. From a practical perspective, these problems meant that the
marker-rescue technologies described in the following sections became the tool of choice
for mapping VACV mutations.

The end of the 1970s also marked a significant event, the eradication of smallpox
as an endemic disease [85]. As a result of the growing recognition of the hazards that
this created from a public health perspective [86], Bedson and Dumbell’s studies [43,44],
have never been repeated and, for the most part, VARV was abandoned as an object
of discovery research.

4. Marker Rescue Studies

The development of methods for transfecting DNA [87], led researchers to study
how this technology could be combined with reactivation methods to produce recombi-
nant poxviruses. This was first demonstrated in three papers published in 1981 [88], and
1982 [89,90]. Properly speaking, all three papers described a process known as “marker
rescue”, wherein the desired trait is encoded on a fragment of transfected virus DNA, and
it can be used to generate recombinants if the transfected DNA and replicating virus DNA
share regions of sequence identity (i.e., homology). Sam and Dumbell also showed that in-
fection and transfection methods could be used to reactivate heterologous Orthopoxviruses
and, if the DNA is cut, generate hybrids between rabbitpox and ectromelia virus [88]. What
probably helps improve the efficiency of these reactions is that any DNA transfected into
poxvirus-infected cells is also amplified through a non-specific DNA replication process
that is still poorly understood from a mechanistic perspective [91]. Regardless, these discov-
eries opened the doors wide for constructing recombinant poxviruses of every imaginable
type. For example, the method was soon used to assemble transgenic VACV recombinants
encoding the herpes simplex virus thymidine kinase [92]. Readers who are interested in
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poxvirus vector technology and its applications can find an introduction to the topic in
many informative reviews (e.g., [93–99]).

Since these initial discoveries, marker rescue has been widely used to map poxvirus
genes (e.g., [79–81,100–102], reviewed in [103]). Perhaps the most comprehensive applica-
tion of the technology is illustrated by a paper from Richard Condit’s laboratory, where it
was used to map three collections of temperature sensitive VACV mutations [81]. Marker
rescue remains a powerful tool for cloning dominant traits such as those encoded by an
unknown genetic locus [104], and drug resistance [105–107]. The development of these
technologies of course also sparked much interest in using recombination as a tool for
genetically modifying or disrupting poxvirus genes. This has since been aided by the
development of many different drug-selectable or visible markers such as VACV thymi-
dine kinase [108], E. coli beta-galactosidase [109], and xanthine-guanine phosphoribosyl
transferase [110], fluorescent proteins [111,112], and hybrid proteins [113]. As these investi-
gations progressed through the 1980s, they then also began to yield new insights into the
mechanism by which poxviruses catalyze homologous genetic recombination.

5. Recombination and Repair Models

Researchers have proposed many models of varying degrees of complexity to explain
the molecular steps that yield recombinant DNA molecules. The complexity derives from
the need to account for the sometimes-esoteric properties of the homologous recombination
reactions that are studied in bacteria and in meiotic and mitotic eukaryotic cells. Complexity
also arises when linking recombination repair to processes like replication restart and the
cell cycle. Although viruses and phages may not require such schemes to recombine
DNA [114], a few of these models should be described to put the terminology in context.
Many excellent papers can provide a comprehensive review of this literature, two of the
most accessible are reviews by Ranjha et al. [115], and Weller and Sawitzke [114]. All of
these models ultimately describe ways in which a broken DNA duplex can be repaired
by copying homologous sequences located on either a sister duplex (e.g., the leading and
lagging strands in a replication fork), or on a second homologous duplex (e.g., transfected
DNA, another genome, or chromosome).

Broadly speaking, one can categorize recombination models as either requiring the
ATP-dependent invasion of a duplex strand by a single strand, through displacement (D)-
loops, or simpler models dependent on single-strand annealing reactions. The models that
predicted the existence of a strand invasion step led to the discovery that these reactions
were catalyzed by E. coli RecA protein [116], as well as an abundance of orthologs in many
branches of cellular life, including hRAD51 [117]. Figure 1 illustrates the double-strand
break repair model [118], that in various forms lies at the heart of more embroidered recom-
bination and repair schemes. The model provides a connection between replication and
recombination and, depending upon how the Holliday junctions are resolved, can produce
cross-overs (or not) in flanking markers. Because processes like this also create hybrid
DNA, which may or may not be subjected to mismatch repair, they can also explain genetic
phenomena historically called post-meiotic segregation and gene conversion in fungi.
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Figure 1. Recombination mediated by DNA strand invasion. The figure shows the double-strand
break repair model for recombination and repair [118]. The first step in the repair reaction depends
upon the invasion of an undamaged duplex strand by a protein-coated and homologous single-
strand of DNA. Further extension of the displacement loop, combined with DNA replication and
additional rounds of strand annealing and repair synthesis, serves to replace any lost sequence with
DNA encoded on the intact homolog. During this process, hybrid DNA can be generated by strand
exchange, which may or may not be later subjected to mismatch repair. How the two Holliday
junctions are cut by a structure-specific nuclease determines whether or not the flanking genetic
markers are exchanged. The 5′-ends are marked with circles.

