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Abstract: Neuroinflammation is defined as an inflammatory state within the central nervous system 

(CNS). Microglia conprise the resident tissue macrophages of the neuronal tissue. Upon viral 

infection of the CNS, microglia become activated and start to produce inflammatory mediators 

important for clearance of the virus, but an excessive neuroinflammation can harm nearby neuronal 

cells. Herpesviruses express several molecular mechanisms, which can modulate apoptosis of 

infected neurons, astrocytes and microglia but also divert immune response initiated by the infected 

cells. In this review we also describe the link between virus-related neuroinflammation, and 

development of neurodegenerative diseases. 
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1. Introduction 

In contrast to other tissues, immune response within the central nervous system 

(CNS) is tightly controlled by different and unique immunomodulatory mechanisms: the 

presence of the blood–brain barrier (BBB), consisting of endothelial cells interacting with 

the glia limitans lining the CNS parenchyma, the lack of a typical lymphatic drainage 

system despite the presence of functional lymphatic vessels, as well as the lack of 

constitutive MHC expression [1,2]. Under physiological conditions, immune responses 

within the CNS are suppressed to protect neurons, which are vulnerable and 

nonrenewable cells. When a pathogen enters the CNS, resident and innate immune cells 

become activated to develop innate immune responses, which further result in the 

recruitment of adaptive immune cells from the periphery. However, the sustained and 

overactive inflammatory response may result in neuropathological events [3,4]. 

2. Herpetic Infections of CNS 

Herpesviridae is a family of double-stranded DNA viruses, of which seven are 

known to infect humans and may be the cause of neurological diseases: (i) herpes simplex 

virus 1 (HSV-1), (ii) herpes simplex virus 2 (HSV-2), (iii) varicella zoster virus (VZV), (iv) 

human cytomegalovirus (CMV), (v) Epstein-Barr virus (EBV), (vi) human herpesvirus 6 

(HHV-6), and (vii) human herpesvirus 7 (HHV-7). Following infection, herpesviruses 

establish latent infection within specific tissues/organs, characteristic for each virus, and 

can potentially reactivate in the case of immunity suppression [5]. 

HSV-1 belongs to α-herpesviruses and causes painful or itchy sores and blisters (oral 

herpes). Approximately 60% to 95% of adults worldwide are infected. HSV-1 is associated 

mainly with infections of the orofacial area and the CNS. Infection is either lytic or latent. 

Infection of epithelial cells (skin and mucosa) leads to lytic replication with production of 

infectious virus, while during latency limited gene expression is detected (only LATs 

transcripts are produced) and there is no production of viral particles. Primary infection 
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is accompanied by inflammation and tissue damage, causing the characteristic herpes 

blisters. HSV-1 mainly infects sensory neurons close to the site of primary infection, 

subsequently traveling retrogradely along the axon to the cell body in the trigeminal 

ganglia (TG), where it establishes latency [6]. Latent HSV-1 genomes are found in 

episomal forms within the nucleus, where HSV-1 DNA is chromatinized with 

heterochromatic histone marks, and only a small subset of viral genes is expressed [7]. 

During latency, latency-associated transcripts (LATs), a primary 8.3/9 kb transcript and 

two stable introns derived from rapid splicing of primary LAT are expressed. 

Additionally, latent virus produces several microRNAs (miRNA) that act synergistically 

with LATs to repress viral replication [8,9]. 

Because trigeminal neurons are pseudounipolar, new viral particles can also reach 

the CNS via anterograde transport. Specifically, one of the two branches of trigeminal 

ganglia neurons projects to the trigeminal nuclei in the brainstem. Next, the neuronal 

projections reach the thalamus and, from there, the sensory cortex. TG neurons have 

therefore been proposed as a direct route for HSV-1 entry to the CNS [6,7]. 

Herpes simplex encephalitis (HSE) is one of the most common forms of viral 

encephalitis, with mortality of 70% in untreated patients and up to 30% mortality in 

patients treated with antivirals, and is followed by a high incidence of neurological 

complications. Primary HSV-1 infection and HSV-1 reactivation account for one-third and 

two-thirds of all HSE cases, respectively. Many studies have supported the concept that 

during events such as immunosuppression, peripheral infection and stress, the virus 

repeatedly reactivates in TG/brain [6]. However, a growing body of evidence indicates 

that in humans milder/asymptomatic infections also occur, followed by latency and such 

repeated “mild” HSV-1 brain infections are linked with chronic neuroinflammation 

resulting in neuronal damage similar to that found in neurodegenerative disorders such 

as Alzheimer’s disease (AD) [7]. HSV-1 reactivation from latency usually is induced by 

multiple stimuli, such as physical or emotional stress, immunosuppression, brain traumas 

or exposure to UV light [7]. 

