
Citation: Bao, Z.-X.; Liu, R.; Li, C.-Q.;

Pan, X.-R.; Zhao, P.-J. Pathogenicity

and Metabolites of Purpureocillium

lavendulum YMF1.00683 against

Meloidogyne incognita. Pathogens 2022,

11, 795. https://doi.org/10.3390/

pathogens11070795

Academic Editor: Miguel Talavera

Received: 2 June 2022

Accepted: 13 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pathogens

Article

Pathogenicity and Metabolites of Purpureocillium lavendulum
YMF1.00683 against Meloidogyne incognita
Zheng-Xue Bao, Rui Liu, Chun-Qiang Li, Xue-Rong Pan and Pei-Ji Zhao *

State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences,
Yunnan University, Kunming 650091, China; bzx357489@126.com (Z.-X.B.); ruiliu991@outlook.com (R.L.);
chunqianglee@outlook.com (C.-Q.L.); xuerong_pan@ynu.edu.cn (X.-R.P.)
* Correspondence: pjzhao@ynu.edu.cn

Abstract: Purpureocillium lavendulum is a biological control agent with several registered products that
can parasitize the eggs and larvae of various pathogenic nematodes. In this study, the pathogenicity
and secondary metabolites of the fungus P. lavendulum YMF1.00683 were investigated. The strain
YMF1.00683 had infection efficiency against the plant root-knot nematode Meloidogyne incognita.
The strain’s process of infecting nematodes was observed under a microscope. Moreover, seven
metabolites, including a new sterol (1), were isolated and identified from cultures of YMF1.0068 in
Sabouraud’s dextrose agar. A bioassay showed that 5-methoxymethyl-1H-pyrrole-2-carboxaldehyde
(7) is toxic to M. incognita and affects the egg hatching. It caused 98.23% mortality in M. incognita
and could inhibit 80.78% of the hatching eggs at 400 µg/mL over a period of 96 h. Furthermore,
5-methoxymethyl-1H-pyrrole-2-carboxaldehyde (7) showed a strong avoidance effect at 40 ppm, and
its chemotactic index value was −0.37. The results indicate that P. lavendulum could produce active
metabolites against M. incognita.

Keywords: Purpureocillium lavendulum; pathogenicity; Meloidogyne incognita; avoidance effect; nema-
tocidal activity

1. Introduction

The damage caused by plant-parasitic nematodes to agriculture reaches USD157
billion every year, and the most serious damage is caused by the plant root-knot nematode
belonging to the genus Meloidogyne [1,2]. Chemicals are still the most widely used pesticides
in agriculture and forestry. However, long-term use of chemical nematicides may lead
to the development of resistance among pathogens and may have detrimental effects on
the environment and human health [3]; for example, methyl bromide is a broad-spectrum
fumigant that is toxic to nematodes and has thus been banned. Currently, there is an
urgent need for environmentally friendly biopesticide formulations, but their successful
application is often affected by factors such as environmental conditions, storage time, and
the degradation of the biocontrol strain. Therefore, one key measure to improve the effect
and stability of biological pesticides is to analyze the control mechanism.

Purpureocillium lavendulum is a species of Purpureocillium (formerly Paecilomyces) that
is taxonomically segregated from Paecilomyces lilacinum [4]. As a broad-spectrum biocon-
trol fungus (formerly Paecilomyces), it is effective against the parasitic nematodes [5–7],
Trialeurodes vaporariorum, Frankliniella occidentalis, Aphis gossypii, Tetranychus urticae [8], and
Acromyrmex lundii [9] and has good control effects, and it is widely available as a microbial
pesticide on the market.

With the rapid development of whole-genome sequencing technology and informatics
biology, the sequencing of numerous fungal genomes shows that most fungal metabolic
biosynthetic potential has not been fully exploited. By analyzing the genomic data of
P. lavendulum YMF1.00683 (which have not been released yet), it was found that this strain
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has the potential to produce abundant secondary metabolites. In general, the metabolites
of microorganisms often play an important role in biological control of nematode. For
example, 5-hydroxymethylfuran-2-carboxylic acid was isolated from Drechmeria coniospora
and possessed nematocidal activity against M. incognita [10], and leucinostatins obtained
from Paecilomyces lilacinus showed nematocidal activity [11], while other compounds such
as phenolic acids and sesquiterpenoids were obtained from Paecilomyces lilacinus and
exhibited nematocidal activity [11,12]. Therefore, it is necessary to carry out research on
active metabolites from biocontrol potential fungus P. lavendulum YMF1.00683. In the
present work, we observed the nematodes infected by P. lavendulum YMF1.00683 under
a microscope and found that lethality gradually increased over time (Figure 1) during
co-cultivation. We speculate that P. lavendulum YMF1.00683 produced small molecule
compounds to kill the nematodes. Therefore, in this study, the metabolites were purified
from culture extracts of P. lavendulum YMF1.00683, and we tested the compounds isolated
for their activity against M. incognita. The results indicated that the metabolites from
P. lavendulum YMF1.00683 showed multiple activities against nematodes.
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Figure 1. Infestation process of M. incognita by P. lavendulum YMF1.00683.