However, as I discuss below, poxvirus infections do not induce an ATP-dependent
strand transferase [119], nor do poxvirus genomes encode RAD51/RecA homologs. The
biochemical and genetic evidence instead suggests that poxviruses employ exonucleases
and single-strand annealing reactions to produce recombinants [120]. These have been
called “two-component” systems because they require just an exonuclease and a second
protein to promote strand annealing. The bacteriophage λ Red (“recombination deficient”)
recombination pathway, which employs a 5′-to-3′ exonuclease and Redβ “annealase”,
serves as the prototype for these two-component systems [121]. The herpes simplex virus
UL12 and ICP8 proteins catalyze a similar reaction [122]. Figure 2 illustrates some central
elements of the reactions catalyzed by such systems, including the potential to prime
formation of replication forks and rolling circle DNA synthesis. It is important to note
that these pathways do not operate in isolation and there are circumstances when the
actions of these primary phage or virus-encoded systems are also modulated by host
enzymes. For example, both the E. coli recA [123], and human hRAD52 [124], pathways
affect recombination of phage λ and HSV, respectively.
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Figure 2. Basic elements of reactions catalyzed by two-component systems like the phage λ encoded
“Red” enzymes. Panel (A) illustrates how the 5′-to-3′ Red exonuclease can expose varying lengths
of complementary single strands, which are then free to anneal in reactions promoted by Redβ.
Panel (B) illustrates how the process might create new replication forks if nuclease(s) has exposed
complementary sequences. If the new joint is located on a circular molecule (grey oval), this reaction
could initiate rolling circle DNA replication. The 5′-ends are marked with circles and the lettering
(e.g., a/a’, b/b’, c/c’) indicates complementary sequences within regions of homology.

In contrast to homologous recombination, poxvirus non-homologous recombination in
a much rarer process, although there is no doubt of the biological importance as horizontal
gene transfer offers a route by which viruses can acquire and transmit novel traits [125]. In
one example, fowlpox virus has been shown to acquire and vector an avian retrovirus [126].
Another example is illustrated by the viral Golgi anti-apoptotic protein (vGAAP), a Bax
inhibitor encoded by the VACV strain Lister 196 gene [127,128]. The vGAAP gene is flanked
by 21 bp duplications characteristic of LINE-1 mediated transposition events [129]. Curi-
ously, vGAAP is not encoded by most other VACV strains, but it and some flanking genes
are found in many cowpox strains and the sequence suggests an interesting history. The
duplications suggest it was first acquired by transposition into an ancestral cowpox strain,
but the gene more recently transferred by homologous recombination into a precursor of
VACV Lister. This may not be surprising given the 19th century practise of propagating and
“invigorating” smallpox vaccines (such as the Beaugency lymph [33]) by mixing different
wild-sourced inocula. This process of horizontal gene transfer with target site duplications
has since been replicated in culture using a selection for K3L and E3L activities [129,130].
Transfection studies have also been used to recover recombinants bearing non-homologous
genes, although the viruses generated this way look different from those generated by
transposition [131]. Because of the unique features of these, and perhaps related [132],
kinds of events they will not be discussed further.
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6. Transfection Studies

The observation that any DNA transfected into a poxvirus-infected cell is replicated
in trans [91], provided a useful tool for investigating the properties of these reactions.
Using Southern blots and transfected plasmids, we originally showed that the process is
dependent upon infection and generates high molecular weight concatemers composed of
all possible arrangements of the restriction site markers in newly replicated DNA. Impor-
tantly, these reactions required virus replication and the process could be blocked with the
polymerase inhibitor, phosphonoacetic acid [133]. Similar reactions were observed in cells
infected with an Orthopoxvirus (VACV) or a Leporipoxvirus (myxoma and SFV), although
the SFV-catalyzed reactions were more efficient. Such high-frequency recombination reac-
tions would cause the well-known instability of tandemly repeated poxvirus sequences
(e.g., [108,134,135]) and promote indel mutagenesis [136].

A convenient feature of this process is that it generates long concatemers, and so one
can transfect λ phage DNA and later convert the extracted recombinant products into phage
particles by in vitro packaging. All the genetic tools devised by phage researchers can then
be used to study a poxvirus problem. Using these assays, several additional features could
be adduced about poxvirus (in this case SFV) recombination systems. Perhaps the most
striking feature was that linkage is lost in the transfected DNAs at distances >350–500 bp.
This is a high-frequency process where the 0.02% recombinants bp−1 is comparable to what
is measured in T4 and λ crosses [137]. Even correcting for a missing class of doubly mutant
recombinants, we could also never recover 50% of recombinants. This suggested that
something was reducing the multiplicity of genomes interacting in what Frank Stahl has
called the “mating room” [138]. Transfection methods can deposit a lot of well-mixed DNA
into an infected cell, and so the limits most likely relate to how many recombining molecules
can first find their way into factories where replication and recombination take place. We
estimated this limit comprises 4-to-5 λ-sized DNAs [137]. Some of the crosses also exhibited
a phenomenon called “high negative interference”, where many more recombinants were
recovered than expected when the markers were located close together (<100 bp) or if they
were arranged in Type II (i.e., repulsion) crosses.

High-negative interference is characteristic of systems that produce hybrid DNA
and, in the aforementioned experiments, it is caused by E. coli mismatch repair systems
acting on the hybrid DNA delivered by the packaged phage. These studies used pairs of
λ cI mutations since the clear versus turbid plaque phenotype provided a simple assay
for recombinant molecules. Interestingly, ~1% of the phage plaques showed a mottled
phenotype, and the effect was enhanced 2–3-fold when the phages were plated on an
E. coli mutS strain [139]. This offered further evidence that the molecules recombined
in virus-infected cells contained significant quantities of hybrid DNA. Using denaturing
gradient polyacrylamide gels, Southern blots, and plasmids encoding selected mutations,
up to 25% of the mutant sites could be found transiently embedded in heteroduplex DNA
in DNA recovered from SFV-infected and transfected cells. The rise and decline of the
hybrid molecules correlated closely with the replication of the transfected DNAs and the
appearance and disappearance of the SFV DNA polymerase activity.

