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Abstract: Background: Obesity is a risk factor for the development of influenza by leading to a chronic
inflammatory state and T-cell dysfunction. Based upon preclinical research, metformin has influenza
activity by restoring T-cell function and improving the immune response. Objective: We aimed
to evaluate the potential drug repurposing of metformin for the management of influenza among
patients with obesity utilizing national claims data in an electronic health record database. Methods:
The VA Informatics and Computing Infrastructure (VINCI) was utilized to obtain individual-level
information on demographics, administrative claims, and pharmacy dispensation. A cohort was
created among individuals with laboratory confirmed diagnosis of influenza with a diagnosis of fever,
cough, influenza, or acute upper respiratory infection in an outpatient setting. The study outcome
was death after diagnosis of influenza. Cohorts were formed using diabetes status and metformin
exposure prior to a positive influenza diagnosis. Hazard ratios for mortality were estimated using a
cox proportional hazards model adjusting for baseline covariates and a sub-analysis was conducted
utilizing propensity score matching. A greedy nearest neighbor algorithm was utilized to match 1 to
1 non-metformin diabetic controls and non-diabetic controls to diabetic patients receiving metformin.
Results: A total of 3551 patients met the inclusion criteria and were evaluated in our study. The
cohorts consisted of 1461 patients in the non-diabetic cohort, 1597 patients in the diabetic / metformin
cohort, and 493 patients in the diabetic no metformin cohort. Compared to non-diabetic patients,
diabetic patients with metformin had a lower rate of death (aHR 0.78, 95% CI 0.609–0.999). There
was not a statistical difference between the non-diabetic patients and the diabetic patients without
metformin (aHR 1.046, 95% CI 0.781–1.400). The propensity score matched cohorts revealed consistent
results with the primary analysis. Conclusion: Our results demonstrated patients with obesity and a
history of metformin treatment have lower influenza mortality.
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1. Introduction

Influenza is a contagious viral respiratory tract infection that causes significant mor-
bidity and mortality. The worldwide influenza burden causes up to 500,000 deaths and
5 million infections annually [1]. Influenza also poses a potential public health threat be-
cause of the ability to cause pandemics (e.g., 1918 influenza, 2009 H1N1) [2]. Traditional
risk factors for influenza complications are well documented and include immunosuppres-
sion, children younger than 5 years of age and adults 65 years of age and older; however,
a new risk factor was added after the 2009 influenza pandemic to include obesity [3,4].
The identification of obesity as an independent risk factor for influenza morbidity and
mortality is of significant concern because there are nearly 500 million individuals with
obesity worldwide. Influenza vaccination remains a key component to prevent influenza
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infections; however, vaccinated individuals with obesity have a higher risk of influenza
and influenza-like illness compared to vaccinated healthy adults, despite equal serologic
response to the vaccine [5,6]. Mechanistically, there is an alteration of T cells in patients
with obesity that impairs the response to influenza infections [7–9]. Importantly, altered
T cell function among mice did not improve with weight loss [10]. As influenza vaccination
or weight loss among obesity does not provide similar influenza outcomes compared to
non-obesity, repurposing of existing medications to address this clinical disparity is an
urgent priority. A preclinical study demonstrated that metformin can improve or restore
T cell function and could serve as a potential treatment for influenza among patients with
obesity [9]. Therefore, we sought to demonstrate a unique integration of large-scale pa-
tient level longitudinal data testing the hypothesis from published preclinical research on
metformin as an antiviral for influenza. Specifically, we examined metformin usage and
mortality rates among patients with obesity and laboratory confirmed influenza among a
national cohort of patients.

2. Methods
2.1. Data

This drug disease cohort study was conducted using data from the U.S. Department
of Veterans Affairs. The VA Informatics and Computing Infrastructure (VINCI) was uti-
lized to obtain individual-level information on demographics, administrative claims and
pharmacy dispensation. The study was conducted in compliance with the Department
of Veterans Affairs requirements and received Institutional Review Board and Research
and Development Approval. The study utilized inpatient and outpatient claims coded
with International Classification of Diseases (ICD) revision 9-CM, revision 10-CM, Current
Procedure Terminology (CPT) and pharmacy data.

