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Abstract: Accurate infectious disease forecasting can inform efforts to prevent outbreaks and mitigate
adverse impacts. This study compares the performance of statistical, machine learning (ML), and deep
learning (DL) approaches in forecasting infectious disease incidences across different countries and
time intervals. We forecasted three diverse diseases: campylobacteriosis, typhoid, and Q-fever, using
a wide variety of features (n = 46) from public datasets, e.g., landscape, climate, and socioeconomic
factors. We compared autoregressive statistical models to two tree-based ML models (extreme
gradient boosted trees [XGB] and random forest [RF]) and two DL models (multi-layer perceptron
and encoder–decoder model). The disease models were trained on data from seven different countries
at the region-level between 2009–2017. Forecasting performance of all models was assessed using
mean absolute error, root mean square error, and Poisson deviance across Australia, Israel, and the
United States for the months of January through August of 2018. The overall model results were
compared across diseases as well as various data splits, including country, regions with highest and
lowest cases, and the forecasted months out (i.e., nowcasting, short-term, and long-term forecasting).
Overall, the XGB models performed the best for all diseases and, in general, tree-based ML models
performed the best when looking at data splits. There were a few instances where the statistical or
DL models had minutely smaller error metrics for specific subsets of typhoid, which is a disease with
very low case counts. Feature importance per disease was measured by using four tree-based ML
models (i.e., XGB and RF with and without region name as a feature). The most important feature
groups included previous case counts, region name, population counts and density, mortality causes
of neonatal to under 5 years of age, sanitation factors, and elevation. This study demonstrates the
power of ML approaches to incorporate a wide range of factors to forecast various diseases, regardless
of location, more accurately than traditional statistical approaches.

Keywords: infectious disease forecasting; prediction; big data; multi-feature fusion; machine learning;
deep learning; GLARMA; campylobacteriosis; typhoid; Q-fever

1. Introduction

Infectious diseases have a significant negative impact on veterinary and public health,
both at the regional and global levels. The emergence of novel infectious agents, the
reemergence of infectious agents previously under control, the constant burden of the
endemic pathogens, and the development of antimicrobial resistance have complicated
control and prevention initiatives. The threat posed by these diseases varies widely in
terms of mortalities, morbidity, social, and economic disruptions. These threats are further
magnified by anthropogenic and ecological factors, such as rapidly increasing population,
globalization, urbanization, climate change, administrative conflicts, weak health systems,
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and the changing nature of pathogen transmission between human and animal popula-
tions [1]. Additionally, the wide variety of potential causes for such disease occurrences
has made preparedness and timely response a challenge. Due to these reasons and despite
a significant improvement in control and prevention efforts over the past few decades,
infectious diseases continue to pose a major challenge, causing millions of deaths each year
worldwide, especially in low-income countries [2].

Advanced knowledge of disease outbreaks can help public health decision-makers
prevent, mitigate, and reduce infections and epidemic severity. Infectious disease forecast-
ing aims at synthesizing epidemiological information related to the disease occurrence
in advance for better allocating public health resources at appropriate places and times.
Recent disease forecasting methods have taken advantage of the increasing abundance of
publicly accessible data and advanced algorithms for better prediction of infectious disease
outbreaks. These open access data streams are routinely updated, cover a wide variety of
topics, and are increasingly detailed and complete, which could be used to increase the
accuracy of the forecasting models [3,4].