2. Results
2.1. Pathogenicity of P. lavendulum YMF1.00683 against M. incognita

Many reports on fungi of the genus Purpureocillium (formerly Paecilomyces) have shown
that they can control and antagonize root-knot nematodes of M. incognita [6,7]. Here we
provide the microscopic observation of P. lavendulum YMF1.00683 infestations and the
decomposition process of M. incognita in the laboratory. As shown in Figure 1, it can be
seen that after three days of spore germination, the hyphae had overgrown the plate. At
this time, approximately 50 M. incognita worms were added to each plate. After 24 h of
M. incognita addition, the nematodes still had good viability. After 48 h, the vigor had been
significantly reduced, and 20% of the M. incognita had died. At 72 h, 34% of M. incognita
had died, and the body walls of the dead nematodes had ruptured. At 96 h, 41% of the
nematodes had died, and the bodies of the dead nematodes had been degraded.

2.2. Isolation and Structural Identification of Compounds

In order to investigate the metabolites and their function of P. lavendulum YMF1.00683,
a systematic isolation of the extract of the strain with different chromatographic techniques
is achieved. The extract (200.5 g) from the SD solid fermentation of YMF1.00683 was
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chromatographed on various columns (such as RP-18, Sephadex LH-20, and silica gel), and
seven compounds (1–7) were obtained (Figure 2). Their structures were identified by NMR
and MS data.
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Figure 2. The structures of compounds 1–7 and key 1H−1H COSY (bold line) and HMBC (arrows) cor-
relations of 1. The figure includes five steroids (1–5), 7,8-dimethylalloxazine (6) and 5-methoxymethyl-
1H-pyrrole-2-carboxaldehyde (7). In addition, the key 1H−1H COSY (—) and HMBC (→) correlations
of 1 was shown in figure.

Compound 1 was obtained as a colorless solid, and its molecular formula was found to
be C29H44O4 using high-resolution mass spectrometry 457.3311 ([M + H]+, Calcd. 457.3312);
it contained eight unsaturation degrees. According to the nuclear magnetic resonance
(NMR) spectrum data of compound 1 (Table 1), it contained 29 carbon signals, including
5 quaternary carbons, 11 methines, 7 methylenes, and 6 methyls.

NMR data analysis found that compound 1 was very similar to 3β,5α-dihydroxy-
ergosta-7,22-dien-6-one [13], and the main difference was that the downfield shift of the
3-position in compound 1. Compound 1’s planar structure was determined from the key
correlation points of the heteronuclear multiple bond correlation spectroscopy (HMBC)
and data of 2D-NMR. In the COSY spectrum (Figure 2), the two branches were deduced
to be –C-2−C-3−C-4− (−branch) and −C-17–C-20(-C-21)–C-22−C-23−C-24(C-28)–C-25(-
C-27)–C-26−(−branch) from a complete interpretation of the key cross-peaks (H-2/H-
3/H-4; H-17/H-20(/H-21)/H-22/H-23/H-24(/H-28)/H-25(/H-27)/ H-26). The HMBC
experiment (Figure 2) showed that H-1 (δH 1.61 and 2.10) correlated with C-3 (δc 71.4) and
C-5 (δc 77.0); H-4 (δH 2.16 and 2.74) correlated with C-3 (δc 71.4), C-5 (δc 77.0), and C-10
(δc 40.9); the olefinic proton H-7 (δH 5.90) was related to C-9 (δc 44.0), C-5 (δc 77.0), and
C-14 (δc 55.6); H-9 (δH 2.92) correlated with C-18 (δc 16.0), C-11 (δc 21.9), C-10 (δc 40.9), C-7
(δc 120.2) and C-8 (δc 164.2); methyl protons H-19 (δH 1.02) correlated with C-1 (δc 30.5),
C-10 (δc 40.9), C-9 (δc 44.0), and C-5 (δc 77.0); the methyl protons H-18 (δH 0.57) correlated
with C-12 (δc 38.9), C-13 (δc 44.5), C-14 (δc 55.6), and C-17 (δc 55.9); the methyl protons
H-21 (δH 1.03) correlated with C-20 (δc 40.5), C-17 (δc 55.9), and C-22 (δc 135.6); olefinic
protons H-22 (δH 5.14) and H-23 (δH 5.26) correlated with C-20 (δc 40.5) and C-24 (δc 43.0);
two methyls H-26 (δH 0.95) and H-27 (δH 0.85) correlated with C-25 (δc 33.2) and C-24 (δc
43.0). The formate proton H-29 (δH 8.31) correlated with C-3 (δc 71.4), which confirms that
the formic acid group is connected with 3-OH by an ester bond (Figure 1). The NOESY
experiment showed NOEs between H-3 and H-4α; H-4β and H-19. These data supported
the relative configurations of C-3 and C-19 as well as the almost identical optical rotation
values (3β,5α-dihydroxy-ergosta-7,22-dien-6-one, [α]19

D = 26.5, c 0.1, CHCl3) indicated that



Pathogens 2022, 11, 795 4 of 11

the stereochemistry of 1 was the same as 3β,5α-dihydroxy-ergosta-7,22-dien-6-one [14].
Based on the similarity of the NMR data, optical rotation, and biogenetic considerations, 1
was proposed to have the absolute configuration shown in Figure 2.