Genital HSV-2 infection is more common in women (approximately one out of five 

women 14 to 49 years of age) than in men (about one out of nine men 14 to 49 years of 

age) [10,11]. After establishing latency in the sacral ganglia and infection of the spinal 

cord, HSV-2 can reactivate, leading to virus shedding in the genital tract, which is 

normally limited by activation of the HSV-specific T-cell-memory and production of IFN-

γ [11]. Recurrences of genital herpes can be asymptomatic. Nevertheless, the virus 

shedding within the genital mucosa in women can be detected [11]. HSV-2-caused 

encephalitis is predominant in immunocompromised patients, causing less than 10% of 

the HSE cases. 

Neonatal HSV, defined as infection in a newborn within 28 days of birth, results from 

intrauterine, perinatal, or postnatal transmission of the virus; most cases are acquired 

perinatally. HSV-2 infection during pregnancy poses a significant risk to the developing 

fetus and newborn [12]. Neonatal HSV has only 40% survival rate and results in 

permanent sequelae (developmental delay, epilepsy, blindness and cognitive disabilities). 

HSV-2 causes higher morbidity in infants than HSV-1 [12]. 

Varicella zoster virus (VZV, HHV-3), is an α-herpesvirus infecting >90% of people 

worldwide. It causes varicella (chickenpox) in unvaccinated children and establishes a 

lifelong latent infection in trigeminal ganglia (TG) and dorsal root ganglia (DRG) [13]. 

After many years, VZV may reactivate to cause herpes zoster (shingles) in approximately 

one third of previously infected individuals [14]. Encephalitis occurs in less than 0.1% of 

varicella cases, being thus a rare complication [15]. 

Epstein-Barr virus (EBV, HHV-4) is a γ1 human herpesvirus (HHV-4) that causes an 

infectious mononucleosis (IM), usually in children or adolescents. It affects up to 95 

percent of humans worldwide, later transforming into chronic active EBV infection. EBV 

usually resides in a small number of circulating resting memory B-cells without causing 

any clinical symptoms (it establishes latency) [16,17]. 
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Human CMV (HCMV, HHV-5) is a β-herpesvirus, which may cause a life-

threatening infection in the immunocompromised, such as HIV-infected persons, organ 

transplant recipients, or newborn infants [18]. Studies on CMV-affected brain tissues 

showed that the basal ganglia, diencephalon and brainstem are the sites where CMV can 

be detected [19]. 

Human herpesvirus 6 (HHV-6) is a β-herpesvirus with two biologically distinct 

variants (HHV-6A and HHV-6B), showing different tropisms. HHV-6A has been 

described as more neurovirulent and it has been strongly associated with pathogenesis of 

multiple sclerosis [20,21]. HHV-6B causes a common childhood disease—exanthema 

subitum (also known as roseola infantum) [22,23]. 

Human herpesvirus-7 (HHV-7) is a β-herpesvirus, which might elicit exanthem 

subitem, although less frequently than HHV-6B [24,25]. HHV-7 can infect the brain and 

occasionally induce febrile convulsions or encephalitis [24,25]. 

3. Neuroinflammation 

Inflammation is an innate response of the immune system in reaction to tissue injury 

or infection, which should result in pathogen elimination and/or tissue repair [26]. Innate 

immune cells, including monocytes/macrophages, mast cells, dendritic cells and microglia 

detect molecular patterns of microbes (PAMPs) and/or molecules from damaged cells of 

host origin (DAMPs) using pattern recognition receptors (PRRs). Activation of PRRs leads 

to activation of innate immune cells and production of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) responsible for killing microbes, release of stimulatory 

(pro-inflammatory) cytokines, chemokines and growth factors as well as for phagocytosis 

of cellular and tissue debris [27]. 

Despite “the immune privilege of the brain,” neuroinflammation takes the form of 

inflammation-like responses within the CNS, resulting in sustained production of 

cytokines, chemokines, ROS and RNS [2,3]. It is based on functional activation of microglia 

and astrocytes (the latter being the most abundant type of neural cells) [2,3], but also on 

infiltration of peripheral immune cells from the circulation: inflammatory monocytes—

macrophages and antigen-specific T-lymphocytes resulting from the permeabilization of 

the BBB [2,3,28]. 

The glia consist of astrocytes (of neuronal origin) and microglia (immune cells); these 

two types differ in their activity and the role they play in the homeostasis of CNS. 

