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Abstract: In the light of Vavilov’s Law, grain traumatization in the standing crop of wheat and
other crops due to the enzyme stage of enzyme-mycotic seed depletion (EMSD) was confirmed, the
parameters of open and hidden harmfulness were detected, and a scale of plant resistance to such
traumatization was developed. The current study demonstrates that pathogen contamination in
grains occurs before harvesting and its degree is determined by favorable humidity and temperature
conditions and by the open and hidden grain traumatization due to the enzyme stage of EMSD,
i.e., the grain’s hydrolytic enzymes providing a growth substrate for a fungal spread that is later
substituted by pathogen enzymes leading to grain spoiling and self-warming. The most common
technique to preserve grain quality is to support a moisture level that prevents further spreading of
the fungi. The grains that are contaminated with very low temperature and humidity levels facilitate
the germinability and high quality of the grain. The new ways to withstand EMSD should, first of all,
include a selection of activities. Using biological, biochemical and physical (X-ray) methods, genetic
sources of resistance towards EMSD were found in the VIR world collection that is recommended
for further selection. These sources have become a basis for the varieties, such as Moskovskaya 39,
Ilot (winter wheat), Gremme and Gremme 2U (hulless spelt), Alcoran (winter spelt) and Kanysh
(spring wheat).

Keywords: fungal pathogens; germination; VIR gene pool; wheat

1. Introduction

Cereal crops are considered to be one of the most important crops worldwide, which
have a major influence on the food security of countries. Nowadays, cereals constitute the
basis of our diet, due to the ease of the methods of production, harvesting, storage and trans-
port, the diversity of the geographical areas of production, their richness in constituents of
interest nutrition and the diversity of methods of preparation and consumption [1,2]. Grain
crops occupy a key important place in the grain production with a significant proportion
in the entire agricultural system [3] growing in an area of 724 million/h worldwide [4].
These crops provide nearly 55% of the carbohydrates and daily protein for 85% of the
world’s population [5].
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However, abiotic stresses, such as frost and rapid temperature changes, are the major
factors affecting the growth and yield-related characteristics of grain crops [6,7]. Grain
crop yield losses caused by abiotic stresses amount to 40% of world grain crop produc-
tion [8].This can directly affect the food security of the burgeoning population, which
is projected to increase up to 9.1 billion in 2050 [9,10]. Moreover, pests and diseases,
particularly fungal diseases, induce highly quantitative and qualitative losses, causing
critical damage with significant economic losses [11,12]. Fungal pathogens are very adapt-
able and can rapidly evolve, even into new resistant strains, depending on the nature of
the pathogen, susceptibility of the host, diversity of virulence, density of inoculums and
the temperature [13,14].

The phenomenon of EMSD-associated grain traumatization is one of the most harmful
phenomena that affects grain crops, particularly the wheat crop. EMSD is a complex
pathological phenomenon triggered by abiotic factors, such as excessive humidity and
temperature, which are later exacerbated by biotic factors (pathogens) [15]. The etiology and
pathogenesis of EMSD includes three stages: the first stage is non-infectious (enzyme), and
occurs and develops during the flowering, ripening and harvesting stages when ears and
grain are moist; this is followed by the second infectious (mucosal) stage, which is caused
by semi-parasitic and saprophytic fungi, mainly species of Alternaria, Helounthosporium,
Cladosporium, Fusarium, and Septoria. At the same time, as a result of non-infectious (enzyme)
EMSD processes in the plant, an ideal nutrient substrate is formed for the fungi in the form
of the water-soluble products of the hydrolysis of carbohydrates and proteins (sugars and
amino acids) released through macro-/microtrauma. When the hydrolytic enzymes of the
plant and phytopathogens work together, losses increase, and the sowing, technological
and commercial qualities of the grain considerably decreases. The last stage is a special
form of the enzyme-mycotic depletion of seeds, which includes the less frequently observed
phenomenon in which grain germination during the peak of EMSD-related harvest losses
can reach up 30–50% in some years, and the depletion significantly worsens the quality of
the grain [16,17]. The 30-year research into EMSD etiology and pathogenesis in wheat, rye,
triticale, oat and barley carried out in the former Moscow Department of N. I. Vavilov All-
Russian Institute of Plant Genetic Resources (VIR), which is currently the Federal Scientific
Center of Horticulture, demonstrated a variety of traumas and their consequences on grains
grain, long before harvesting (while blooming and in standing crops) and in windrows [18].