2.2. Cohort Selection

A cohort was created among individuals with laboratory confirmed diagnosis of in-
fluenza and ICD-9/10 diagnosis codes of fever, cough, influenza or acute upper respiratory
infection in an outpatient setting. Influenza status was classified by an initial RNA labora-
tory result that was extracted from the VA laboratory data utilizing Logical Observation
Identifiers Names and Codes (LOINC) (Table S6). The date of a positive influenza lab result
was the study index and index dates range from January 2011 to December 2019. Patients
were followed from index to death or end of study period (1 December 2020). Patients
were included in the study if they (1) were at least 18 years old at diagnosis; (2) had greater
than one year between VA enrollment and index; (3) had a flu vaccine 9 months prior to
index; (4) had a body mass index (BMI) of greater than or equal to 30; (5) were diagnosed
in a primary care or emergency department setting; and (6) were not transferred to the
emergency department.

2.3. Study Outcome

The study outcome was death occurring after diagnosis of influenza yet before end of
study. Date of death was extracted from the VA vital status files. The time from index until
death was utilized as the outcome variable.

2.4. Medication Exposure

Cohorts were formed using diabetes status and metformin exposure prior to a positive
influenza diagnosis. Diabetes was coded using ICD-9 or ICD-10 codes of 249.x, 250.x,
E10.x, E11.x. Diabetics with at least one outpatient pharmacy dispense of metformin prior
to positive influenza diagnosis were classified into metformin exposed cohort. Diabetics
without metformin exposure were classified into the diabetic non metformin exposed
cohort. Patients with no diagnoses of diabetes or metformin exposure were classified into
the non-diabetic cohort.
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2.5. Baseline Data

We extracted data on baseline demographic and comorbidity. Demographic and clini-
cal characteristics included age, sex, race/ethnicity and year of visit. Comorbid conditions
include all conditions included in the Charlson comorbidity index, hypercholesterolemia,
hyperlipidemia, hypertriglyceridemia, hypertension, smoking, ischemic heart disease and
heart disease.

2.6. Statistical Analysis

The statistical analysis occurred in three steps. First, we generate summaries of the
baseline demographic and clinical characteristics for each cohort and evaluate differences
between cohorts using chi-square test or analysis of variance (ANOVA). Second, we estimate
the hazard ratio for death after influenza diagnosis using a cox proportional hazards model
while adjusting for baseline covariates. Last, to evaluate the robustness of our findings, we
utilized propensity score matching to minimize observable differences between cohorts.
We fit a logistic regression model including demographic and comorbid factors listed in
Table 1 to predict treatment with metformin. We then utilized a greedy nearest neighbor
algorithm to match 1 to 1 non-metformin diabetic controls as well as 1 to 1 non-diabetic
controls. We use the largest standardized difference among the three cohorts as a measure
of closeness. Data management and analysis was performed using SAS (SAS Institute Inc.,
SAS Enterprise Guide 8.2, Cary, NC, USA).

Table 1. Baseline demographic and comorbid characteristics.

Diabetes

Variable No Metformin
N = 493

Metformin Exposed
N = 1597

Non-Diabetes
N = 1461 p-Value * Standardized

Difference

Sex Female 26(5.27) 103(6.45) 172(11.77) <0.001 0.234
Male 467(94.73) 1494(93.55) 1289(88.23) 0.234

Race Black 98(19.88) 313(19.6) 244(16.7) 0.248 0.082
Other/Unknown 29(5.88) 83(5.2) 81(5.54) 0.030

White 366(74.24) 1201(75.2) 1136(77.75) 0.082
Age (mean, standard deviation) 69.02(11) 66.55(10.34) 60.63(15.34) <0.001 0.629

Charlson comorbidity (mean, standard deviation) 3.26(2.75) 3.63(2.52) 1.16(1.74) <0.001 1.140
Hypercholesterolemia 11(2.23) 55(3.44) 38(2.6) 0.236 0.073

Hyperlipidemia 303(61.46) 985(61.68) 622(42.57) <0.001 0.390
Hypertriglyceridemia 65(13.18) 320(20.04) 183(12.53) <0.001 0.204

Hypertension 387(78.5) 1382(86.54) 868(59.41) <0.001 0.642
Smoking 88(17.85) 243(15.22) 216(14.78) 0.255 0.083

Ischemic Heart Disease 156(31.64) 516(32.31) 257(17.59) <0.001 0.345
Non-ischemic Heart Disease 144(29.21) 375(23.48) 183(12.53) <0.001 0.419

Metformin MPR*100 (mean, standard deviation)
HbA1c (mean, standard deviation)

–(–) 0.73(0.28) –(–) –(–) –(–)
6.38(1.16) 7.64(1.63) –(–) <0.001 0.898

Index year (mean, standard deviation) 2017.3(1.64) 2017.39(1.59) 2017.37(1.61) 0.587 0.053

MPR = Medication procession ratio

* p-value is from Chi-Square test or ANOVA comparing across cohorts.