Microglia originate from yolk sac-derived macrophage progenitors that migrate to the 

brain at the early stages of embryonic development before the blood–brain barrier is fully 

formed, and comprise approximately 5–12% of the total cell population in the mammalian 

brain [29,30]. Microglia are crucial in maintaining brain homeostasis [29], but these cells 

also participate in the protection of the brain parenchyma from invading pathogens, 

utilizing different mechanisms, such as phagocytosis, the release of cytokines, 

chemokines, and antigen presentation via the major histocompatibility complex class II 

[29]. 

Microglia are a long-lived cell population involved in the refinement of synaptic 

connectivity by engulfing pre and postsynaptic structures [31]. Similarly to monocytes 

and macrophages in the periphery, microglia cells are defined as polarized, with two 

major activation states: pro-inflammatory M1 and anti-inflammatory M2 [32]. The M1 

pro-inflammatory microglia are activated by brain-invading pathogens to produce pro-

inflammatory cytokines such as: TNF-α, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), 

interleukin-2 (IL-12), nitric oxide (NO), ROS, RNS, and superoxide [32]. The M2 microglia 

phenotype is induced by anti-inflammatory cytokines (IL-4 and IL-13) and it plays a 

crucial role in suppression of inflammation, phagocytosis of cell debris, toxic metabolites, 

and tissue repair [33]. M2 microglia produce anti-inflammatory IL-10, transforming 

growth factor (TGF)-β)], growth factors [insulin-like growth factor-1 (IGF-1), fibroblast 

growth factor (FGF) and colony stimulating factor (CSF)−1] [33]. However, M1 and M2 

represent a spectrum of activation patterns rather than separate cell subtypes, since M1 
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can be converted into M2 by many modulators [33], and the lack of conversion of M1 to 

M2 is found in most CNS diseases [33]. Interestingly, LPS-activated microglia secreting 

IL-1α, TNF-α and C1q can induce a population of reactive astrocytes named A1. These 

astrocytes do not promote neuronal survival but rather lead neurons and oligodendro-

cytes to death. This phenomenon indicates that both types of glial cells can modulate their 

mutual activity [34]. 

4. Microglia in Viral Encephalitis 

The activation of microglia and the infiltration of immune cells from the peripheral 

circulation into the HSV-infected CNS is crucial for limiting viral infection and infection-

related inflammation. However, if the virus is not controlled early after infection, an un-

controlled immune response can develop and lead to high mortality and morbidity 

[35,36]. 

In recent years, the clinical genetic study of patients and their families with high in-

cidence of HSE has demonstrated that single-gene errors of innate or cell-intrinsic immun-

ity are responsible for enhanced susceptibility to HSV infections. The detected genetic de-

fects showed that HSE in children results from reduced production of the IFN type I [37], 

both upon HSV-1 infection or ex vivo stimulation of the TLR3 pathway, in fibroblasts and 

specific CNS cell lineages derived from pluripotent cells [37]. During infection with DNA 

viruses like HSV, endosomal TLRs initiate IFN I signaling upon recognition of viral nu-

cleotides (TLR3 recognizes double-stranded RNA, TLR8/7 recognizes single-stranded 

RNA, and TLR9 recognizes unmethylated cytosine-phosphate-guanine, or CpG, DNA). 

Additionally, cytosolic viral DNA is sensed by the cyclic GMP-AMP synthase/stimulator 

or interferon genes (cGAS/STING) pathway. 

Mouse models lacking specific factors involved in IFN I signaling have helped to 

understand the role of TLR and cGAS/STING viral nucleotide sensing in the pathogenesis 

of HSE. After interacting with activated microglia in glial cultures, murine astrocytes can 

upregulate TLR2, TLR3, and TLR4, while microglia express TLRs both at steady-state and 

upon activation [38,39]. Intravaginal infection of Tlr3−/− mice with HSV-2 showed their 

higher susceptibility to HSE in comparison to wild-type (WT) mice [38]. On the other 

hand, upon HSV-1 infection, Tlr2−/− mice are resistant to HSE, and Tlr9−/− or double 

Trl2−/−Tlr9−/− knockout mice are partially and fully susceptible, respectively [40]. There-

fore, TLR9 does not play a major role in the fight against HSV-1, but rather functions sim-

ultaneously with TLR2 leading to recruitment of natural killer (NK) cells to the sites of 

HSV infection in the CNS [41]. Since Tlr2 and Tlr9 gene expression is mostly upregulated 

in the trigeminal ganglia after HSV-1 infection, trigeminal ganglia play the role of a crucial 

checkpoint for viral recognition and control [42]. When using intracranial infection with 

HSV-1 of Tlr2−/−, Tlr9−/−, Trl2−/−Tlr9−/− mice to bypass the TG, researchers found that 

only Tlr2−/− mice were more resistant to HSV than WT mice [41]. 