Time series models have a long history of being used for disease forecasting. Tra-
ditionally, disease forecasting has relied on statistical techniques, such as autoregressive
integrated moving average with exogenous variables (ARIMAX) and generalized linear
autoregressive moving average models (GLARMA). These models are widely popular
because they can be easily implemented and interpreted in retrospective studies. How-
ever, they can only process a limited amount of feature data and complexity to generate
disease outcomes. Machine learning (ML) models, which have now been applied to a
wide variety of time series regression tasks [5–7], are being used in disease forecasting
to detect cryptic patterns arising from interactions between multiple features, which are
difficult, and impossible at times, to uncover with conventional statistical methods. ML-
based ensemble models, such as random forest (RF) and extreme gradient boost (XGB), are
particularly popular in healthcare research because of their ease of implementation and
interpretation [8,9]. These models are based on a decision tree approach that repeatedly
splits the regression space non-linearly and can be visualized in the form of a tree. The RF
uses an ensemble of hundreds of trees that are generated by bagging (random selection
of a subset of data) and random resampling of a small number of features, while XGB
makes use of a gradient boosting framework where trees are added sequentially to make
predictions. These models have been successfully used in forecasting infectious diseases,
such as infectious diarrhea [10], influenza [11,12], brucellosis [13,14], and dengue [15].

Deep learning (DL) models are ML models consisting of a minimum of one hidden
layer of nodes between the input and output layer. A fully connected multi-layer per-
ceptron (MLP) is the simplest architecture DL model, comprised of two or more layers
of nodes, all of which are unidirectionally connected. A sequence-to-sequence encoder–
decoder model (Enc–Dec) is a more complex architecture DL model, which consists of two
subsections: the first subsection, called the encoder, translates a variable-length source
input into a numerical embedding, and the second subsection, called the decoder, converts
this numerical representation back to an output of the original form [16]. By creating this
numerical vector representation as an intermediate, the Enc–Dec has been shown to better
incorporate both short-term and long-term temporal features into forecasts [17]. DL models
have outperformed ML models in several tasks, including time-series predictions [18].
However, DL models’ increase in predictive power relative to simpler ML models comes
at a serious cost. DL algorithms are not readily interpretable, although there are recent
advances in developing such techniques [19]. These models generally require more compu-
tational resources and experience to train [20,21] as well as more training data to generalize
well [22].

In this study, we compare the performance of ML, DL, and statistical models to
forecast three human infectious diseases: typhoid fever, Q-fever, and campylobacteriosis,
across multiple geographic regions within Australia, Israel, and the United States. These
diseases were selected because they are internationally notifiable diseases with disease
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cycles and prevalence rates that vary across regions and time, providing a broad range of
scenarios to test the performance of the forecasting models. We demonstrate the utility of
a traditional statistical time series model (GLARMA), ML regression trees (RF and XGB),
and DL models (MLP and Enc–Dec) in forecasting diseases, thereby providing insights into
how the models perform given different disease lifecycles and incidence across different
geographic landscapes and climates as well as region-specific population demography
and socioeconomic factors. Finally, we compare the performance of these disease models
to accurately predict case counts at different times, from one month to eight months into
the future.

2. Results
2.1. Datasets

The mean infections of campylobacteriosis in 2009–2018 by month and region was
greatest in Australia (i.e., 190 cases), nearly five times the next highest mean infection
counts in the United States and Israel (Table 1). In addition, there were many more campy-
lobacteriosis cases on average per month than either Q-fever or typhoid (range 0–4 mean
cases/month) with Australia having the largest mean number of case counts for all of the
explored diseases. There were more cases of Q-fever than typhoid in Australia and Israel,
which was reversed in the US. None of the target countries showed a consistent seasonal
disease pattern over the full time period, which increases the difficulty of forecasting.
However, the differences observed in case counts and disease life cycles, as well as country
features and incidence, enabled this study to investigate the performance advantages and
disadvantages of the given forecasting methods under a variety of conditions.

Table 1. The total case counts for each disease by country for 2009–2018, including mean, minimum,
and maximum of the monthly regional cases. All available data through 2017 for the seven countries
were included in the ML training sets but only highlighted countries were used in performance
evaluations. NA means not available.