Table 1. The NMR data of compound 1 (C5D5N, 600 MHz).

Position 1H 13C HMBC

1
1.61 (1H, m)

30.5, t
C-3, C-5

2.10 (1H, dt, J = 3.8, 9.7 Hz) C-2, C-3, C-5, C-10

2
1.61 (1H, m)

27.1, t
-

2.00 (1H, m) -

3 5.76 (1H, m) 71.4, d -

4
2.16 (1H, dd, J = 11.8, 13.1 Hz)

33.5, t
C-3, C-5, C-10

2.74 (1H, dd, J = 5.0, 13.1 Hz) C-3, C-5, C-10

5 - 77.0, s -

6 - 199.0, s -

7 5.90 (1H, s) 120.2, d C-5, C-9, C-14

8 - 164.2, s -

9 2.92 (1H, m) 44.0, d C-19, C-11, C-10, C-8, C-7

10 - 40.9, s -

11
1.46 (2H, m)

21.9, t
-

2.00 (1H, m) -

12
1.56 (1H, m)

38.9, t
-

2.00 (1H, m) -

13 - 44.5, s -

14 1.98 (1H, m) 55.6, d C-7, C-8, C-18, C-15, C-12, C-13

15 1.45 (2H, m) 22.6, t C-13, C-14

16
1.68 (1H, m)

28.1, t
C-18, C-13, C-14, C-17

2.10 (1H, m) C-18, C-13, C-14

17 1.21 (1H, m) 55.9, d C-16, C-13

18 0.57 (3H, s) 12.6, q C-12, C-13, C-14, C-17

19 1.02 (3H, s) 16.0, q C-1, C-10, C-9, C-5

20 2.00 (1H, m, overlap) 40.5, d -

21 1.03 (3H, d, J = 6.6 Hz) 21.2, q C-17, C-20, C-22

22 5.14 (1H, dd, J = 8.4, 15.2 Hz) 135.6, d C-20, C-24, C-23

23 5.26 (1H, dd, J = 7.8, 15.2 Hz) 132.3, d C-20, C-24, C-22

24 1.87 (1H, m, overlap) 43.0, d -

25 1.45 (1H, m, overlap) 33.2, d -

26 0.95 (3H, d, J = 6.5 Hz) 17.7, q C-25, C-24, C-23

27 0.85 (3H, d, J = 6.6 Hz) 19.7, q C-24, C-25, C-28

28 0.86 (3H, d, J = 6.7 Hz) 20.0, q C-24, C-25, C-27

29 8.31 (1H, s) 161.2, d C-3

The other metabolites were determined to be 3β,5α,6β-ergosta-7,22-dien-triol (2) [15],
3β,5α,9α-trihydroxy-ergosta-7,22-dien-6-one (3) [16], 5α,8α-epidioxy-22E-ergosta-6,22-dien-
3β-ol (4) [17], 3β-hydroxy-(3,22E)-ergosta-5,8,22-trien-7-one (5) [18], 7,8-dimethylalloxazine
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(6) [19], and 5-methoxymethyl-1H-pyrrole-2-carboxaldehyde (7) [20] based on the reference
data, and the NMR and MS spectra included in the Supplementary Materials.

2.3. Activity
2.3.1. Effects of Compounds on the Egg Hatching of M. incognita

The hatching rate of eggs was the highest in the control group (1% MeOH water), and
the hatching rates were 13.77%, 29.27%, 37.81%, and 47.39% at 24, 48, 72, and 96 h. The
results of Tukey’s HSD test analysis by SPSS (IBM SPSS Statistics 26) (Table 2) showed that
compounds 6 and 7 could significantly inhibit the egg hatching of M. incognita during all
observation periods. However, other compounds did not affect egg hatching. With time
extension, the hatching rate of nematode eggs increased.

Table 2. Effects of compounds on the egg hatching of Meloidogyne incognita.