Recent studies in knock-out mice have determined an important role for cytosolic 

viral DNA sensing in innate immunity to HSE. Several DNA sensors have been identified, 

including cyclic GMP–AMP synthase (cGAS) [43], and all type I IFN-inducing cytoplas-

mic DNA sensors signal through the adaptor protein stimulator of type I IFN genes 

(STING) [44]. Mice lacking either cGAS or STING are highly susceptible to HSE, and are 

characterized by high viral titers in the TG, brainstem, and further involvement of the 

whole brain [44]. Reinert et al. (2016) have shown that during HSV-1 infection of CNS, 

microglia are the main source of type I IFN, and transduce this response in a STING-de-

pendent manner, irrespectively of productive infection [43]. 

Upon HSV-1 infection, microglial cells undergo an abortive infection followed by a 

burst of pro-inflammatory cytokine and chemokine production, which activate other glia 

cells within the CNS as well as attract immune cells, such as DCs, NK cells, and T cells, to 

the brain [2,3]. In other words, microglia play an important role in mounting of the adap-

tive immune response in the CNS. 
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In mice models of HSV-1 infection the number of microglia is increasing early during 

brain infection. The study by Uyar et al. showed that transient and incomplete depletion 

(6 day post infection) of microglial response decreased infiltration of monocytes/macro-

phages, neutrophils and T cells into the brain [45]. Similar results were obtained by Tsai 

et al. in a study where microglia were depleted by the use of PLX 5622, an inhibitor of 

colony-stimulating factor 1 receptor (CSF1R), necessary for microglia survival, growth, 

and proliferation [46]. 

Depletion of microglia before and during infection augments brain viral titers by 

about 10- and 100-fold on days 6–7 p.i. and increases mortality rates of infected mice by 

60 and 85%, respectively [46]. Lack of microglia activation is accompanied by increased 

infiltration of CD4 T cells, CD8 T cells, neutrophils, and increased production of IFN-β, 

and IFN-γ [45,46]. However, these compensatory mechanisms cannot reduce brain viral 

loads and mice lethality [45,46]. The study by Tsai et al. showed in vitro that brain micro-

glia induce the IFN-β-STAT1 signaling pathway, which suppresses viral replication and 

apoptosis of brain neurons [46]. 

Another study by Uyar et al. demonstrated that, depending on the infection levels, 

microglia are highly phagocytic and participate in antigen presentation (moderately in-

fected thalamic areas) or display impaired physiological functions, such as decreased 

phagocytic activity (highly infected thalamic regions) [47]. By using single-cell RNA se-

quencing (scRNA-seq) on cells isolated from highly infected thalamic regions of HSV-1 

infected C57BL/6 mice, Uyar et al. revealed a novel transcriptional signature of micro-

glia/microglia-like cells, which they defined as “in transition”. Pathway analysis of this 

cell-type transcriptome showed that “in transition” microglia/microglia-like cells detect 

the dsRNA of HSV-1 via RIG-I (retinoic acid-inducible gene I, also known as 

DDX58)/MDA5 in the cytosol), which results in type I IFN production and NLRP3 inflam-

masome-mediated IL-1β production [47] (Figure 1). 

 

Figure 1. Schematic diagram summarizing relationships between HSV-1 brain infection, microglia 

activation and development of neuroinflammation and neurodegeneration. Accessed on 15 July 

2022. 
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Another study by Fekete et al. demonstrated a rapid recruitment (within hours) and 

elimination of HSV-1 infected neurons via microglial P2Y12 receptors in vivo [48]. How-

ever, recruitment of leukocytes into the HSV-1-infected brain was independent of P2Y12-

mediated signaling [48]. 

Moreover, Marques et al. showed that microglia remained activated in the brain of 

HSV1-infected mice at 30 days post infection, while no active replication could be detected 

[3]. The authors suggested that persistent microglia activation may contribute to neuronal 

damage and long-term neurological sequelae observed in HSE patients [3]. Multiple HSV1 

reactivations in murine models of HSE are accompanied by gliosis, increased brain levels 

of IL-1b and IL-6 as well as increased expression of neurodegenerative markers (e.g., beta-

amyloid, phosphorylated tau proteins) [49] (Figure 1). 

Virus-activated microglia produce high amounts of CCL5, CXCL10, TNF, and IL-1β 

as well as lower amounts of IL-6, IL-8, CCL3, CCL4, and CCL2 in a TLR3-dependent man-

ner [2,50]. Chemokines CCL5, CCL2, and CXCL10 further recruit peripheral immune cells 

to the infected brain [2,3,36], of which CXCL10 in particular has been shown to be im-

portant in mounting of HSV-1 specific T cell response [50]. IFN-β produced by microglia 

mediates the production of anti-inflammatory IL-10, which can suppress severe inflam-

mation [35], while IL-6 is protecting from the loss of neurons [51]. 