3. Results

A total of 3551 patients met the inclusion criteria and were evaluated in our study.
The cohorts consisted of 1461 patients in the non-diabetic cohort, 1597 patients in the
diabetic/metformin cohort and 493 patients in the diabetic no metformin cohort. The
cohorts had a mean age ranging from 60 to 69 years of age and were predominately males.
Additional baseline demographics and clinical characteristics are included in Table 1 and
consist of the Charlson Comorbidity Index, hemoglobin A1c and index year. Among the
diabetic patients, the metformin cohort had the lowest mortality rate (12.4%) compared to
the non-metformin diabetic cohort (18.66%). The non-diabetic cohort had the lowest overall
mortality rate at 8.08% (Table 2). There are many variables that can influence mortality rates,
including mortality rates with patients diagnosed with influenza. Therefore, we estimated
the hazard ratio for death after influenza diagnosis using a cox proportional hazards
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model while adjusting for baseline covariates (Table 3). The results demonstrated that
compared to a reference group of non-diabetic patients, diabetic patients with metformin
had a lower rate of death (aHR 0.78, 95% CI 0.609–0.999). There was not a statistical
difference between the non-diabetic patients and the diabetic patients without metformin
(aHR 1.046, 95% CI 0.781–1.400). There were several covariates that were statistically
significant in the multivariable statistical model and include age, Charlson comorbidity
index, hyperlipidemia, smoking, heart disease and index year. Importantly, this finding
is among cohorts of patients with a BMI greater than or equal to 30 and receipt of a flu
vaccine within 9 months of influenza diagnosis.

Table 2. Overall mortality rates.

Diabetics with No
Metformin

Diabetics with
Metformin No Diabetes p-Value Standardized

Difference

Overall Death
Number of patients (%) 92(18.66) 198(12.4) 118(8.08) <0.001 0.315

Table 3. Cox proportional hazards model for mortality.

Mortality

Variables HR (95% CI)
Diabetic status (reference = Non-Diabetic)
Diabetic no metformin 1.046 (0.781–1.400)
Diabetic with metformin 0.780 (0.609–0.999)
Sex (reference = Female)
Male 1.223 (0.735–2.034)
Age 1.048 (1.039–1.057)
Race (reference = White)
Black 0.761 (0.576–1.007)
Other/Unknown 0.675 (0.378–1.204)
Charlson comorbidity 1.264 (1.221–1.308)
Pure Hypercholesterolemia 0.819 (0.459–1.461)
Hyperlipidemia 0.757 (0.612–0.936)
Hypertriglyceridemia 0.830 (0.629–1.094)
Hypertension 1.072 (0.803–1.433)
Smoking 1.365 (1.083–1.721)
Ischemic Heart Disease 0.974 (0.779–1.218)
Non-ischemic Heart Disease 1.397 (1.110–1.758)
Index year 0.896 (0.845–0.950)