7. Biochemical Studies

These data provided the rationale for experiments designed to detect and purify an
activity catalyzing the requisite strand transfer reactions. Using a gel-based assay [140,141]
(Figure 3, panel A), an activity could be purified ~170-fold from VACV-infected HeLa
cells that produced α-shaped joint molecules in reactions containing single-stranded M13
circular DNA and a homologous linear duplex [119]. The reaction was ATP independent
and by locating non-homologous blocks of sequence on the ends of the linear duplex
molecule, one can deduce that the hybrid DNA is formed and extended in a 5′-to-3′

direction relative to the complementary target sequences located on the (+) stranded
single-strand circle. The purest fractions contained DNA polymerase activity and three
proteins (approximately 110, 52, and 32 kDa) that later research [142], suggests are likely
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the heterotrimeric replication complex comprising E9, A20, and D4 with sizes of 117, 49,
and 25 kDa, respectively. However, at the time the imperfect chromatographic correlation
between polymerase and recombinase activity created doubts that the polymerase was the
strand transferase [119].

To clarify the situation we used a method devised by McDonald and Traktman [143],
to prepare a highly purified form of monomeric VACV E9 polymerase and showed that it
too catalyzed strand transfer reactions [120]. This study also showed that the reaction was
stimulated by adding VACV I3 single-strand DNA-binding (SSB) protein [144–146], and
transfection and biochemical studies showed that a Cts42 E9L mutation destabilized the re-
combinase activity in vivo and in vitro. With this highly purified form of VACV DNA poly-
merase, one can show that the enzyme also catalyzes another reaction (Figure 3, panel B)
that joins together two (or more) linear DNA duplexes bearing overlapping end homol-
ogy [147]. Radioactive end labeling showed that the duplex–duplex joining reaction was
dependent upon limited attack on the molecules by the E9 3′-proofreading exonuclease.

Figure 3. Strand transfer and duplex joining reactions catalyzed by VACV DNA polymerase. Panel
(A) shows an assay that uses substrates comprising a single-stranded DNA circle and homologous
linear DNA duplex [120]. The products bear a displaced single strand that produces an α-shaped
structure in an electron microscope, and the polarity of the reaction can be adduced by incorporating
blocks of non-homologous sequence on either end of the duplex (not-shown). Panel (B) illustrates
a duplex strand joining reaction. Radioactive end-labeling showed that the products had been
processed by a 3′-to-5′ exonuclease [147]. The 5′-ends are marked with circles and the lettering (e.g.,
a/a’, b/b’, c/c’) indicates complementary sequences within regions of homology.

The simplest model that can ties together these studies would be if the 3′-end of the
duplex (-) strand was transiently attacked by the 3′-5′ exonuclease and then additional
portions of that 3′-ended strand were displaced by the enzyme tracking in a 5′-to-3′ manner
relative to the duplex (+) strand. The displaced 3′-ended strand would then be free to
hybridize with either the (+) stranded single-strand circle (in the M13 assay) or with
sequences exposed by another enzyme attacking a second homologous duplex (in the
duplex–duplex assay) (Figure 3). A critically important feature is that these reactions offer
a possible route by which broken replication forks can be reassembled and replication
restarted through replication fork reversal [148], and likely reflects the biological driver
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behind the evolution of such a system (Figure 4, panel A). These reactions also produce
the 3′-ended primers that can prime more DNA replication and, like λ Red recombination,
could prime a rolling hairpin process that produces viral concatemers. Subsequent studies
identified some unique reaction features that differentiate E9 from other proof-reading
polymerases. These include the fact that E9 has an unusually high affinity for duplex ends,
can process molecules containing single-stranded 3′-ended internal branches into structures
containing meta-stable and ligatable nicks, and that physiological dNTP concentrations are
not profoundly inhibitory [149,150].

Figure 4. Hypothetical ways in which a two-component recombination reaction can repair broken
replication forks. Panel (A) shows how a migrating replication fork is broken through collision
with a nick. Fork reversal combined with strand transfer, annealing, and branch migration can
reconstruct the broken molecule. This provides time for repair and restart. The “chicken foot”
is a Holliday junction, and could be processed in various ways by enzymes such as A22 and/or
G5. Panel (B) illustrates how mispairing could produce an aberrant joint and duplicate adjacent
sequences (red arrows). The 5′-ends of are marked with circles.