Previous studies demonstrated that the most important ways to increase wheat pro-
duction is the development of new cultivars [19,20]. Developing new wheat varieties
adaptable to the soil and specific climatic conditions in different regions is considered as
the most effective option to increase and sustain wheat production [21]. The use of genetic
approaches allows for the development of wheat varieties that are tolerant to abiotic (i.e.,
frost and drought) and biotic stress (, i.e., pathogens), in order to reduce the stress impact on
wheat growth and yield [22]. In fact, appropriate selection criteria enable breeders to use the
genetic variation for enhancing stress tolerance in crops [23]. The objective of the present
study is to investigate the gene pool of winter wheat from the world collection from the
N. I. Vavilov Institute of Plant Resources (VIR) to detect the signs of grain traumatization
in standing crops and, to select resistant genotypes to produce the winter wheat varieties
with group immunity to EMSD.

2. Materials and Methods
2.1. Experimental Sites

The present study was carried out from 1978–2021 by the Federal Scientific Center of
Horticulture (former Moscow Department of VIR); the phytopathological research by the
All-Russian Scientific Research Institute of Phytopathology and Russian State Agrarian Uni-
versity; the Moscow Timiryazev Agricultural Academy (from 1978 to 1995 by the Siberian
Scientific Research Institute of Agricultural Chemicalization (Krasnoobsk, Novosibirsk
Region)); and the pass surveys by the VIR Experimental Station in Dagestan (2015–2021).
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2.2. Plant Materials

Two thousand samples and recognized varieties of the gene pool of wheat, rye, barley
and oat from the VIR world collection were investigated. The evaluated samples were
obtained from Scandinavia, Western Europe, the U.S.A., Canada, CIS countries and the
Russian Federation.

2.3. Climatic Conditions and Soil Characteristics

The climate of the Moscow region is moderately humid and continental. The average
annual amount of precipitation ranges from 450–800 mm. The cumulative temperatures
above 10 ◦C reduce from 2100 ◦C in the south-east and the east to 1900 ◦C in the north-west,
reducing the vegetation period (above +10 ◦C) from 140–145 to 120–125 days.

The region’s water and thermal availability make it an appropriate territory for grow-
ing all typical temperate crops. The Stupinsky District is classified as the second (II)
agroclimatic region and is located at the center of the region, being a part of subdistrict 11a
with sod-podzolic clay-loam soils.

In winter, they freeze down to 50–75 cm in open areas, and down to 30–50 cm in
protected ones. The soil de-freezes from 21–29 April and reaches its physical maturity on
average on 20 May (clay-loam soils) and on 18 May (sandy-loam soils). The duration of the
frost-free season varies from 120 to 135 days, which is long enough for the cultivated crops
to reach their full ripeness. The seasonal snow cover forms by 25 November/2 December;
its average height is 35 cm. The cover sustains for 137–143 days. The Hydro-Thermal
Coefficient (HTC) varies between 1.3 and 1.4.

2.4. Methodology

The collections of winter wheat and rye, spring barley and oat (500 seeds/m2) were
planted at the optimum times between 25 and 27 August (winter varieties) and between
1 and 3 May (spring varieties), as part of scientific crop rotation. For planting, an SSFK-
7M planting machine was applied in a plot area of 2 m2. NPK 68-60-30 was used as a
pre-planting material, and N 50 was used as a plant food in spring. The used farming
techniques were typical for the region.

The wheat collection was investigated following the VIR Methodological Recommen-
dation [24,25] and CMEA Wide Unified Classifier for Triticum L. [26]. The grains’ resistance
to EMSD was estimated by applying original techniques [26].