4. Discussion

Influenza is a contagious viral respiratory infection that affects millions of individuals
annually. Risk factors for epidemic/endemic influenza complications are well known
and include the elderly, children and immunocompromised patients [7,11–13]. However,
following the first pandemic influenza outbreak of the 21st century (2009 H1N1), a BMI
greater than or equal to 30.0 kg/m2 was identified as an independent risk factor for in-
creased morbidity and mortality. Obesity has been a well-known risk factor for chronic
diseases and is now recognized as a risk factor for acute infectious diseases [7,14,15]. Be-
cause there are over 500 million patients with obesity worldwide and patients with obesity
outnumber underweight adults, influenza among patients with obesity is a public health
area that needs urgent attention. Specifically, new pharmacologic treatment options among
patients with obesity are needed because vaccinated adults with obesity have twice the
risk of influenza or influenza-like illness compared to vaccinated healthy-weight adults [5].
Over-nutrition that results in obesity causes a chronic state of inflammation and impairs
the immune response to influenza infection and influenza vaccination through alteration
of the T cells [6,7,16]. Therefore, we set out to evaluate the utilization of metformin on
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mortality rates among patients with obesity diagnosed with influenza. Utilizing an adminis-
trative claim database, we demonstrated that diabetic patients with obesity and prescribed
metformin had improved overall survival after an influenza diagnosis confirmed via poly-
merase chain reaction (PCR). This is the first, to our knowledge, evaluation among patients
utilizing metformin documenting an influenza treatment response. Our research selected
and evaluated metformin based upon preclinical data [7,9,17]. Specifically, published data
suggest that an alteration in the metabolic profile of T cells in individuals with obesity
impairs the activation of the adaptive immune cells [7,9]. T cell function and metabolism
are linked, and metabolic reprogramming of T cells can alter T cell differentiation, survival
and function [18,19]. Obesity impairs the protective immunity of T cells and by targeting
T cell metabolism with the anti-diabetic medication metformin can improve the immune
response [9]. The collective preclinical information on obesity, influenza, T cells and met-
formin demonstrates the potential of improving (or restoring) T cell function to ultimately
improve influenza infection outcomes. The addition of our real-world data among obese
patients diagnosed with PCR confirmed influenza and improved overall survival among
patients receiving metformin supports continued evaluation of metformin as an antiviral
or targeting T cell restoration as a treatment for influenza.

There are important limitations to our drug disease observational study intrinsic to
all health insurance claims database analyses, particularly proper documentation and cod-
ing [20,21]. The study utilized data from the Veterans Affairs Informatics and Computing
Infrastructure (VINCI) and did not utilize registries, other data sets or potential data from
the Veterans Choice Program. An additional study limitation is the population was predom-
inately white males; therefore, our findings may not be generalizable to patients of different
age groups or races. Specifically, the cohort of patients may have different proportions of
comorbidities, and although we controlled for many comorbidities within our statistical
models, the results may not be reflective of non-Veterans Affairs populations. As with all
retrospective studies, including ours, treatment was not randomized and differences among
the treatment groups could influence the outcome. Therefore, we conducted a sub-analysis
utilizing propensity score matching to assemble cohorts of patients with similar baseline
characteristics with the attempt to reduce possible bias in estimating the treatment effect.
We exact matched on non-ischemic heart disease, while including all other covariates in
the propensity score. Table S1 lists the baseline demographic and clinical characteristics
of the matched samples. Each cohort had 456 patients and the results of the propensity
score matched statistical model is consistent with our primary analysis. Among diabetic
patients, the metformin cohort had a lower mortality rate (7.9%) compared to the non-
metformin diabetic cohort (16.23%). However, unlike the initial model, the non-diabetic
cohort a higher mortality rate (12.5%) than the diabetic metformin cohort but lower than the
diabetic no metformin cohort (Table S2). We then estimated the hazard ratio for death after
influenza diagnosis using a cox proportional hazards model while adjusting for baseline
covariates. The results are consistent with the primary statistical model and demonstrated
diabetic patients with metformin had a lower rate of death (aHR 0.590, 95% CI 0.384–0.905)
compared to non-diabetic patients (Table S3). Like the initial statistical model, there was not
a statistical difference between the non-diabetic patients and the diabetic patients without
metformin (aHR 1.154, 95% CI 0.805–1.654). We also conducted another sub-analysis by
excluding any patients who had a positive PCR test for COVID-19 during the study period.
Table S7 lists the baseline demographic and clinical characteristics of the sample of patients
without a positive COVID-19 test. Among diabetic patients, the metformin cohort had a
lower mortality rate (12.73%) compared to the non-metformin diabetic cohort (19.41%).
However, similar to the initial model, the non-diabetic cohort a lower mortality rate (8.29%)
than the diabetic cohorts (Table S8). Like our original and propensity score matched results,
diabetic patients with metformin had a lower rate of death (aHR 0.778, 95% CI 0.608–0.996)
compared to non-diabetic patients (Table S9). Overall, the results of propensity score
matching, and other sub-analysis (excluding COVID-19 patients) utilized within our study,
increased the internal validity of the findings within our main analyses. However, all
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statistical modeling approaches are subject to inherent assumptions and limitations, includ-
ing propensity score-based methods. Ultimately, prospective randomized trials provide
the best insights into causality. Although our study exhibits limitations that are common
to retrospective analysis, our study findings complimented with published preclinical
data with metformin demonstrate the need to continue evaluation of T cell restoration
for the treatment of influenza among patients with obesity. Despite our limitations, our
study included many strengths, such as the utilization of a large-scale, patient-level data
collected as part of routine patient care. The unique strength of routine healthcare data
makes them ideal for testing or validating data generated from preclinical studies. The
availability of clinical factors within real world data allows for covariate adjustment to
minimize confounding [22–25]. Specifically to our study, we utilized electronic health
records among a large sample size consisting of a nationwide population that include the
availability of actual pharmacy dispensation data. We studied patients in an integrated
national healthcare system; therefore, the data are less susceptible to biases of single-center
or regional studies.