These I3·E9 catalyzed single-strand annealing reactions clearly belong to the two-
component category of recombination schemes while differing from systems like λ Red
in that the poxvirus reaction is initiated by a 3′-rather than 5′-exonuclease. The model is
unusual and proving that poxvirus recombination employs such a scheme in vivo presents
a challenge. A polymerase is required, but is that only because it is needed to replicate the
molecules that are being recombined and analyzed? The 3′-5′ exonuclease is special in one
sense in that unlike other proofreading exonucleases (e.g., T4 DNApol [151]) the VACV
E9L nuclease is an essential function [152]. Perhaps the best in vivo evidence in support of
the hypothesis comes from studying the behavior of recombination substrates where the 3′-
ends have been modified by incorporating molecules of the antiviral drug, cidofovir (CDV).
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CDV inhibits the activity of both the E9 3′-5′ exonuclease and the 5′-3′ polymerase [153],
but these effects are suppressed by an E9LA314T drug-resistant mutation in the exonuclease
domain, which enhances excision of newly incorporated CDV molecules [152]. Using both
biochemical and transfection studies, one can show that filling CDV into the ends of the
DNA inhibits E9-catalyzed duplex–duplex joining reactions in vivo and in vitro, but this
inhibition is overcome if one transfects CDV-blocked substrates into cells infected with an
E9LA314T-mutant virus. Many other of the reaction features observed in vitro were subse-
quently documented in vivo using plasmids as substrates in transfection assays [154,155].
This included the observation that linearized DNAs recombined much more efficiently than
circular substrates and that as few as 12–16 bp of overlapping homology suffice to support
VACV-catalyzed duplex–duplex recombination. The reactions have some tolerance for
mismatched base pairs and so, for example, a C·A mismatch with a C in the 3′-ended and
an A in the 5′-ended strands can be used to track the fate of each strand near that end. After
transfecting these DNAs and retrieving the recombinant plasmids, sequencing showed
that the nucleotide near the 5′-end (the A in this example) was four times more commonly
recovered in the mature junctions than the C in the adjacent 3′-end [155]. Collectively, these
studies all implicate the VACV E9 3′-5′ proofreading exonuclease as an important driver of
single-strand annealing reactions in vivo.

Although a strand-transfer step is needed to catalyze the initial formation of recom-
bination intermediates, other gene products would still be required to process the joint
molecules into mature recombinants (Table 1). For example, the “chicken-foot” struc-
ture [148] seen in Figure 4 (panel A) is topologically a Holliday junction and such branched
structures, even if not further replicated, still need to be disarticulated to permit packaging.
A need for a Holliday junction resolvase was also long ago proposed to play a role in
converting concatemeric replication intermediates into hairpin-ended genomes [156]. The
VACV A22R gene was later discovered to encode a homolog of the RuvC family of bacterial
Holliday junction resolvases and A22 shown to cleave Holliday and other branched DNA
structures [157,158]. The observation that A22R is a late gene supports the hypothesis
that it is more likely required to debranch or decatenate the DNA in advance of packag-
ing. Bioinformatics also led Upton and colleagues to propose that VACV G5R encoded a
FEN-1 like flap endonuclease [159]. These enzymes cleave unpaired strands from duplex
substrates. Subsequent studies showed that, while G5R is not entirely essential (perhaps
because the E9 exonuclease can also catalyze FEN-1 like reactions [149]), a VACV ∆G5R
mutant exhibited a phenotype consistent with Upton’s proposal. Most notably, it produced
fragmented DNA, packaged DNA improperly, and exhibited a defect in double-strand
break repair [160]. Although poxvirus Type I topoisomerases can catalyze site-specific
strand transfers between molecules encoding a 5′-(C/T)CCTT-3′ motif [161–163], its pri-
mary role most likely still resides in the topoisomerase function as the presence of the
motif and its variants is not associated with any unusual increase in the frequency of
homologous recombination [164]. While it is difficult to exclude the possibility that there
are still other cellular and viral enzymes involved in catalyzing VACV recombination, the
D5 ATPase/helicase being a possible candidate, at first glance the virus appears to encode
all the essential proteins (E9, I3, A22, G5, and A48 (DNA ligase)) that would be needed to
collectively catalyze these reactions.



Pathogens 2022, 11, 896 12 of 26

Table 1. VACV proteins with links to replication and recombination.

Protein Gene Biochemical Activity Role in Recombination Reference

DNA polymerase E9L 3′-5′ exonuclease
5′-3′ polymerase Strand transferase [16,147,152]

Single-strand DNA
binding protein I3L Replicative high affinity SSB Stimulates E9-catalyzed

strand transfer [144,145,147]

RuvC-like Holliday
junction resolvase A22R Branch-specific endonuclease Cleaves 3- and 4-branched DNAs [157,158]

FEN1-like flap
endonuclease G5R Single-strand endonuclease Cleaves single-stranded DNA flaps [159,160]

DNA ligase A48R DNA ligase, binds cell
topoisomerase II Repairs nicks [28,165]

ATPase-helicase and
primase D5R Helicase (putative),

uncoating, primase (hypothetical) [166–169]

Uracil glycosylase D4R Uracil glycosylase, E9
processivity component (hypothetical) [16,142,170,171]

A20 A20R E9 processivity factor (hypothetical) [16,171,172]