The anatomical and pathomorphological studies were conducted using an ordinary
scanning electron microscope and X-ray (Family PRDU, Figure 1) techniques to estimate the
degree of the grains’ contamination and resistance to EMSD [27,28]. The X-ray diffraction
analysis of the seeds was carried out by the Agrophysical Research Institute, and the
informative X-ray diffraction images of the plant seeds are explained in Figures 2 and 3.
The technique of microfocus radiography, in comparison to the traditionally used contact
radiography, allows for the attainment of X-ray images of seeds with a projected image
magnification of up to several dozen times.

Enzyme electrophoresis was applied to estimate the grains’ protein stability. The
study was performed during the firm–ripe stage and while storing using a modified B.B.-
O. Gromova technique [29]. The grains’ sowing characteristics and germinability were
estimated as required by GOSTs 12038–84 and 12039–66 [30].
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curred not only in the grain during its milk, wax and full ripeness, but even earlier, during 
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posing available biopolymers became active during this very stage. Hydrolyzing the bi-
opolymers of the plants’ vegetative organs is considered to be one of the reasons for a 
seed’s bad set in humid weather, despite profuse pollination. Having entered a grain, a 
pathogen adds its own enzymes to the ongoing hydrolysis, additionally producing toxic 
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3. Results and Discussion

It can be observed that the complex lesions (traumatizations) of the grain crops were
determined by their etiological groups. The first group mainly included the mechanical
lesions the grains obtained while being harvested, transported and processed. The second
group mainly included the traumas, such as cell turgescence, which occurred in grains due
to different EMSD factors, which we have termed biological traumatization.

These lesions occurred in standing crops and were provoked by the EMSD enzyme
stage. Initially, they were only found in the winter wheat grown in the Moscow and
Kursk regions and at the VIR Experimental Station in Dagestan, but, later, they were also
discovered in triticale, rye, corn, barley, oat, buckwheat, pea crops, coleseed bearers, and
later in the spring, wheat, rye and barley in Western Siberia, making them an excellent
demonstration of Vavilov’s Law [31].

The third group combined complex and mixed lesions, in which minor biological dam-
ages were facilitated by the mechanical effects of transportation, threshing and drying. The
investigations carried out in the Moscow and Kursk regions at the VIR Experimental Station
in Dagestan and Western Siberia from 1978 to 2021, demonstrated that biological trauma-
tization can be open and hidden. Such images allow us to visualize the fundamentally
smaller details of the seed structure, which slightly differ in density (Figures 2 and 3).

In other words, the biological traumatization is not only a “gate” for different pathogens
to enter the a grain, but also a way to attract them through the availability of the feeding
substrate that is formed by hydraulic enzymes and penetrates through microfractures,
which has a direct effect on the grain quality.

3.1. Hidden Biological Traumatization during Blooming

Having assessed a gene pool of more than two thousand samples using the original
methods [8], we developed the conclusion that humidity affects the plants in the way
they lost their dry matter (DM) at every stage of development. What is more, DM losses
occurred not only in the grain during its milk, wax and full ripeness, but even earlier,
during the plant’s blooming phase, i.e., the hydrolytic enzymes (amylases and proteases)
decomposing available biopolymers became active during this very stage. Hydrolyzing the
biopolymers of the plants’ vegetative organs is considered to be one of the reasons for a
seed’s bad set in humid weather, despite profuse pollination. Having entered a grain, a
pathogen adds its own enzymes to the ongoing hydrolysis, additionally producing toxic
(and non-toxic) metabolites and remaining hidden inside a flower (see Figure 4).
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Among the winter wheat varieties investigated, four groups in relation to DM loss were
registered [32]. It was the milk ripeness phase that turned out to be the most sensitive to
EMSD. When moisturizing the ears and grains during the blooming, wax and full ripeness
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phases, the DM loss was not as high as the milk ripeness. However, the genotypical
characteristics of the varieties in the groups did not change. Additionally, the investigation
results for the years 2012–2013 were analyzed.