As mentioned above, cytokines and chemokines produced by microglia may also 

show neurotoxic activity, as it has been demonstrated for TNF and IL-1β [50]. HSV-1-

infected microglial cells produce ROS and RNS, which are directly responsible for damage 

to neurons [29]. Interestingly, while NO produced by microglial cells can help to reduce 

viral replication in HSV-1-infected neurons but not in astrocytes, it also down-regulates 

cytokines important for induction of anti-viral response in the neuronal tissue [52]. There-

fore, sustained and increased local production of NO may further add to HSV-1 spread, 

and escalate further neuroinflammation by suppression of the specific anti-viral immune 

response. Chronic HSV-1 infection has been shown to facilitate persistent activation of 

microglia and neuronal damage [53]. 

In other types of neuronal infections by herpes viruses, microglia play a similar role. 

Studies using a mouse model of murine cytomegalovirus (MCMV) have demonstrated 

that following i.p. infection, the virus reaches the CNS via blood, replicates in the brain 

parenchyma, distorts cerebellar development, and induces a strong inflammatory re-

sponse of microglia and infiltration of innate immune cells [53]. Cytomegalovirus-acti-

vated microglia have been shown to suppress MCMV replication in astrocytes by secret-

ing IFN-α and TNF-α, but also by attracting NK cells and T cells in a CXCL9/CXCL10-

dependent manner [53–55]. 

Increasing evidence points to an MS link, with detection of EBV in brains of MS pa-

tients [56]. For example, increased antibody response to an EBV-encoded EBNA1 protein 

is detected in developing MS compared to baseline IgG titers to EBNA1 [57]. Furthermore, 

almost all MS patients are infected with EBV compared to ~95% non-MS controls [57]. 

One of the concepts supporting the role of EBV in pathogenesis of MS is that latent 

EBV infection leads to neuroinflammation by inducing IFN-α production. This is sup-

ported by the data showing that EBERs (EBV encoded small RNAs) can bind to TLR3 and 

other intracellular receptors such as retinoic acid-inducible gene 1 (RIG-I) and promote 

production of IFN-α [58]. The detection of EBER+ cells in active MS within the white mat-

ter lesions was linked with strong expression of IFN-α by cells showing the ameboid mor-

phology of microglia and macrophages [57]. Microglia and astrocytes activated in MS le-

sions, however, do not seem to be directly infected with EBV [17]. 

In contrast, Hassani et al. detected presence of EBV in brain tissues from MS and non-

MS-cases using PCR and EBER-in situ hybridization and demonstrated that EBV could be 

detected by PCR and/or EBER-ISH in 90% of MS cases compared to 24% of non-MS cases 

with other neuropathologies. No other common herpesviruses (HSV-1, CMV, HHV-6) 
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were detected [59]. Additionally, in contrast to previous studies, Hassani et al. found as-

trocytes and microglia infected with EBV. The route of microglia and astrocyte infection 

by EBV is unknown and needs to be elucidated [59]. 

HHV-6A can productively infect microglial cells both in monolayer and spheroids; it 

induces activation as shown by the increased expression of triggering receptor expressed 

in myeloid cells 2 (TREM2) and IL-1beta [60]. The further link between HHV-6 induced 

microglia activation and neuroinflammation needs further study. 

5. Cell Death and Neuroinflammation 

Neuronal apoptosis has been also suggested to contribute to the CNS injury in HSE. 

Apoptosis is an active, genetically controlled process, which can be triggered by a variety 

of extrinsic and intrinsic signals such as toxins, inflammatory cytokines, lack of growth 

factors, ROS, and infectious pathogens. Morphologically, apoptosis leads to cellular 

shrinkage and chromatin condensation that result in the controlled breakdown of the cell 

into apoptotic bodies, which are subsequently recognized and engulfed by surrounding 

cells and phagocytes [61]. Two major signaling pathways have been discovered: receptor-

ligand mediated pathway (Fas/FasL pathway) and intracellular mitochondrial pathway. 

These pathways are regulated by abundant pro- and anti-apoptotic proteins and com-

pounds [61]. 

During acute brain infection in HSE, HSV-1 was demonstrated to induce apoptosis 

in neural cells, which was believed to contribute to virus induced brain damage [62]. In 

analyzed brains of patients with HSE, the executory phase of apoptosis was detected by 

the TUNEL method (terminal deoxynucleotidyl transferase-mediated dUTP nick-end la-

beling) [62]. Furthermore, apoptosis was detected by TUNEL staining in the brainstems 

of HSV-1 infected mice, where a significant amount of apoptotic staining was observed at 

day 6 post-infection, despite the low levels of detectable infectious virus [63]. Studies per-

formed in C57BL6 mice infected intranasally with a clinical isolate of HSV-1 by our group 

also showed the presence of apoptotic, TUNEL-positive cells related with inflammatory 

reaction (Figure 2A). However, no apoptosis was detected in inflammation-free areas with 

HSV-1-infected neurons (Figure 2B). 