8. Sequencing and Genomics

The application of sequencing and genomics technologies has provided further molecu-
lar insights into how recombination affects poxvirus biology. An early example is illustrated
by the sequencing of portions of the malignant rabbit virus, which showed that it was a
natural hybrid [42]. The virus likely arose when DNA encoding a portion of the SFV left
ITR and ITR-junction replaced homologous sequences encoding the myxoma virus right
ITR and its junction, and then the new genome rearranged again to extend and mirror [173],
the sequences encoding the recombinant ITRs. More recently a novel strain of lumpy skin
disease virus (LSDV) was discovered in Russia [174]. The LSDV Saratov (2017) strain ap-
pears to have been formed by recombination between field and vaccine strains, something
Gershon and his colleagues had predicted many years ago given the close similarities
between Capripoxviruses [175,176]. Bioinformatics [177], can also be used to detect old
past episodes of recombination by applying phylogenetic analysis to different segments
of virus genomes. For example, using these methods it was shown that the VARV minor
strain BRZ66_39 encodes blocks of sequence in the left and right ends that bear a dispropor-
tionate resemblance to homologous sequences in the VARV major strain NIG69_001 [178].
Similarly, the “patchy” pattern of polymorphic alleles found in Dryvax vaccine strains
suggests that these swarms of non-clonal viruses have been exposed to repeated rounds of
recombination [179]. One such ~150 nt patch in the I4L gene of a Dryvax clone encoded
a frameshift mutation and flanking polymorphic sites more similar to a horsepox virus
I4L locus than to other VACV I4L genes in these stocks. This may be a “molecular fossil”
reflecting the early history of North American smallpox vaccines [33,180,181].

The polymorphic sites (SNP’s) that have accumulated during passage and through
geographical isolation of smallpox vaccines provide a tool for exploring how much re-
combination any given genome has been exposed to. This is illustrated by an experiment
in which cells were co-infected with strains cloned from North American Dryvax and
Chinese TianTan vaccines [182]. These genomes differ by ~1400 single-nucleotide polymor-
phisms (SNPs), roughly one per 140 bp. After one or five rounds of passage, the progeny
were randomly cloned, sequenced, and the SNP patterns used to identify which parent a
segment derived from. The recombinants again exhibited a patchy pattern composed of
blocks of sequence derived from one or the other parent. A single round of cell passage
comprises at least 214 doublings (or perhaps more as only a portion of the DNA is packaged
into the infectious particles measured in plaque assays) and was associated with at least
18 ± 11 exchanges per genome (Figure 5). Bearing in mind that the viruses retrieved at
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the end of the first passage bear the imprint of all the preceding rounds of replication and
recombination, 14 doublings and 18 ± 11 exchanges per genome is not incompatible with
every genome undergoing one recombination event per replication cycle. There is a notable
discrepancy in that the 1.5% recombinants per 1 kb calculated from genetic considerations
equals 100% recombinants per 66 kb or ~3 exchanges per genome. This is much less than
18 ± 11 determined by sequencing. The most likely reason is that the viruses selected for
sequence analysis were screened to identify the subset bearing recombinant ends and so
avoid sequencing uninformative genomes. To the extent that a portion of viruses might
have replicated without yielding detectable recombinants in both studies, they would
have been counted in genetic studies as non-recombinants, while the sequencing studies
characterized only recombinants. The reasons for why some genomes would not have been
recombined at all are discussed below.

Figure 5. Patchy pattern of recombination between two strains of VACV [182]. Cells were co-infected
with two viruses cloned from stocks of Dryvax and Tian Tan vaccines, harvested 24 h later, replated,
and random progeny picked, plaque purified, and sequenced. The figure was constructed using
Base-by-Base [183], and maps sites where the Dryvax strain (top row) differs from the Tian Tan
strain (bottom row). These sites are distributed in patches of different length among the virus clones
randomly retrieved from the co-infection.

These experiments do also illustrate a still poorly understood feature of poxvirus
recombination, regarding how much sequence drift it takes to genetically isolate one family
or strain of viruses from another. One SNP per ~140 bp is of little consequence as illustrated
by the preceding study. At the other end of the spectrum, hybrids are never recovered when
SFV is used to reactivate VACV, where even the most highly conserved gene homologs (e.g.,
S068R and J6R) are only ~75% identical [184]. Plasmid transfection studies have shown that
two patches of flanking homology of <20 bp can still yield a few recombinants if the DNA
is linearized, but practically speaking >50–100 bp of flanking homology are still required
to produce recombinants in abundance. How a few embedded mismatches might further
affect the efficiency of these reactions has not been studied in detail. From a practical
perspective it may be that what is defined as a “genus” in poxvirus taxonomies (e.g.,
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Leporipoxvirus versus Orthopoxvirus) is partly due to genetic isolation through sequence
drift, but further confounded by factors like host range and intergenic incompatibilities.

Sequencing has also provided insights into another related genetic phenomenon
involving gene amplification under selection for increased gene expression. This was first
discovered by Mathews and colleagues while studying the VACV F4·I4 ribonucleotide
reductase complex. VACV ribonucleotide reductase is inhibited by hydroxyurea, but
continued exposure to the drug selects for resistant mutants. Many of the drug-resistant
viruses encoded multiple copies of the F4L gene arrayed as a tandem repeat and flanked
by novel joints [134]. The mechanism likely involves the creation of a direct duplication of
a segment of DNA through non-homologous recombination, followed by the amplification
of the repeat by homologous recombination. Such structures are unstable and revert to
the single copy state absent selection. A similar effect was later seen using a selection
for resistance to protein kinase R [185]. This requires the VACV K3L gene and, under
conditions where K3 is poorly able to suppress the kinase’s activity, an array of up to
16 K3L genes are formed, acquires and homogenizes any adaptive mutations, and then
collapses to leave behind a single copy of K3L again [186]. Importantly, Elde’s accordion
model provides a route around the “you can’t get there from here” problem, permitting a
screen for new adaptive mutations while polyploidy preserves an essential gene function.
Poxvirus genomes encode many examples of adjacent paralogous genes [187]. For example,
the two mRNA decapping enzymes encoded by the VACV D9R and D10R genes may well
have arisen via this pathway.