The agricultural and weather conditions for the years 2012–2013, favored the estima-
tion and selection of the samples from the crop gene pool to meet the region’s limitation
factors, such as winterhardiness and the progressing biological (enzyme-assisted) and
mycotic traumatization, due to EMSD. A total of 1200 samples were analyzed to find those
with the highest level of winterhardiness and yield capacity (Table 1).

Table 1. Winter hardiness and productivity of the selected winter wheat samples in terms of their
resistance to EMSD during a humid 2013 and following 5-year storage.

№ Registration VIR Cultivars Origins
Winter

Hardiness,
Point

Weight per 1000
grains, g

Yield,
g/m2

Dry matter losses up to 15%, stability of group I: stable
45335 Ibis Germany 5 34.9 260
49916 Zarya Russia 7 39.6 350

- Gelderseris Netherlands 8 40.4 425
64027 Bassard Germany 8 41.3 400
64160 Moskovskaya 39 Russia 7 45.7 430
58526 Ivanovskaya 16 Ivanovo region 9 41.0 367

Losses of dry matter up to 25%, stability of group II: relatively stable
65760 Moskovskaya 56 Russia 7 48.0 400
65757 Nemchnovskaya

24 Russia 5 41.7 450
64013 Bersy Netherlands 7 39.0 290
64030 Zentos Switzerland 5 37.5 280
62052 Obelisk Germany 5 38.2 300
64034 Orestis Germany 5 37.4 310
34230 Varmalands Sweden 7 39.3 302

Losses of dry matter up to 35%, stability of group III: highly tolerant
43920 Mironovskaya

808 Ukraine 9 40.7 380
54610 Yantarnaya 50 Russia 7 38.9 310
63560 Kazanskaya 285 Russia 7 39.8 320
63041 Umanka Russia 7 38.7 300
63404 Nika Kuban Russia 7 39.1 340

Dry matter losses of more than 35%, stability of group IV: unstable (susceptible)
54508 Polokarlik 3 Ukraine 5 34.1 220
57582 Fakta Germany 5 33.4 210
64028 Faktor Germany 5 35.6 180
63016 lives Finland 5 36.1 200
63273 Expert Austria 4 35.4 185
64051 Nike Poland 5 36.5 170
63119 Zadorinka Irkutsk region 5 38.1 240

LSD05 0.8 90

In the samples suffering from significant biological traumatization in standing crops
as well as from early and grain blight, the crops exposing the highest and lowest resistance
to EMSD, such as Ivanovskaya 16 k-58526 (Ivanovo region), Moskovskaya 39 k-64160
(Moscow Research Institute of Agriculture), Bassard k-64027 (Germany), Gelderseris b/k
(Netherlands), Zarya k-49916 (Moscow Research Institute of Agriculture), and Ibis k-45335
(Germany), were selected. These varieties were resistant to both the enzyme and mycotic
stages of EMSD. The varieties, such as Moskovskaya 56 b/k, Nemchnovskaya 24 b/k
(Moscow Research Institute of Agriculture), Bersy k-64013 (The Netherlands), Zentos
k-64030 (Switzerland), Obelisk k-62052 (Germany), Varmalands k-34230 (Sweden), and
Orestis k-64034 (Germany) exposed either a relative or moderate resistance to EMSD.
The varieties, such as Mironovskaya 808 k-43920, Standard (Ukraine), Kazanskaya 285
k-63560 (Tatar Research Institute of Agriculture), Nika Kubany k-63404, Umanka k-6304
(Krasnodar Region), and Yantarnaya 50 k-54610 (Moscow Research Institute of Agriculture),
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demonstrated a high tolerance to EMSD. Simultaneously, Polykarlik 3 k-54508 (Ukraine),
Faktor k-64028, Fakta k-57582 (Germany), Lives k-63016 (Finland), Expert k-63273 (Austria),
Zadorinka k-63119 (Irkutsk Region), and Nike k-64051 (Poland) turned out to be susceptible
to EMSD (Table 1).