Compounds
Hatching Rate % (Inhibition Rate %)

24 h 48 h 72 h 96 h

Control 13.77 b 29.27 d 37.81 d 47.39 e

1 12.79 b (9.8) 27.09 d (7.4) 37.28 d (1.40) 47.30 e (0.19)

2 11.98 b (13.0) 28.35 d (3.1) 36.95 d (2.27) 46.58 e (1.71)

3 11.92a b (13.44) 24.28 c (17.05) 37.21 d (1.59) 47.24 e (0.32)

4 12.36 b(10.2) 29.05 d (0.75) 37.19 d (1.64) 47.21 e(0.38)

5 10.38 ab (24.62) 22.15 b (24.33) 30.36 c (19.70) 39.40 d (16.86)

6 9.67 ab (29.77) 13.07 ab (55.59) 16.78 b (54.33) 20.79 c (56.13)

7 7.1 a (48.44) 12.36 a (57.77) 14.32 a (62.13) 19.22 b (59.44)
Note: In the same column of data, Tukey’s HSD test with different letters indicates significant differences (α = 0.05),
and the numbers in brackets indicate the degree of inhibition of egg hatching compared with the control.

2.3.2. Evaluation of the Nematocidal Activity of Compounds against M. incognita

As shown in Table 3, at 400 ppm, the nematocidal activities of 5-(methoxymethyl)-
1H-pyrrole-2-carboxaldehyde (7) were gradually enhanced with the increase in time, and
compound 7 showed strong activity at 96 h (corrected mortality rate > 90%). We found,
using multiple comparisons in SPSS (Table 3), that other compounds were not significantly
different at the 0.05 level during all observation periods, and they showed moderate
activity (30–40%) at 96 h. Meanwhile, the adjusted mortality of avermectin was 81% at a
concentration of 100 µg/mL over a period of 48 h.

Table 3. Nematocidal activity of compounds against M. incognita.

Compounds
Adjusted Mortality (%)

12 h 24 h 48 h 72 h 96 h

Control (2.06 ± 0.22) bc (2.07 ± 0.12) c (2.67 ± 0.58) d (4.40 ± 0.56) d (5.73 ± 1.10) e

1 (0) c (2.50 ± 1.30) b (13.56 ± 1.90) b (22.83 ± 1.82) b (30.45 ± 2.05) c

2 (0) c (2.38 ± 0.90) b (15.47 ± 1.90) b (21.76 ± 1.39) b (29.06 ± 1.98) c

3 (1.87 ± 2.14) bc (7.03 ± 0.49) b (19.20 ± 2.21) b (27.70 ± 0.82) b (32.17 ± 2.32) c

4 (0) c (2.63 ± 0.77) c (8.73 ± 1.08) d (17.60 ± 2.73) d (22.06 ± 2.4) d

5 (0) c (2.83 ± 0.76) c (4.73 ± 1.00) d (14.60 ± 4.33) c (18.63 ± 2.01) d

6 (2.90 ± 0.79) bc (3.67 ± 0.38) c (12.40 ± 2.19) c (16.47 ± 1.24) c (31.20 ± 1.82) c

7 (23.20 ± 1.51) a (29.30 ± 2.33) a (41.60 ± 3.80) a (68.87 ± 3.63) a (98.23 ± 0.81) a

Note: The data in the table are mean ± standard deviation. Different letters in the same column indicate significant
differences at p < 0.05 by Duncan’s new multiple range test.
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2.3.3. Chemotaxis Activities of Compound 7 against M. incognita

Furthermore, 5-(methoxymethyl)-1H-pyrrole-2-carboxaldehyde (7) showed obvious
activity in inhibiting egg germination and nematocidal activity against M. incognita J2.
Therefore, it was selected for the analysis of its chemotactic effect on M. incognita. The
results showed that when the compound’s concentration was 40 ppm (Figure 3A), it
exhibited a strong avoidance effect towards root-knot nematodes of M. incognita (CI < 0).
When the compound’s concentration decreased to 5 ppm (Figure 3B), it showed a weaker
attractive effect (0 < CI < 0.2).
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Figure 3. Effect of compound 7 on the chemotaxis of M. incognita. (A) Schematic representation of
quadrant bioassay used to measure chemotaxis to compound 7. The worms were placed in the plate
center at the beginning of the assay. (B) Chemotaxis activity of 7 at different times and concentrations.

3. Discussion

Root-knot disease caused by M. incognita is a serious concern because it affects sev-
eral economically important crops globally. Researchers found that Paecilomyces lilacinus
(currently valid name: Purpureocillium lilacinum) showed a parasitic effect on root-knot
nematodes [6–8]. Several experts have conducted numerous studies on the fungus and have
confirmed that Paecilomyces lilacinus has control effects on various plant-parasitic nema-
todes [3,21]. Paecilomyces lilacinus can parasitize the eggs and larvae of important pathogenic
nematodes, including root-knot nematodes and cyst nematodes. Paecilomyces lilacinus was
subsequently found to disrupt the lipid and chitin layers of nematode eggshells [22]. Addi-
tionally, Paecilomyces lilacinus can also produce a variety of biologically active secondary
metabolites, including polyketides and non-ribosomally synthesized peptides, such as
leucinostatins, which are nematocidal, antiviral, and phytotoxic and possess a series of
biological activities [11,23,24]. By comparing the 18S rRNA gene, internal transcribed
spacer, and partial translation elongation factor 1-a of the isolates of P. lilacinus from the
environment and organisms, the genus Purpureocillium was proposed [4], which includes
P. lilacinum, P. lavendulum, and P. takamizusanense [4,25].