 

Figure 2. Presence of HSV-1-positive and apoptotic (TUNEL+) cells in the midbrain (A) and pons 

(B) of C57BL/6 mice at 8 days post infection (unpublished data from authors). C57BL6 mice were 

infected intranasally with McKrae strain of HSV-1, then followed until the peak of brain infection 

at day 8. Next, brains were subjected to cryopreservation, sectioning and immunofluorescent stain-

ing for IBA+ positive cells (microglia, turquoise), HSV-1 antigens (green) and terminal deoxynucle-

otidyl transferase dUTP nick end labeling (TUNEL) to detect apoptotic DNA fragmentation (red). 

Magnification × 200. 
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HSV-1 has been shown to encode several proteins, which can modulate—induce or 

suppress—apoptosis at different stages of viral replication, depending on the cell type. 

The structural glycoproteins J and D (gJ, gD) have been reported to suppress apoptosis 

during HSV-1 infection of the SK-N-SH human neuronal cell line [64]. ICP22 is another 

HSV-1 protein involved in modulation of apoptosis—it induces cell death by activating 

Bax or inhibiting Bcl-2 [65]. The viral ICP27 has been reported to block caspase 3 activity 

during the executory phase of apoptosis [66]. When HSV-1 establishes latency in neurons, 

it expresses LAT transcript, and the miRNAs derived from the LAT processing have also 

been demonstrated to modulate apoptosis in infected neurons. LAT expressed in a plas-

mid has been shown to inhibit apoptosis induced via receptor and mitochondrial path-

ways [67]. These observations are related to the observed in vivo inhibition of CD8+ T cell-

killing of latently infected neurons, as LAT expression could block granzyme B-induced 

activation of caspase 3 [67]. Inhibition of apoptosis seems to play a key role in neurodegen-

eration processes induced by HSV-1, since it favors the establishment of latency and per-

sistence with later reactivations and spread into the neighboring neuronal tissue, leading 

to neuroinflammation-induced neuronal damage. 

Reinert et al. (2021) showed extensive apoptosis in HSV-1–infected brains originating 

from HSE patients and in the experimental HSE mouse model [68]. Apoptosis induction 

was observed in microglia and other immune cells and the cell death was mediated by the 

DNA-sensing cGAS/STING pathway. The use of caspase inhibitors increased cGAS-de-

pendent antiviral activity in the brain and was also accompanied by prolonged and in-

creased production of IFN-I by immune cells [68]. 

The Fas (CD95, APO-1)-signaling pathway is a so called receptor apoptotic pathway. 

Fas and FasL play critical roles in the immune system, being the direct mechanism respon-

sible for the killing of pathogen-infected target cells and the death of autoreactive lym-

phocytes [69]. Fas is not normally expressed on central nervous system (CNS) cells; how-

ever, its expression can be induced within inflammatory sites, resulting in their suscepti-

bility to FasL-induced death [69,70]. Within the CNS, FasL expression is detectable in neu-

rons, microglia and perivascular astrocytes [71]. 

Upon stimulation of HSV-1 infected microglia through Fas, they become resistant to 

Fas-mediated apoptosis and down-regulate inflammatory response—production of pro-

inflammatory and anti-viral cytokines and chemokines such as CCL2, CXCL9, CXCL10, 

IFN-α, TNF-α and IL-6 [36]. HSV-1 infected in vitro cultures of microglia isolated from 

Fas- and FasL-deficient mice show strong inflammatory responses in comparison to mi-

croglia derived from wild type mice [36]. Therefore, we propose that HSV-1 can interfere 

with Fas-mediated pro-inflammatory pathways within the CNS leading to disturbances 

in Fas-mediated apoptosis and pro-inflammatory response upon migration of FasL bear-

ing lymphocytes into the infected neuronal site [36]. 

Astrocytes undergo productive HSV-1 replication, but did not undergo immediate 

cell death. Recently, Jeffries et al. (2022) showed that murine astrocytes express Z-DNA 

binding protein 1 (ZBP1; also known as DNA-dependent activator of interferon regula-

tory factors (DAI)) [72]. The loss of ZBP1 expression in primary murine astrocytes results 

in the significantly increased release of virions upon infection with a neuroinvasive clini-

cal strain of HSV-1 [72]. The authors also demonstrated that inhibition of apoptotic path-

ways leads to HSV-induced necroptosis in astrocytes that is independent of ZBP1 [72]. 