The selected samples resistant to biological traumatization in terms of DM loss (resis-
tance groups I–III) formed a proper 1000-grain mass and produced a sufficient yield within
the studied region.

The grain analysis of the selected crops is presented in Table 2.

Table 2. Quality of the winter wheat seeds affected by excessive humidity after a 5-year storage
period.

Cultivars
Germination, % Survivability

%,
2018 г.

Infestation Rate, %
2013 г. 2018 г.

2013 2018 Difference Altemaria
altemata

Fusarium
spp.

Altemaria
altemata

Fusarium
spp.

Resistance to EMSD
Ibis 92.0 64.0 28.0 67.0 7.0 3.0 25.0 10.0

Zarya 94.0 60.0 34.0 71.0 12.0 4.0 28.0 12.0
Gelderseris 90.0 61.0 29.0 69.0 10.0 5.0 30.0 10.0

Bussard 95.0 58.0 37.0 70.0 8.0 3.0 20.0 7.0
Ivanovskaya 16 90.0 62.0 28.0 73.0 15.0 8.0 31.0 10.0
Moskovskaya 39 92.0 67.0 25.0 72.0 12.0 5.0 15.0 10.0

Relatively resistant to EMSD
Moskovskaya 56

cт. 95.0 70.0 25.0 75.0 7.0 2.0 21.0 12.0
Bersy 90.0 57.0 33.0 64.0 12.0 5.0 28.0 10.0

Zentos 90.0 55.0 35.0 60.0 8.0 4.0 51.0 10.0
Obelisk 89.0 59.0 30.0 67.0 10.0 7.0 49.0 15.0
Orestis 85.0 50.0 35.0 62.0 15.0 10.0 52.0 15.0

Varmalands 87.0 48.0 39.0 55.0 10.0 5.0 46.0 15.0
Highly tolerant to EMSD

Mironovskaya 808
sт. 85.0 52.0 33.0 61.0 12.0 8.0 50.0 22.0

Nika Kuban 90.0 43.0 47.0 53.0 10.0 12.0 45.0 18.0
Kazanskaya 285 80.0 45.0 35.0 55.0 15.0 10.0 57.0 25.0

Umanka 85.0 47.0 38.0 54.0 9.0 15.0 40.0 30.0
Not resistant to EMSD

Polokarilik 3 87.0 35.0 52.0 37.0 12.0 25.0 52.0 100
Fakta 85.0 34.0 51.0 33.0 20.0 28.0 56.0 100
Faktor 87.0 30.0 57.0 34.0 20.0 18.0 60.0 100
lives 80.0 36.0 44.0 39.0 10.0 27.0 85.0 90.0

Expert 85.0 33.0 52.0 41.0 30.0 25.0 80.0 100
Nike 80.0 31.0 49.0 35.0 25.0 18.0 90.0 100

Zadorinka 65.0 17.0 48.0 15.0 20.0 35.0 60.0 100

(a) A good proportion of properly shaped, large, glassy grains of 39.6–48.0 g in
the Moskovskaya 56, Nemchnovskaya 24, Zarya, Gelderseris, Bassard, Ivanovskaya 16,
Moskovskaya 39, Mironovskaya 808, Nika Kubani, and Kazanskaya 285 varieties. At the
same time, susceptible varieties, such as Polukarlik 3, Fakta, Faktor, Lives, Expert, Nike and
Zadorinka, had hydrolyzed grains, some of which had signs of biological traumatization,
i.e., fractures with Alternaria/Fusarium mycelium on their surfaces. Their 1000-grain
weight varied from 34.1 to 38.1 g, and the yield, from 170 to 240 g/m2.

(b) The samples included in resistance groups I, II and III showed the proper re-
generative capacity of the root system after wintering and were resistant to snow mold
(Microdochium nivale). The varieties, such as Gelderseris, Bassard, Zentos, Obelisk, and
Orestis, demonstrated complex resistance and were almost unaffected by brown rust and
powdery mildew, so we recommend them for further selections.