While studying the infection of M. incognita by P. lavendulum, a certain percentage of
nematodes died gradually over time (Figure 1) after the co-cultivation of Pur. lavendulum
with M. incognita. Through the isolation, purification, and activity assaying of the com-
pounds from the solid fermentation medium, two compounds showed activity against
M. incognita. Among them, 7,8-dimethylalloxazine (6) exhibited weak egg hatching in-
hibitory activity; this is the main photodegradation product of riboflavin under neutral
or acidic conditions and is known as an effective photosensitizer [26–28]. Some microor-
ganisms and plants also produce 7,8-dimethylalloxazine [29,30] and show various types of
activity: 7,8-dimethylalloxazine was isolated from culture filtrates of Chlamydomonas as a
quorum-sensing signal-mimicking compound capable of activating Pseudomonas aeruginosa
LasR receptor [31], and it was also purified and identified from a culture of the bacterium
Sinorhizobium meliloti and found to be responsible for stimulating root respiration and plant
growth. Moreover, 5-methoxymethyl-1H-pyrrole-2-carboxaldehyde (7), which was isolated
from plants and other fungi [32,33], showed multiple activities in the present work: at a low
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concentration of 5 ppm, the metabolite showed a certain attraction to M. incognita, while
at 40 ppm, it had a strong avoidance effect. Lastly, this compound showed nematocidal
activity and inhibited egg hatching activity in M. incognita at a concentration of 400 ppm.

4. Materials and Methods
4.1. Materials

Optical rotations were measured with a Jasco DIP-370 digital polarimeter (JASCO,
Tokyo, Japan). Ultraviolet (UV) spectra were recorded on a Shimadzu UV-2401PC spec-
trophotometer. The nuclear magnetic resonance (NMR) spectra were recorded on Avance
III-600 spectrometers, with tetramethylsilane (TMS) as an internal standard. The electro-
spray ionization mass spectra (ESI-MS) and high-resolution electrospray ionization mass
spectra (HR-ESI-MS) were recorded on a high-resolution Thermo Q Exactive Focus mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany).

Column chromatography was performed on silica gel G (200–300 mesh), GF254 (Qing-
dao Marine Chemical Inc., Qingdao, China), and Sephadex LH-20 (Amersham Pharmacia,
Chicago, IL, USA). Precoated silica gel GF254 plates (Qingdao Marine Chemical Inc., Qing-
dao, China) were used for thin-layer chromatography (TLC). Fractions were monitored by
TLC and visualized using heating plates sprayed with 5% H2SO4 in EtOH.

P. lavendulum YMF1.00683 was isolated from a soil sample in Yunnan. After 8 days
of growth on PDA at 28 ◦C, the hyphae of P. lavendulum YMF1.00683 have covered 6 cm
plates, and it is no growth at 35 ◦C. Colonies consist of dense basal mats composed of
many conidiophores and sparse aerial hyphae, and they fold radially toward the periphery.
Conidiophores grow from the mycelium 3–4 days at 28 ◦C, are long stem chains, unicellular,
subglobose, apically or lemon-colored at the base, and the clumps are pinkish-purple [34].
P. lavendulum YMF1.00683 was stored in glycerol at −80 ◦C at the State Key Laboratory for
Conservation and Utilization of Bio-Resources in Yunnan, China. The YMF1.00683 strain
was inoculated in PDA medium and incubated at 28 ◦C for 6 days, and then was transferred
into a fresh medium for 5 days as a seed strain. Meloidogyne incognita was obtained from
the roots of tomatoes grown in E’shan County in Yunnan Province.

4.2. Infection of M. incognita by P. lavendulum

P. lavendulum grown on PDA plates for seven days, was harvested by cutting the
sample into pieces, shaking it at 100 RPM in 0.1% Tween−80 for 30 min, and filtering it
through sterilized four-layer filter paper to obtain a spore suspension. The spores were
counted, and their concentration was adjusted to 106 mL−1. A 200 µL aliquot of the spore
suspension was dispersed on a cellophane-covered water agar plate, which was then
cultured at 28 ◦C for three days to germinate spores. M. incognita was washed with sterile
ddH2O, and then approximately 50 M. incognita worms were added to the germinated
spore plates. The infection process and number of dead nematodes were observed and
recorded at 24, 48, 72, and 96 h.