Campylobacteriosis
Case Counts

Q-Fever
Case Counts

Typhoid
Case Counts

Mean Min–Max Total Mean Min–Max Total Mean Min–Max Total

Australia 190.10 0–880 182,498 3.92 0–32 3768 1.17 0–14 1122

Israel 40.64 0–361 29,429 1.12 0–21 809 0.06 0–7 63

Japan NA NA NA NA 0–2 10 0.07 0–7 264

Norway 10.36 0–184 22,839 0.201 0–1 14 0.08 0-8 169

Sweden 31.55 0–427 16,380 NA NA NA ~0.00 0–1 5

United States 42.04 0–794 98,720 0.06 0–3 423 0.19 0–29 1251

All ML models were trained using the 2009–2017 data for all seven countries where
available (Figures 1–3). However, there was missing or erroneous data in 2018 for at least
one disease in Finland, Japan, Norway, and Sweden. Therefore, models were evaluated
for prediction performance on 2018 regional data only in Australia, Israel, and the United
States. Australia is the only country where the full dataset of cases for all three diseases
is present for the full time period. Israel and the United States are missing early years
for campylobacteriosis, and Israel is also missing some for Q-fever. For all regions except
Australia, there is a visual periodicity in average regional case counts of campylobacteriosis
between 2009–2018 with a spike towards the end of each year (Figure 1). For Q-fever and
typhoid, the annual pattern is less clear in part because of the low number of case counts
(Figures 2 and 3).
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2.2. Overall Model Performance

The tree-based ML models (e.g., RF and XGB) were most accurate in forecasting
campylobacteriosis, typhoid, and Q-fever than the DL or statistical models (Figure 4). The
Alt-XGB (i.e., the XGB model without including country:region as a feature) outperformed
all models for all diseases in MAE, RMSE, and Poisson deviance. On the other end of the
spectrum, the MLP models performed the worst for all diseases and performance metrics.
The statistical GLARMA model and DL Enc–Dec produced similar results across diseases
and metrics, except MAE in typhoid where GLARMA performed the worst. Compared to
the tree-based models, these models were in line for typhoid and minutely worse for the
other diseases. The random forest models (RF and Alt-RF) had nearly identical performance
across diseases and were only a few tenths away from the XGB models. The relative scale
of the performance metrics is different between diseases; since the case counts are much
higher all around for campylobacteriosis, the values ranged from 20.3–78.3, whereas the
values for Q-fever (range 0.3–1.8) and typhoid (range 0.2–0.8) are much lower. Note that for
the statistical time series models, the GLARMA model was fit with the negative binomial
distribution and parameter estimation converged in all regions. For the tree-based ML
models, the standard average pooling provided the best results out of all pooling methods
attempted and, therefore, results are only shown using that method.

2.3. Model Performance by Country

The performance of each model by country and disease had similar overall perfor-
mance trends regardless of metrics (Figure 5). For Australia, the MLP model was by far the
worst performer. For campylobacteriosis and Q-fever, the tree-based models performed the
best, notably the XGB (Alt and not) were the top performers. For typhoid, however, while
XGB was best when assessed by MAE, the GLARMA model outperformed all other meth-
ods when assessed by RMSE and deviance. For the United States, the model performance
results were all very close regardless of disease. Model performances were essentially the
same for Q-fever; the tree-based models, namely RF, were slightly better for typhoid; and
both Alt-XGB and GLARMA were slightly better for campylobacteriosis. For Israel, all
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models performed the same for typhoid. XGB slightly outperformed Alt-XGB as the top
model for campylobacteriosis in Israel. Similarly, Q-fever performance in Israel depends
on the metric used with Enc–Dec slightly better than Alt-XGB by MAE, GLARMA slightly
better than Alt-XGB by RMSE, and Alt-XGB slightly better than Enc–Dec by deviance.
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2.4. Model Performance by Time Interval