3.2. Open and Hidden Biological Traumatization during Grain Formation and the Milk/Wax
Ripeness Phases

Excessive humidity due to rain and abundant dew has a negative effect on the weak
tissues of a just-formed grain kernel, making it susceptible to biological traumatization.
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This effect that reveals itself during grain formation and the milk/wax ripeness phases
may be both open and hidden and has been observed not only in wheat, rye and triticale,
but also in barley, oat, corn and buckwheat. In humid weather conditions, as the kernel’s
volume increases, so does its inner hydrostatic pressure, which stretches and rips its elastic
shell. Sometimes, a kernel resembles an inflated balloon with its crease fractured (Figure 5)
and oozing enzyme-decomposed biopolymers.
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Figure 5. Balloon-shaped kernel (×30).

Sugar release and osmotic moisture increase the pressure inside the kernel, squeezing
out the products of hydrolysis through the blossom part of the crease as well as through
the microfractures of the endosperm and the pores of the pappus, in which the products
are concentrated to ooze as “honeydew” (Figure 6). A similar phenomenon was observed
not only in wheat, but also in rye, triticale, oat, barley, pulses (peas) and the seed bearers of
crucifers [32,33].
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Figure 6. “Honeydew” (secretion) formed under the influence of the enzyme stage of EMSD in the
milk ripeness phase of wheat (left) (×50). Phytopathogen Fusarium spp. on the “honeydew” (right)
(×10).

The hydrolysis products are immediately infected by Alternaria, Helminthosporium,
Cladosporium, Septoria, and Fusarium. However, if the weather becomes dryer, hydrolytic
enzymes stop working, the biopolymers stop oozing and the traumas are healed, locking
the infection inside the kernels and grains. Sometimes, in the case of long-term EMSD, the
inner tissues of kernels and grains completely hydrolase, oozing through the fractures and
pores, so such kernels and grains become corrugated and rotten and lose all their goodness
(Figure 4). Similar phenomena were registered (Figure 7) in 1978, 1979, 1980, 1981, 1985,
1986, 1987, 1989, 1991, 1994, 1995, 2003, 2008, 2013 as well as in 2018, when in July and
August, the front of moisture in soils exceeded the long-term average value by 3–4 times.
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3.3. Open and Hidden Biological Traumatization during the Full Ripeness Phase

The following types of biological grain traumatization were identified for the full
ripeness phase: very weak, weak, average and strong. These kinds of biological trauma-
tization were detected in wheat (Figure 8), and later in triticale, rye, barley, buckwheat
and peas.
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Figure 8. Oozed wheat grain (×30).

Most of the traumatized grains were severely infected with fungi, both inside and
outside. Around the fractures, brown and pink mycotic spots were formed. All the types of
traumatization led to a reduced germinating power and worsened both the laboratory and
field germinability of the seeds. When planted, the traumatized seeds reduced the yield
capacity of the Mironovskaya 808 variety by 30.1–36.1% (in 1983, 1988 and 2004) and by
69.1–73.8% (in 1984, 2006 and 2013), when compared to the healthy planting material.

The hidden traumatization caused by EMSD is analogous to that in the phase of open
grain traumatization during the full ripeness phase. Starch grains have “gnawed edges”
and erosion (Figure 9).
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The hidden fractures become an open gate for soil and drop infections to enter the
grain (Figure 10).
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Figure 10. Hidden biological traumatization in standing crops during the full ripeness phase (×30).

The acting EMSD phytopathogenic factor, in this case, is determined by the compo-
sition of pathogenic agents typical for a particular territory. The factor increases grain
depletion, and therefore, even in case of insignificant precipitation during the full ripeness
phase, results in the grain being traumatized.

In commercial batches, such grains are similar to healthy ones, but their microscopic
examination reveals fractures on their surface and a cavern inside. These processes probably
occur while sorting wet grains undergo the first non-infectious enzyme stage of EMSD
when biopolymers are degraded by hydraulic enzymes and squeezed out through the
fractures in the shell.