It is conceivable that these tandem duplications are a common but ephemeral feature
of poxvirus genomes. One possible explanation for their origin arises from the hypothesis
that the primary purpose of the E9-catalyzed reactions might be to promote repair of broken
replication forks [150]. Under normal circumstances, the sister strands and homologous
recombination can be used to reassemble a structure that was broken when the replication
fork collided with a nicked template (Figure 4, panel A). However, if the strands were
first accidentally joined through a mispairing event (a reaction that would be promoted by
hydroxyurea inhibiting dNTP synthesis), then repaired and replicated, it would duplicate
a segment of sequence separated by a novel joint (Figure 4, panel B). Thereafter, the
new duplication creates an opportunity for further rounds of inter- or intra-molecular
recombination between the duplications [186], to expand or contract the copy number.

9. How Does the Cellular Environment Influence These Events?

A characteristic feature of poxvirus-catalyzed recombination reactions is that one
never recovers equal numbers of parental and recombinant viruses (i.e., 50% recombinants),
even if the markers are located far enough apart to lose the genetic linkage. This is a
classical property of phage and virus systems where various phenomena conspire to
reduce the maximum recombination frequency below the 50% seen in classical meiosis.
Broadly it reflects the fact that some of the input genomes are replicating in isolation from
others, for various reasons, and so can yield only progeny of the input parental (P) class.
Isolated viruses can, of course, still recombine with replicating duplicates of themselves, but
these “invisible” interactions cannot yield genetic recombinants (R). Since the recombinant
frequency (Rf) is calculated using the formula Rf = 100% × NR/(NR + NP), where N equals
the numbers of parental or recombinant viruses, any extra contribution of viruses to the
Np class ensures Rf will be less than 50%.

This situation was recognized long ago by bacteriophage researchers [138], and it
reflects the combined effects of random chance affecting how many genomes enter a cell
and the relative proportion of each of the two recombining viruses. Thereafter, the yield of
recombinant viruses is further affected by the many different possible “lines of descent”
(i.e., who recombines with who and how many times), replication and packaging kinetics,
and the physical constraints on mixing imposed by the cell. Insofar as poxviruses are
concerned, the fact that each infecting genome is initially sequestered within a separate
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cytoplasmic factory can well be expected to affect the frequency of recombination between
coinfecting particles.

The cytoplasm offers a window where DNA–DNA interactions can be followed using
fluorescence microscopy and one can visualize dynamic phenomena once only inferred
from genetic modeling. DNA-specific dyes often interfere with virus replication and so
are not well-suited to live-cell imaging. However, fluorescent DNA-binding proteins
generally cause less severe problems from this perspective, and can be constructed by
fusing λ Cro DNA-binding protein to fluorescent molecules like enhanced green fluorescent
protein (EGFP) or mCherry [188]. These proteins can be encoded by the cell [84], or
by the virus [24,189], and in either case fluorescence can be used to tag and track the
sites of virus DNA replication and recombination. Collectively, a number of interesting
features of poxvirus recombination reactions, and the links to virus biology, can be adduced
using this technology.

First and foremost, these methods illustrate the impact that the multiplicity of infection
(MOI) has on the likelihood that VACV recombinants might be formed. Of course, MOI
will affect the likelihood that a cell gets co-infected with two different parental strains
in the first place, but it also affects the likelihood that at some point in the infection two
different factories will collide, fuse, and mix their viroplasm. For example, in cells initially
infected with five factories only 2–3 collisions and fusions are observed in the first 4 h of
the infection [84]. As the number of co-infecting particles is reduced, the time to collision
also increases, so that a first collision is detected within 20 min in cells bearing ~10 starting
factories, but this takes more than an hour, on average, in cells bearing only two virosomes.
The effect of these delays on DNA mixing can be further analyzed using fluorescence
in situ hybridization (FISH) to examine the location, within the intersecting factories, of
DNA sequences that can differentiate between the two parents. As the time increases
between the first appearance of virosome and a fusion event, the less-well mixed are the
two genotypes judging by the overlap between the two FISH signals [84]. Correlative
light and electron microscopy detects an abundance of cytoplasmic constituents separating
the factories, including mitochondria and intracellular membranes, that perhaps present
impediments to DNA mixing [189]. Collectively, this combination of factors (only half the
factories collide and mix and only half these pairings can yield a recombinant, the collisions
are often delayed, and viroplasm mixes poorly) all conspire to decrease NR relative to NP
and thus decrease Rf. Because all these parameters are stochastic in nature, they would
also combine to create greater experimental variation. This effect can well explain the
difficulties encountered trying to accurately map poxvirus genes using classical genetic
crosses to measure recombination frequencies.