Both necroptotic and apoptotic cell death pathways in HSV-1 infected astrocytes reduce 

release of infectious viral particles [72]. 

6. Neuroinflammation and Neurodegeneration 

Several studies have provided evidence of associations between infections with her-

petic viruses, a decline in cognitive abilities, and Alzheimers disease (AD). AD is an in-

flammatory brain disease associated with a combination of environmental agents and ge-

netic predispositions leading to neuroinflammation, neuronal cell death, and progressive 

dementia. The vast majority of AD occurs on a sporadic basis, while certain mutations 
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cause a rare (<0.5%) familial form of AD [73,74]. The main features of Alzheimers pathol-

ogy are amyloid plaques made up of amyloid-β (Aβ), a peptide cleaved from APP precur-

sor, and intracellular neurofibrillary tangles (NFTs) consisting of abnormally phosphory-

lated tau protein [74]. Furthermore, neutrophil infiltration, dystrophic neurites, associated 

astrogliosis and microglial activation are observed [74]. Aβ is toxic to neurons as it may 

cause pore formation resulting in disruption of cellular calcium balance, and loss of mem-

brane potential. It promotes apoptosis, causes synaptic loss, and disrupts the cytoskeleton. 

Accumulation of hyperphosphorylated tau protein impairs synaptic function, induces mi-

tochondrial stress and activates microglia [75]. 

The AD pathogen hypothesis states that pathogens invading the CNS act as triggers, 

interacting with genetic factors to initiate neuroinflammation and accumulation of Aβ as 

well as of hyperphosphorylated tau proteins in the brain tissue [76]. Previous studies 

demonstrated the presence of HSV-1 DNA in the amyloid plaques found in the brains of 

AD patients, particularly of those carrying the ε4 allele of apolipoprotein E (APOEε4) [76]. 

Many population-based studies found a link between the level and avidity index of anti-

HSV-1 IgG and IgM serum antibodies (indicating previous HSV-1 infection and its reacti-

vation, respectively) and the risk of developing AD [77]. On the other hand, Carbone et 

al. analyzed DNA from peripheral blood leukocytes (PBL) and brain samples of AD pa-

tients for the presence of CMV, EBV, or HHV-6. All samples were negative for CMV, while 

EBV was detected in 6% of AD brains. HHV-6 showed a 23% positivity in blood leucocytes 

in up to 17% of AD patients’ brains, compared to 4% of controls [78]. Another study tested 

hundreds of brains and reported a greater abundance of HHV6 or HHV7 RNA and DNA 

in the brains of AD patients relative to controls [79]. 

More recent studies have focused on investigating a direct link between HSV-1 infec-

tion and AD pathogenesis both in vitro and in vivo. HSV-1 infection in cultured neurons 

induces processing of APP followed by intra- and extra-neuronal accumulation of Aβ and 

other neurotoxic APP fragments [80]. HSV-1 infected neuroblastoma cells also accumulate 

hyperphosphylated tau protein within the nucleus, a component of neurofibrillary tan-

gles, another characteristic feature of AD [81]. Mouse brains infected with HSV-1 also 

show increased Aβ deposition early after infection (Figure 3). 

 

Figure 3. Presence of HSV-1 and β-amyloid in the midbrain of C57BL/6 mice at 8 days post infection 

(unpublished data from authors). C57BL6 mice were infected intranasally with McKrae strain of 

HSV-1, then followed until the peak of brain infection at day 8. Next, brains were subjected to cry-

opreservation, sectioning and immunofluorescent staining for neurons using anti-NeuN antibody 

(red), anti- HSV-1 antigens (green) and anti-1-42 β-amyloid antibody (turquoise). Magnification × 

200. 

HSV-1 infection of 5XFAD mice that overexpress mutant human APP with familial 

AD mutations did not show any alteration of the infection patterns [82]. Furthermore, 

5XFAD mice that survived infection cleared HSV-1 virus in the brain areas susceptible to 

virus without triggering extracellular Aβ aggregation, mainly due to microglia activity 

[82]. However, in another study, HSV-1 was found to colocalize with Aβ plaques 3 weeks 
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post infection in young 5XFAD mice that survived the challenge [83]. Authors of the first 

study suggest that the actual results may strongly depend on the overloading of a brain 

with very high, non-physiological doses of HSV-1 [82]. 