Figures 11–13 demonstrate the caverned grains of wheat, rye and barley. Similar
processes were observed in oat, triticale, pea and buckwheat grains. This symptom is
typical in all the regions in Russia, as well as in Germany and the Netherlands.
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To detect the deeply hidden biological traumatization in grains, the X-ray method has
proved promising. An analysis of the X-ray images of the grain demonstrated that the first
enzyme stage of EMSD could be easily detected as lengthwise, dark lines with blurred
edges on the bright background of healthy grain tissues.

The X-ray images of enzyme erosions were different from those of mechanical damages.
Unlike the latter, the former was wide and had blurred edges to reflect endosperm mass
loss along shell raptures. The mechanical damages, in this respect, could be not observed at
all, since the loss of tissue due to mechanical shell raptures was too insufficient to affect the
optical density of the image. The enzyme erosions in the crease area also had blurred edges.

During the milk/wax ripeness phases, the fractures of the grain provoked by rain and
abundant dew may quickly heal, thanks to good weather that prevents further biopolymer
oozing and locks the infection inside. Analyzing the grains grown in the Nonchernozem
zone of Western Siberia, the VIR Experimental Station in Dagestan and the Kursk Region
in humid years during their blooming, plumpness and ripeness periods, showed they were
affected by a large number of pathogens, including the most commonly found Alternaria
alternata (Fr.) Keissl. and Cladosporium herbarum Lk. Ex Fr., Bipolaris sorokiniana Shoem.,
Fusarium avenaceum (Fr.), Sacc, F. oxysporum Schlecht, F. culmorum (W.G.Sm) Sacc, and Septo-
ria nodorum (Berk.) Berk. When planted after five-year storage, such seeds demonstrated
much worse germinability and resilience, if compared to resistant varieties.

It was found [32] that a combination of certain weather temperatures and humidity
levels caused EMSD that destroyed the structure of proteins and starch in wheat plants.
This occurred due to the increasing activity of (α + β) amylases and proteases that, in
some very susceptible varieties, led to the fact that no total protein stain could be found,
although such an investigation requires the same amount of protein that is determined
spectrophotometrically at 260 and 280 nm.

Other negative consequences included the reduced activity and even disappearance
of particular isoenzymes, and changes of the protein spectrum that manifested itself in the
reduced representation of certain electrophoretic fractions or their complete decomposition.
It is noteworthy that the obtained changes in the amylase spectrum corresponded to those
in the protein spectrum. The resistant varieties (Zarya, Ibis, Bassard, and Bersy) suppressed
the proteolytic activity intensity better than the susceptible ones.

Suppressing the proteolytic activity, the resistant varieties preserved the cell-organelle
integrity and contained the negative effect of EMSD. The data on protein destruction and
amylase inhibitor activity enabled us to detect different degrees of plant adaptation at the
level of protease activity during the EMSD enzyme stage.

Thus, the wheat varieties resistant to EMSD are characterized by anabolic processes,
i.e., stable protein synthesis. On the other hand, in the plants susceptible to EMSD, the
metabolic processes shift to become catabolic, and are characterized by excessive protein
hydrolysis. The wheat varieties, whose response is an increased activity of hydrolytic
enzyme protease, amylase and a structural and conformal protein rearrangement to react to
abiotic factors (high weather temperature and humidity) are to be described as susceptible.
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The data of proteino- and enzymograms showed that the grains of wheat, triticale,
rye, barley and oat are affected by excessive humidity, while plumpness could neither
restore their biochemical parameters by the full ripeness phase nor after 6 months or 5 years
after harvesting (during storage). We pointed out [32] that the disrupted structures of
proteins and enzymes affected the germinability and resilience of the seeds. After a 5-year
storage period, the grains of the varieties susceptible to EMSD, such as Faktor, Fakta, lives,
Expert, Nike, Zadorinka and Polykarlik 3, which were harvested in the humid year of 2013,
reduced their field germination rate by 44.0–57.0 %, when compared to their initial rate in
2013, while their resilience reduced by 15.0–41.0% (Table 2).