These methods also illustrate something regarding the kinetics of recombinant gene
formation [24]. This can be done by splitting an early-late (E/L) regulated gene, encoding
an mCherry-cro reporter protein, into two overlapping fragments that can be recombined
to reconstruct the gene and create a fluorescent signal. Depending upon how the fragments
are arranged, the method can be used to detect inter- or intra-viral recombination as well
as recombination between the virus and transfected DNA (Figure 6). At the same time
the growth and movement of the factories can be tracked using cell-encoded EGFP-cro
protein. These studies showed that when a single infecting virus genome encoded both
mCherry-cro fragments separated by a selectable marker, it exhibited two patterns of gene
expression. In some cells the protein is detected immediately and this first class derives
from the recombinant mCherry-cro genes initially present in the virus stocks, while in other
cells the red fluorescence shows up in abundance ~3.3 h after the factories first appear and
at a time when late gene expression starts. Thus, the second class of recombinants were
formed after the early promoter element was silenced and before the late-promoter element
was activated, presumably during DNA replication. Recombination between VACV and
transfected DNA exhibits the same kinetics, with recombinants also being formed in the
period prior to the onset of late gene expression. In contrast, one does not begin to detect
low levels of mCherry fluorescence until ~5.1 h after the factories appeared in cells co-
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infected with viruses bearing gene fragments arranged in trans. These studies recapitulate
what is clear from genetic analysis. Intragenomic recombination is a far more rapid and
efficient process than what is seen in virus-by-virus crosses.
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Figure 6. Monitoring recombination kinetics using genes encoding fluorescent proteins [24]. The
figure illustrates the different ways that genes and gene fragments can be distributed to track VACV
genetic recombination (dotted blue lines). Intragenomic recombination can be monitored using a split
gene construct encoding an mCherry-cro DNA binding protein driven by an early-late promoter (top
diagram). This arrangement is unstable and can only be maintained by selection for the interdigitated
xanthine–guanine phosphoribosyl transferase (gpt) gene. Recombination between two co-infecting
viruses can be monitored by splitting the mCherry elements between two different viruses. One
encodes an incomplete fragment of the mCherry-cro protein plus promoter (“pE/L-mCherr”) and
the other encodes a complete copy of the mCherry-cro protein but lacks a viral promoter (“mCherry-
cro”). Recombination between a virus and transfected DNA (green oval) can similarly be assayed
by encoding the promoterless mCherry open reading frame on the transfected DNA. In this case
recombination would also partially duplicate the mCherry gene and incorporate plasmid sequences
as well (not entirely shown).

From these studies one can take away several conclusions. First, there are several
impediments which collectively restrict recombination between co-infecting poxviruses.
These can be detected when one examines virosome dynamics and the timing of recombi-
nant formation. Secondly, because co-transfected DNAs are delivered in a premixed format
into poxvirus factories [190], these DNAs can be replicated and recombined by the virus
machinery, while avoiding the timing and mixing challenges that beset co-infecting viruses.
Thus, although the underlying reactions are likely the same, virus biology creates a bias
where transfected DNA has the potential to be recombined more frequently in transfected
cells than is virus DNA in virus-by-virus crosses. Finally, replication is intimately linked
to recombination but by the time co-infecting viruses are starting to mix and recombine,
replication is ending and mature viruses (MV) are being formed [189]. These packaging
reactions will ultimately preclude the formation of any more recombinant viruses. Thus,



Pathogens 2022, 11, 896 17 of 26

as John Cairns predicted more than 60 years ago [23], the fact that poxviruses replicate in
factories has a profound impact on virus genetics and the yield of recombinants.

10. Applications and Implications

Recombination reactions provide a well-established tool for genetically modifying
poxviruses and are widely used to mutate virus-encoded genes or introduce new ones. The
products find uses in discovery research and as vaccines and, more recently, as experimental
oncolytics for treating cancers. Many improvements on the technology were devised in the
years subsequent to the original descriptions of marker rescue [88–90]. Some applications
take advantage of the fact that poxviruses can vector large inserts [191], and this permits
delivery of multiple antigens such as the three Ebola glycoproteins plus a nucleoprotein
expressed by MVA-BN-Filo [192]. A method that is worthy of special note is called “trans-
dominant selection” which employs a knock-in, select, and excise-out strategy to produce
marker-free recombinants [193,194]. It has a great advantage in that the resolution step
should yield both parental and recombinant progeny, but recombinants are not recovered if
the mutation disrupts an essential gene. More recently CRISPR technology has been used
to target transfected DNA fragments to breaks in replicating viruses [195], and to enhance
the efficiency of recovering recombinants [196].

Another interesting application of these technologies exploits the duplex-to-duplex
joining reaction catalyzed by VACV DNA polymerase (Figure 3, panel B). The reaction is
simple to set up and very efficient, and can be used to join linearized vectors to DNAs ampli-
fied with PCR primers bearing 15–20 bp of added vector end homology. The resulting joint
molecules are stable enough to transform bacteria and the method has found commercial
utility in InFusion cloning kits [197,198], which, when first sold, employed E9 polymerase.
It is a curious coincidence that two established commercial recombineering systems were de-
vised using VACV enzymes, the other being Topo cloning kits which use the strand joining
reactions that Stuart Shuman showed [161], are catalyzed by VACV topoisomerase I.

Reactivation and recombination reactions have also found several applications, princi-
pally as a tool for more efficiently genetically modifying these viruses. One early example
used λ Red recombination in E. coli to engineer a bacmid encoding a full-length copy of
VACV, and then used fowlpox to rescue the clone as infectious virus [199]. The utility of the
method was later well illustrated by constructing a bacmid encoding a copy of chorioallan-
tois VACV Ankara, sequentially introducing six large deletions into the cloned genome in
bacteria, and then testing each of the reactivated variants to see if the mutant clone(s) would
duplicate the host range defects characteristic of modified VACV Ankara (MVA) [200], (they
did not and only later was the defect traced to the C16L/B22R gene [201]). Recombinant
viruses can also be assembled using reactivation methods and requiring repair of double-
stranded breaks. For example, SFV can reassemble and reactivate VACV from mixtures
of restriction fragments as long as no more than 8–10 exchanges are required to yield a
contiguous genome [202]. An SFV helper virus can also be used to reactivate recombinants
with near quantitative yields, if the transfected genome is first cut at restriction site(s)
spanned by a co-transfected repair fragment bearing homologous ends [202]. CRISPR
technology can be used the same way but offers far greater control over the cut site(s) [203].