On the other hand, De Chiara et al. (2019) established a mouse model of HSV-1 infec-

tion and reactivation to verify if multiple viral reactivations, experienced by some patients 

prone to recurrent infections, can trigger progressive accumulation of molecular markers 

of neurodegeneration with an accompanying cognitive decline similar to this observed in 

Alzheimer’s disease [49]. Indeed, following virus reactivations, HSV-1 actively replicated 

in the brain, accompanied by progressive accumulation of AD biomarkers in neocortex 

and hippocampus of infected mice; and AD biomarker accumulation was associated with 

cognitive impairment. These biochemical and functional alterations increased with the 

number of virus reactivations [49]. 

In the presence of endogenous or exogenous insults to the neuronal tissue (mechan-

ical trauma, infection, accumulation of toxic metabolites) ramified, “resting” microglia 

transform into amoeboid, “activated” microglia [83]. Ameboid microglia participate in the 

clearance of potentially dangerous pathological situations in the neuronal tissue by phag-

ocytosis, endocytosis, and secretion of various inflammatory mediators [84] (Figure 1). 

Neuroinflammation is now well recognized as an important pathological process 

leading to AD and a potential target for therapy and prevention. Microglia and astroglia 

are found surrounding amyloid plaques in AD brains [85] although microglia can play a 

dual role in Aβ pathogenesis. Microglia help eliminate Aβ aggregation via phagocytosis; 

on the other hand, amyloid deposition causes a microglial-mediated inflammatory re-

sponse [85,86]. Although early microglial recruitment can promote Aβ clearance and pre-

vent the pathologic progression in AD, a constant microglial accumulation is associated 

with the release cytotoxic molecules (such as proinflammatory cytokines, chemokines, 

ROS, RNS), which can in turn promote Aβ production and delay the Aβ clearance [85,86]. 

In transient states of pathologies such as ischemia, CD11-positive microglia change 

their phenotype to the pro-inflammatory M1 phenotype, followed by a switch to M2 phe-

notype with anti-inflammatory characteristics related with tissue-repair [87]. As men-

tioned above, and depending on in vivo pathology, M1 and M2 microglial phenotypes are 

mutually interconvertible [88]. 

The neurodegenerative diseases (like AD) as well as aging are associated with 

chronic neuroinflammation. For those conditions, a pro-inflammatory phenotype of mi-

croglia has been characterized and designated “disease-associated microglia” (DAM). 

This phenotype does not have the typical M1 phenotype (for example, ApoE is down-

regulated in M1 but up-regulated in DAM), but it also demonstrates some similarity to 

the M2 phenotype (such as up-regulated Arg-1 expression found in both DAM and M2) 

[89] (Figure 3). 

Taking into account the devastating character of AD, and the associated  significant 

economic burden to the families and society, as well as the increasing numbers of older 

people, there is a constant need to develop new treatment strategies for AD. These strate-

gies should focus on the regulation of neuroinflammation-related pathologies. 

Parkinson’s disease (PD) is the second most frequent neurodegenerative disease, af-

fecting more than 1%  of individuals older than 65 years. The main pathological features 

of PD are degeneration of nigrostriatal dopaminergic neurons, reduction of striatal dopa-

mine, and the formation of abnormal protein aggregates in neurons, such as Lewy vesi-

cles. PD is a multifactorial disorder whose pathogenesis involves such factors as neuroin-

flammation, oxidative stress, infection, and genetic factors [90]. Epidemiological studies 

have demonstrated that patients with PD are significantly more seropositive for EBV than 

the general population. Latent EBV infection can trigger autoantibodies that can cross-

react with α-synuclein and elevate α-synuclein aggregation [91]. LMP1 is a virally en-

coded membrane protein expressed during EBV latency, which shares a similar protein 

primary amino acid PXDPDN sequence with α-synuclein [91]. 
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Despite much research on the pathogenesis and treatment of PD, the mechanisms of 

EBV involvement in PD development are poorly understood, and further research is nec-

essary. 

7. Conclusions 

Evidence from epidemiological and experimental studies suggests the existence of a 

link between herpesvirus brain infection and neurodegenerative processes such as AD 

and MS. Most of these data were obtained in animal models, and further studies are re-

quired to validate this correlation in humans. Furthermore, little is known about how the 

virus- and host-related factors (viral yield, strain, genetic features, concurrent infections, 

diseases) contribute to virus spread to the brain, development of neuroinflammation and 

further neurodegeneration. Conflicting results were obtained by different research groups 

concerning the role of beta-amyloid in HSV-1 infection and the presence of HSV-1 in am-

yloid plaques. Similarly, there is still no clear explanation of the role and presence of other 

herpesviruses, such as HHV-6 and EBV, in neurodegenerative processes. Without answer-

ing the above questions, finding novel strategies to limit virus reactivation and diffusion 

to the brain may not bring rapid clinical solutions to stop neuroinflammation and related 

neurodegeneration. 
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