4.3. Extraction and Separation of Metabolites

The mycelium of Pur. lavendulum was cultivated in SD solid medium (10 g tryptone,
40 g glucose, 15 g agar, 1 L water) for 21 days at 28 ◦C. The culture (30 L) was cut into
small pieces and extracted by EtOAc/MeOH/AcOH (80:15:5, v/v/v) 3 times, and then
concentrated under reduced pressure to obtain a crude extract. The crude extract was
dissolved with 2.5 L of pure water, extracted with EtOAc to obtain the EtOAc crude extract
(100.2 g), and then extracted with n-butanol to obtain the n-butanol extract (100.3 g). After
LC-MS analysis, both extracts were combined.

The whole crude extract (200.5 g) was placed on a reversed-phase silica gel column
(300 g) and eluted with H2O/MeOH mixtures (100:0, 90:10, 70:30, 50:50, 30:70, 10:90, and
0:100) to obtain 10 fractions Fr.1–Fr.10. Fr.10 (3.28 g) was separated by Sephadex LH-20
(chloroform–methanol, 1:1) to obtain 4 fractions (Fr.10.1–Fr.10.4). Fr.10.3 (534 mg) was
chromatographed on a silica gel column (200–300 mesh) and eluted with a gradient of
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petroleum ether–acetone (500:1 to 7:3 with 0.1% NH3·H2O) to give Fr.10.3.1–Fr.10.3.10.
Fr.10.3.8 (37 mg) was separated by a silica gel column (200–300 mesh) with petroleum
ether–ethyl acetate (400:1 to 7:3) and then purified with Sephadex LH-20 (methanol) to
give 4 (3 mg). Fr.8 (1.25 g) was subjected to Sephadex LH-20 (chloroform–methanol, 1:1)
to give 5 fractions (Fr.8.1–Fr.8.5). Fr.8.3 (609 mg) was separated using Sephadex LH-20
(chloroform–methanol, 1:1) to give Fr.8.3.1–Fr.8.3.8. Fr.8.3.1 (37 mg) was separated by a
silica gel column (200–300 mesh) and eluted by a petroleum ether–acetone (50:1 to 6:4),
and then purified by a silica gel column (200–300 mesh, chloroform–methanol, 20:1 to
8:2) to give compound 1 (4 mg). Fr.8.3.4 (6 mg) was chromatographed on a silica gel
column (200–300 mesh) eluting with chloroform–acetone (200:1 to 6:4) and then purified by
Sephadex LH-20 (acetone) to obtain compound 3 (2 mg). Fr.8.3.5 (9 mg) was placed on a
silica gel column (200–300 mesh) and eluted with petroleum ether-acetone (500:1 to 1:1) to
give compound 2 (5 mg). Fr.8.3.8 (43 mg) was placed on a silica gel column (200–300 mesh)
and eluted with chloroform–acetone (100:1 to 8:2), and then purified by Sephadex LH-20
(methanol) to obtain compound 5 (2 mg). Fr.4 (4.27 g) was chromatographed on Sephadex
LH-20 (chloroform–methanol, 1:1) to give 4 fractions (Fr.4.1–Fr.4.4). Fr.4.4 (10 mg) was
separated on a silica gel column (200–300 mesh) and eluted with chloroform-acetone (200:1
to 6:4), and then purified by Sephadex LH-20 (methanol) to obtain compound 6 (8 mg). Fr.3
(3.76 g) was subjected to Sephadex LH-20 (chloroform–methanol, 1:1) to give 5 fractions
(Fr.3.1–Fr.3.5). Fr.3.4 (162 mg) was separated on a silica gel column (200–300 mesh) and
eluted with chloroform–methanol (50:1 to 10:1), and then purified by Sephadex LH-20
(methanol) to obtain compound 7 (5 mg).

4.4. Spectroscopic Data

Compound 1: colorless solid; [α]19
D = 25.8 (c 0.10, MeOH); UV (MeOH) λmax (log ε)

nm: 201 (3.86), 251 (3.92); NMR data see Table 1. ESI-MS m/z: 457 [M + H]+; HR-ESI-MS:
457.3311 ([M + H]+, calc. for C29H44O4, 457.3312).

3β,5α,6β-ergosta-7,22-dien-triol (2), colorless solid; C28H46O3; ESI-MS m/z: 443 [M + Na]+.
1H-NMR (C5D5N, 600 MHz) δ: 4.85 (1H, m, H-3), 4.32 (1H, m, H-6), 5.74 (1H, brd, J = 2.9
Hz, H-7), 5.14 (1H, dd, J = 8.4, 15.2 Hz, H-22), 5.21 (1H, dd, J = 7.6, 15.2 Hz, H-23); 13C-NMR
(C5D5N, 150 MHz) δ: 32.5 (C-1), 33.7 (C-2), 67.4 (C-3), 41.9 (C-4), 76.0 (C-5), 74.1 (C-6), 120.4
(C-7), 141.4 (C-8), 42.9 (C-9), 37.9 (C-10), 22.3 (C-11), 39.7 (C-12), 43.5 (C-13), 55.1 (C-14),
23.3 (C-15), 28.4 (C-16), 55.9 (C-17), 12.4 (C-18), 18.7 (C-19), 40.8 (C-20), 20.3 (C-21), 136.2
(C-22), 131.9 (C-23), 43.1 (C-24), 33.4 (C-25), 20.0 (C-26), 19.7 (C-27), 20.0 (C-28).