Finally, reactivation reactions have also been used to reconstruct and reactivate
poxviruses using DNA fragments obtained through wholly synthetic approaches. The first
such example was a 220 kbp horsepox virus [204], but synthetic copies of VACV strains
MVA [205], and Acambis 2000 [206], have since also been constructed in similar ways. An
advantage of these methods is the flexibility that gene synthesis offers, and as the cost of
gene synthesis continues to decline [207], and interest in more complex and personalized
recombinants grows, may displace many of the methods devised to date. It makes possible
the construction of mutants that would be difficult to produce in any other way [206]. Of
course, the technology is not without controversy. Many countries have long restricted
possession of bacterial clones encoding extensive portions of the VARV genome, because
of concerns that a complete set of the larger clones could perhaps be used to reactivate
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VARV. The advent of cheap gene synthesis renders this check obsolete and now places a
responsibility on the suppliers and consumers to cooperate on policing what DNAs can
and cannot be obtained this way.

11. Unanswered Questions and Way(s) Forward

There remain many opportunities for further research into the biology behind poxvirus
recombination systems. The most obvious questions concern the relationship between repli-
cation and recombination, although, that is greatly complicated by lingering uncertainty
about the mechanism of poxvirus replication itself and by the fact that the two processes
seem to be inextricably interlinked. A replication-proficient but recombination-deficient
mutant has never been identified through a mutant screen [208], or by a concerted effort
to mutate an obvious target like the proofreading exonuclease [152]. Poxvirus replication
was originally speculated to employ a parvovirus-like continuous model for replication,
with DNA synthesis initiated from a nick in a hairpin telomere followed by strand dis-
placement [209–211]. However, the discovery that the D5 ATPase-helicase exhibits primase
activity [169], supports a more complex, but arguably more mainstream model, involving
discontinuous DNA synthesis at replication forks (e.g., [168]). The two models are not
incompatible in that the (Pogo–Moyer–Graves scheme can provide a way to initiate replica-
tion, followed by a switch to a D5-dependent discontinuous mode of synthesis. However,
all of this still needs to be proven.

If this hypothesis is basically correct, then it remains to be tested whether the strand
transfer reactions catalyzed by enzymes like VACV E9 play any role in this process. In
particular, can they provide a way to assemble or repair the broken replication forks that
would inevitably form when a virus tries to replicate a 150–220 kbp genome? Without
some such repair capacity it would be difficult to explain how poxviruses can exhibit
particle-to-PFU ratios approaching 1:1 [206] and a minimal infectious dose that may be
as little as one infectious unit for myxoma virus [212]. Similar strand-priming might also
explain how any DNA can be replicated and assembled into concatemers in transfected
cells [91], absent any clearly established origin of replication beyond the stimulatory effect
of the telomeres [213]. Such links between replication, recombination, and fork repair have
been explored in yeast and human cells using technologies like Tus/Ter traps [214–216].
It would be of great interest to test whether the same approach could be used to block,
stabilize, and retrieve migrating VACV replication forks.

There also remain unanswered questions regarding how poxvirus DNA polymerases
can catalyze strand transfer reactions. A random selection of commercially available B-
family polymerases (e.g., T4 DNA polymerase) will not catalyze the same reactions. The
evidence suggests that E9 catalyzes only a limited attack on 3′-ended duplex substrates,
and can then melt enough of the remaining duplex end to promote strand annealing if a
complementary sequence is present. I3 stimulates the strand transfer reaction, perhaps
by transiently trapping greater quantities of exposed single strands and then favouring a
search for homology. One clue to how all of this might be accomplished is suggested by the
presence of an unusually long β-hairpin “finger” within the 3′-5′ exonuclease domain [171].
This element comprises E9 resides 299–319, and it is also where a key cidofovir-resistant
mutation, A314T, is mapped [107]. This structural feature of replicative DNA polymerases
is thought to play a role in switching the enzyme between editing and elongation modes,
and in promoting the separation of primer and template strands, while holding onto the
DNA and maintaining the processivity of the enzyme [217]. Given that VACV employs A20
as a processivity factor, it is possible that E9 polymerase has further adapted the β-hairpin
to enhance the strand-separation reaction and thus favour strand transfer and I3-promoted
annealing reactions. Mutational analysis of the β-hairpin element may begin to provide an
explanation for E9′s curious catalytic properties.

Ultimately any such investigations should be complemented with efforts to assemble
an in vitro replication system catalyzed by highly purified proteins. Although it is likely
that the polymerase preparation that we first used to demonstrate strand transfer activity
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was purified in a form complexed with A20 and D4 [119], better-defined combinations of
pure protein components are needed to answer these questions and extend the models. This
could provide insights into how the activities of wildtype and mutant E9 proteins are modi-
fied when complexed with A20 and D4 and, ultimately, how these reactions are modulated
by ancillary proteins like I3, the H5 scaffolding protein [16,21], and D5 helicase [218].
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