In the resistant and relatively resistant varieties, such as Gelderseris, Bassard, Moskovs-
kaya 39, Ivanovskaya 16, Moskovskaya 56, Ibis, Bersy, Zentos, Obelisk, and Orestis, the
field germinability comprised 50–70%, i.e., it reduced by 25–39.0%.

The varieties included in resistance groups I and II preserved their resilience at
55.0–75.0%. Their Alternaria and Fusarium infection rate varied within 52.0–15.0%, while
that for the susceptible varieties varied within 52.0–100%. Here, it should be noted that
before being sent to storage, their Alternaria infection rate did not exceed 12.0–30.0%, and
that of Fusarium—12.0–35.0%, which can be explained by the slightest change in humid-
ity and temperature, where storing activates breezing processes and hydrolytic enzymes
(amylase and protease) as well as the pathogens inside and outside a grain. Sometimes the
amount of mico- and microflora increases exponentially. The described factors are the main
reason grains lose their germinability and resilience while being stored (Figure 14).
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Therefore, it becomes apparent that the pathogenic infection of the grains occurs before
and not after their harvesting, as has been pointed out by several researchers [33]. The
infection rate in a batch of grain depends on favorable humidity and weather temperature
as well as on the presence of open or hidden grain traumatization that has occurred due to
the EMSD enzyme stage, i.e., when a grain’s hydrolytic enzymes produce feed substrate
for fungi, which, in turn, enhance its destruction resulting in grain spoiling and self-
warming. Our research demonstrated that the joint activity of grain and fungus enzymes
exponentially increases the number of the latter.
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The most common method for sustaining the quality of grain and seeds is to maintain
storage humidity at such a level to prevent the further development of the fungi that a
grain contains. In other words, low temperature and humidity enhances grain resilience
and quality. They also prevent moisture transfer within a bulk grain [34].

Developing techniques to fight EMSD should first rely upon the selection process.
Using biological, biochemical and physical (X-ray) methods enabled us to detect the genetic
sources of resistance to EMSD that can be recommended for implementation. They have
become a basis for the varieties, such as Moskovskaya 39, Ilot (winter wheat), Gremme,
Gremme 2U (spelt), Alkoran (winter spelt), and Kanysh (spring wheat).

A 9-point scale was used to account for the resistance to biological traumatization in
EMSD-invaded grains, in which EMSD symptoms are assessed from 0 to 4. The number “0”
in traumatized plants [35] corresponds to “9” in resistant plants (no traumatization). The
number “4” in traumatized plants corresponds to “1” (severe traumatization up to 100%).

The scale enables one to estimate a plant’s resistance to EMSD after rain, in stand-
ing crops, and before harvesting to predict the yield loss and estimate the genotypical
disposition of a variety to the second (infectious/mycotic) EMSD stage (Alternaria spot,
cladosporiosis, Septoria spot, Fusarium head blight), which is especially important for
regional and perspective varieties [31].

The most valuable varieties detected in this way may be additionally tested using the
artificial infection method to confirm their resistance to the above-mentioned pathogens.

Vavilov’s Law is a great discovery of significant practical value for biology.

4. Conclusion

Based on the principles of Vavilov’s Law, we determined the phenomenon of biological
traumatization in standing crops as the result of the EMSD enzyme stage, not only in wheat
but also in other crops. This biological traumatization of open and hidden types can be
assessed using the resistance scale we developed. Currently, we are carrying out research
aimed at healing and mitigating the consequences of biological traumatization from which
plants suffer in wet weather.

The results of our perennial studies are presented in Figure 14 and devoted to the long-
term storage of the gene pool of different crops from the VIR world collection and reserve
stocks. This confirmed the endopathic cause of germinability and resilience loss in seeds
due to excessive humidity, and the development of enzymic and mycotic infections while
grains are in the blooming/plumping stages. Phytopathologists are recommended to apply
these biochemical criteria for the estimation of crop resistance to ear and grain diseases.
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