3β,5α,9α-trihydroxy-ergosta-7,22-dien-6-one (3): colorless solid; ESI-MS m/z: 445
[M + H]+. 1H-NMR (CDCl3, 600 MHz) δ: 4.06 (2H, m, H-3), 5.67 (1H, s, H-7), 1.03 (3H, s,
H-18), 0.62 (3H, s, H-19), 1.02 (3H, d, J = 6.9 Hz, H-21), 5.25 (2H, m, H-23/H-24), 0.83 (3H,
d, J = 6.9 Hz, H-26), 0.84 (3H, d, J = 6.9 Hz, H-27), 0.92 (3H, d, J = 6.9 Hz, H-28); 13C-NMR
(CDCl3, 150 MHz) δ: 25.4 (t, C-1), 29.6 (t, C-2), 67.2 (d, C-3), 33.0 (t, C-4), 79.7 (s, C-5), 197.6
(d, C-6), 119.9 (d, C-7), 164.3 (s, C-8), 74.7 (d, C-9), 41.8 (s, C-10), 28.8 (t, C-11), 34.9 (t, C-12),
45.3 (s, C-13), 51.7 (d, C-14), 22.4 (t, C-15), 27.9 (t, C-16), 56.0 (d, C-17), 21.1 (q, C-18), 12.2 (q,
C-19), 40.3 (d, C-20), 19.6 (q, C-21), 135.0 (d, C-22), 132.4 (d, C-23), 42.8 (d, C-24), 33.0 (d,
C-25), 19.9 (q, C-26), 20.4 (q, C-27), 17.6 (q, C-28).

5α,8α-epidioxy-22E-ergosta-6,22-dien-3β-ol (4): colorless solid; ESI-MS m/z: 451
[M + Na]+. 1H-NMR (CDCl3, 600 MHz) δ: 3.95 (1H, m, H-3), 6.25 (1H, d, J = 8.4 Hz, H-6),
6.50 (1H, d, J = 8.5 Hz, H-7), 5.21 (1H, dd, J = 8.6, 15.3 Hz, H-23), 5.16 (1H, dd, J = 8.6,
15.3 Hz, H-22), 1.00 (3H, d, J = 6.6, H-21), 0.91 (3H, d, J = 6.7, H-28), 0.88 (3H, s, H-19), 0.84
(3H, d, J = 6.7 Hz, H-27), 0.82 (3H, d, J = 6.8 Hz, H-18), 0.81 (3H, s, H-28); 13C-NMR (CDCl3,
150 MHz) δ: 34.7 (t, C-1), 30.1 (t, C-2), 66.5 (d, C-3), 36.9 (t, C-4), 82.1 (s, C-5), 135.4 (d, C-6),
130.7 (d, C-7), 79.4 (s, C-8), 51.7 (d, C-9), 36.9 (s, C-10), 23.4 (t, C-11), 39.7 (t, C-12), 44.5 (s,
C-13), 51.7 (d, C-14), 20.8 (t, C-15), 28.7 (t, C-16), 56.2 (d, C-17), 12.9 (q, C-18), 18.2 (q, C-19),
39.7 (d, C-20), 20.9 (q, C-21), 135.2 (d, C-22), 132.3 (d, C-23), 42.8 (d, C-24), 33.0 (d, C-25),
19.9 (q, C-26), 19.6 (q, C-27), 17.5 (q, C-28).
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3β-hydroxy-(3,22E)-ergosta-5,8,22-trien-7-one (5): colorless solid; C28H42O2; ESI-MS
m/z: 411 [M + H]+. 1H-NMR (CDCl3, 600 MHz) δ: 6.04 (1H, s, H-6), 5.22 (2H, m, H-22/H-
23), 3.67 (1H, m, H-3), 1.28 (3H, s, H-19), 0.99 (3H, d, J = 6.6 Hz, H-21), 0.86 (3H, d, J = 6.8
Hz, H-28), 0.78 (3H, d, J = 6.8 Hz, H-27), 0.76 (3H, d, J = 6.8 Hz, H-26), 0.58 (3H, s, H-18);
13C-NMR (CDCl3, 150 MHz) δ: 186.3 (s, C-7), 71.9 (d, C-3), 161.5 (s, C-5), 161.0 (s, C-9), 126.8
(d, C-6), 135.4 (d, C-8), 24.6 (t, C-1), 29.5 (t, C-2), 33.1 (t, C-4), 41.8 (s, C-10), 24.6 (t, C-11),
34.6 (t, C-12), 42.3 (s, C-13), 48.4 (d, C-14), 22.4 (t, C-15), 27.9 (t, C-16), 53.3 (d, C-17), 21.1 (q,
C-18), 11.9 (q, C-19), 40.3 (d, C-20), 19.6 (q, C-21), 134.0 (d, C-22), 132.1 (d, C-23), 42.8 (d,
C-24), 33.0 (d, C-25), 19.6 (q, C-26), 20.0 (q, C-27), 17.6 (q, C-28).