The outcome of this study was the mortality rate after an influenza diagnosis. Def-
initions within retrospective studies are critical to the results as changing of a definition
can impact the results. The appropriate timeline to evaluate mortality after influenza can
be difficult to define. Although it is possible to die from acute influenza, many cases of in-
fluenza death are from complications, including late complications, and not the virus itself.
There has been an association between laboratory confirmed influenza and complications
that involve organ systems outside the respiratory tract [26]. For example, cardiovascular
disease and influenza have been associated and epidemiologic studies demonstrating an
increase in cardiovascular deaths after influenza infection [27–29]. However, we cannot
rule out the role of metformin impacting other organ systems or disease processes unrelated
to influenza ultimately leading to our results of decreased mortality. For example, among
pre-diabetic patients with a BMI > 35, metformin had a lower incidence of coronary heart
disease [30]. Additionally, there could be an association between obesity and type 2 diabetes
that are involved in the influenza disease process and not just obesity alone. However,
metformin has also demonstrated, in a pre-clinical study, the ability to inhibit metabolic
changes and dysfunction of select T cells that may be involved in tumor progression and
susceptibility to virus infection in type 2 diabetes [31].

Because influenza is associated with acute and chronic complications that can impact
mortality, we evaluated all-cause mortality at any time. As mentioned, the timeframe of
defining mortality is important in the interpretation of our results. Our findings demon-
strate a reduction in mortality among patients with obesity and confirmed influenza that
have received an influenza vaccine within the previous 9 months and receiving metformin.
However, we feel that it is critical in interpretation of this repurposing study to be transpar-
ent about the definition of the mortality timeline. Our definition was designed to capture
acute and long-term mortality. However, it is possible that a non-influenza complication
was captured among the overall mortality results as metformin also improves non-influenza
related conditions [32–34]. Therefore, we conducted a sub-analysis to evaluate mortality
rates at 30- and 60-days post influenza diagnosis. Consistent with the original analysis,
patients with no diabetes had the lowest 30- and 60-day mortality rate. This finding is
expected as the Charlson comorbidity index is significantly lower among the non-diabetic
cohort. Among the diabetic cohorts, patients prescribed metformin had a lower 30- and
60-day mortality rate (Table S4). The cox proportional hazards model did not find a statisti-
cal association at 30- or 60-day mortality (Table S5). However, the overall number of deaths
among all three cohorts at 30- and 60-days were very low. Finally, because we evaluated
an administrative claims data base for our study, we are not able to evaluate the impact
of changes within the influenza virus over time. A change in the influenza virus over
time could significantly impact our results. We attempted to control for this by requiring
influenza vaccination within 9 months prior to the influenza diagnosis. Controlling for
influenza vaccine status supports the overall finding because the vaccine is developed
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based upon the expected influenza strains circulating and because vaccination remains the
primary means of influenza prevention.

Importantly, we are not advocating for the clinical utilization of metformin, at this time,
for the treatment of influenza. The intent of this study was to demonstrate the potential of
metformin among patients with obesity for the treatment of influenza. As our team utilized
an administrative claims database to evaluate metformin for influenza treatment, we are
dependent upon patients receiving metformin for another cause and in this study the cause
of metformin receipt was management of diabetes, not influenza. However, the results
of our study demonstrate a signal for utilizing metformin in the treatment of influenza.
Further research is warranted to fully understand this relationship before utilization can be
recommended in clinical practice.

5. Conclusions

Obesity is an independent risk factor for increased morbidity and mortality in response
to influenza infection. Therefore, we aimed to evaluate metformin utilization for the
management of influenza utilizing a large, national claims and electronic health record
database. Our results demonstrated a decreased mortality rate for patients with obesity
diagnosed with influenza and treated with metformin. Further research on metformin is
warranted for the treatment of influenza.
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