The performance of the models by time interval (i.e., nowcast [1 month], short-term
forecast [2–5 months], and long-term forecast [6–8 months]) varied by disease and location
(Table 2; Figure 6). For nowcasting overall, XGB-based models performed the best for
campylobacteriosis, RF-based for Q-fever, and Enc–Dec for typhoid. In general, for short-
term forecast best models, XGB-based models were the best for campylobacteriosis, and all
the tree-based models were comparable for Q-fever, whereas XGB (Alt and not) and/or
GLARMA were best for typhoid based on metric. Namely, for typhoid, XGB and GLARMA
performed similarly for deviance, Alt-XGB was best for MAE, and GLARMA for RMSE.
For overall long-term forecast performance, there were more discrepancies in performance
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metrics. For campylobacteriosis, MAE and RMSE show the best models were RF (Alt
and not) and Alt-XGB, whereas deviance favors nearly all models except MLP with Alt-
XGB being minutely better. For Q-fever, Alt-XGB and XGB are comparable by MAE and
RMSE with Alt-XGB performing the best by deviance. MLP, which performed the worst
in any other circumstance, performed the best for long-term typhoid forecasting using
all three metrics. When comparing relative performance across the time scales for the
best performing model by disease, there are not any consistent patterns (Figure 6). For
campylobacteriosis, short-term forecasting is most accurate followed by nowcasting, and
then long-term forecasts. For Q-fever, the order of best to least performance is by time,
i.e., nowcast, short-term forecasts, and then long-term forecasts. Typhoid, again different,
has the best performance with nowcasting, then long-term forecasting, and lastly, short-
term forecasting. In general, error bars are larger for long-term vs. short-term forecasting.
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Table 2. The top-performing disease model by location and forecast length. For the model, if all
metrics match, one model is listed; if the best model by metric did not match, the cell contains ‘MAE;
RMSE; deviance’ and if more than one model produced the same value for the metric, they are listed
together and separated by commas.

Disease Location Nowcast Short-Term Long-Term

Campylo-bacteriosis

All countries Alt-XGB Alt-XGB Alt-XGB; RF (Both);
Alt-XGB

Australia XGB (Both) Alt-XGB Alt-XGB
Israel MLP; MLP; XGB XGB XGB; GLARMA; XGB

US Alt-XGB; GLARMA;
Alt-XGB GLARMA; GLARMA; Alt-XGB Alt-XGB; Alt-RF;

Alt-XGB
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Table 2. Cont.

Disease Location Nowcast Short-Term Long-Term

Q-Fever

All countries RF Alt-RF; Alt-XGB; Alt-XGB Alt-XGB
Australia GLARMA Alt-XGB XGB

Israel MLP Enc–Dec; GLARMA; Enc–Dec Alt-XGB

US All Models All Tree-based ML (Alt-XGB *) All Tree-based
ML(Alt-XGB *)

Typhoid

All countries Enc–Dec Alt-XGB; GLARMA; XGB
(Both) MLP

Australia GLARMA; XGB(Both),
GLARMA; Enc–Dec GLARMA MLP; Alt-RF; MLP

Israel All Models All Models All Models
US MLP All Tree-based ML RF; MLP; RF

* Smallest error range. Note: “Both” refers to the Alt and Not versions of the same model.
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2.5. Model Performance by Disease Incidence

In 2018, across all regions in Australia, Israel, and the United States, there were a wide
range of case counts from 0 to nearly 8000 per month. More specifically, the monthly case
count ranges were 0 (25 regions) to 7742 (Queensland, Australia) for campylobacteriosis;
0 (10 regions) to 19 (Victoria, Australia) for typhoid; and 0 (62 regions) to 78 (Queensland,
Australia) for Q-fever. The disease forecasting model performance increased with a de-
creasing number of cases, i.e., all models for the 20 regions with the lowest case counts
outperformed those 20 regions with the highest case counts (Figure 7). For the regions
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with the lowest case counts, all models correctly predicted 0 case counts for typhoid and
Q-fever, except GLARMA. However, for the lowest campylobacteriosis case counts, all
models forecasted positive case counts in at least 15 of the 20 regions without a case count,
with Alt-XGB and GLARMA performing the best and MLP performing the worst. For the
highest case count regions, tree-based models (especially Alt-XGB) are optimal for campy-
lobacteriosis and Q-fever, but GLARMA performs the best for typhoid. Overall, the DL
models were the worst performers with regions that had high case counts. It is interesting
to note that for counties that never had the disease, all models correctly predicted zero.
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2.6. Summary of Top Model Performance by Disease

Overall, the top-performing models for forecasting campylobacteriosis, Q-fever, and
typhoid vary by the way the resulting metrics are split (Table 3). For example, overall, the
top-performing model for any disease, location, or forecasted month is Alt-XGB. However,
when looking specifically at different data splits, other models outperformed or equally
performed as well as Alt-XGB.