7,8-dimethylalloxazine (6): yellow crystal; ESI-MS m/z: 243 [M + H]+. 1H-NMR
(C5D5N, 600 MHz) δ: 8.03 (1H, s, H-9), 7.85 (1H, s, H-6), 2.30 (3H, s, 8-Me), 2.23 (s, 7-Me);
13C-NMR (C5D5N, 150 MHz) δ: 162.0 (s, C-3), 151.7 (s, C-2), 147.6 (s, C-9a), 144.7 (s, C-7),
142.9 (s, C-10a), 139.7 (s, C-8), 139.0 (s, C-5a), 130.9 (s, C-4a), 127.1 (d, C-9), 123.7 (d, C-6),
20.3 (q, C-11), 19.7 (q, C-12).

5-(methoxymethyl)-1H-pyrrole-2-carboxaldehyde (7): pale-yellow oil; ESI-MS m/z:
140 [M + H]+. 1H-NMR (CD3OD, 600 MHz) δ: 3.34 (3H, s, OCH3), 4.44 (2H, s, H-6), 6.27
(1H, d, J = 3.8 Hz, H-4), 6.96 (1H, d, J = 3.8 Hz, H-3), 9.39 (1H, s, H-1); 13C-NMR (CD3OD,
150 MHz) δ: 180.7 (d, C-1), 139.7 (s, C-5), 134.4 (s, C-2), 121.5 (d, C-3), 111.8 (d, C-4), 67.7 (t,
C-6), 58.3 (q, OCH3).

4.5. Assay Activity against M. incognita
4.5.1. Effects of Compounds on the Hatching of M. incognita Eggs

Assays were performed in 24-well cell culture plates. M. incognita egg acquisition [10]:
oocysts were picked from the root knots of susceptible tomato and washed of impurities
with ddH2O, shaken with 0.5% NaClO for 3 min, and then filtered with a 500-mesh sieve
to remove NaClO, rinsed with sterile water 3 times, shaken with 2% NaClO solution for
3 min to obtain eggs, and subjected to 10 µL microscopic examinations after completion to
prevent excessive cracking. For the second stage juveniles of M. incognita (J2), the obtained
eggs were hatched in a 25 ◦C incubator, and M. incognita (J2) were collected for later use.

The experimental operation of the effect on the egg hatching of M. incognita [35]: we
used sterile water to prepare the egg solution; we prepared a compound solution with
methanol sterile water, and the final concentration of methanol was 1%; egg-containing
solution and compound solution were added to each well for a final total volume of 500 µL,
containing approximately 150 eggs, and the tested compound working concentration was
400 ppm. Sterile water containing 1% methanol was used as a control, and each treatment
was repeated thrice.

4.5.2. Assay of Nematocidal Activity against M. incognita

The tested compounds were dispersed in MeOH. Two hundred M. incognita J2s (100 µL)
were added to each sample, and the final concentration of the tested compounds was set
at 400 ppm. The total and dead nematode numbers were determined every 24 h [36]. The
worms were considered dead if they were flat or cracked, and then the nematode mortality
was calculated. According to the nematocidal activity strength classification standard, the
five-level grading criteria are as follows: inactive, adjusted mortality rate ≤10%; weak
activity, adjusted mortality rate of 10% to 30%; moderate activity, adjusted mortality rate of
30% to 70%; strong activity, adjusted mortality > 70%. Avermectin was used as a positive
control; the test solution without compound was used as a negative control. Three replicates
were conducted for each test.

4.5.3. Assay of Chemotaxis Activity against M. incognita

The nematode chemotaxis assay was conducted for compound 7 using the four-
point plate method [37]. The 90 mm plate contained 1% agarose for the chemotaxis assay.
Compound 7’s working concentration was set to 40, 20, 10, 5, 1, 0.5, and 0.01 ppm using 1%
methanol sterile water, and sterile water containing 1% methanol was used as a control.
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Approximately 200 worms of M. incognita J2 were added to the center of the Petri dish.
Compound 7 and control were added, as shown in the schematic diagram (Figure 3A), the
counts were observed at 2, 4, 6, and 8 h, and the chemotaxis index (CI) was calculated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11070795/s1. The HR-ESI-MS, 1D, and 2D NMR
spectra of compound 1, and ESI-MS and 1D NMR spectra of compounds 2–7, are available in the
Supporting Information.
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