2.7. Feature Importance

The relative importance of the 46 explanatory factors varied only slightly in each
tree-based ML disease model (Figure 8). Greater than 90% of all model performance based
on these features can be contributed (in descending order) to previous case counts, country-
region for non-Alt models, population counts, population density, mortality of neonatal
to under 5 years of age, and sanitation with elevation also included for Alt models. In
general, RF (Alt and not) models tend to weigh the previous case counts most importantly
for all diseases, whereas XGB equally uses location when predicting campylobacteriosis
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and almost five times as often as case counts for typhoid predictions. Whether or not the
location is present, the top 20 features remain the same for all models with slight order
variation depending on the exact model and disease.

Table 3. The top-performing disease models by data split. For the model, if MAE, RMSE, and
deviance matched, there is one model listed; if the best model by metric did not match, the cell
contains ‘MAE; RMSE; deviance’ and if greater than one model produced the same value for all the
metrics, they are listed together and separated by commas.

Number of Cases Country Over All Months Forecast Time Over All Locations

Disease Overall High Cases Low Cases
(Zero) Australia Israel US Nowcasting Short Term Long Term

Campylo-
bacteriosis Alt-XGB Alt-XGB GLARMA Alt-XGB XGB (Both) GLARMA,

Alt-XGB XGB XGB
RF(Both);
RF(Both);
Alt-XGB

Q-fever Alt-XGB Alt-XGB Tree-based,
DL Alt-XGB

GLARMA;
Enc–Dec;
Alt-XGB

All RF Tree-based Alt-XGB

Typhoid Alt-XGB GLARMA All
Alt-XGB;

GLARMA;
GLARMA

All RF Enc–Dec
Alt-XGB;

GLARMA;
XGB (Both)

MLP

Note in this table that Both refers to the Alt and Not versions of the same model.
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3. Discussion

Infectious diseases have the potential to cause significant veterinary, public health,
and socioeconomic losses throughout the world. Hence, prior intelligence regarding their
occurrences is crucial for their timely control and prevention. To the best of our knowledge,
this is the first study comparing and forecasting the performance of ML, DL, and statisti-
cal models to forecast three notifiable human infectious diseases; typhoid, Q-fever, and
campylobacteriosis for region-level predictions for three countries over three continents.
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Datasets. Since ML and DL models perform better with more training data, we used
disease case count and feature data from seven countries to train our ML and DL models,
while performing prediction on only the three countries with complete datasets. While all
available data for the four other countries was used in training, none of these countries
had consistent case count reporting and, in particular, had gaps in the forecasted year,
2018. By augmenting with empirical data, we boosted our training dataset numbers with
observations of the diseases under different feature conditions without having to use
simulation or imputation techniques that may or may not represent reality. The result was
reasonably large training sets for each disease, with the largest set for campylobacteriosis,
then typhoid, and lastly Q-fever.

Model performance. Averaged across all countries, months, and regions over eight
months, the best ML forecasts outperformed conventional statistical approaches
(i.e., GLARMA) by MAE, RMSE, and Poisson deviance for every disease. Comparing
between the ML models, the tree-based models (i.e., XGB and RF) outperformed the DL
models (i.e., Dec–Enc and MLP) by all metrics as well, with the XGB-based models rou-
tinely providing the best performance. Averaging performance within different subsets of
the data (by country, time interval, or disease incidence) sometimes provided conflicting
results on which methodology performed best. However, a general pattern was observed,
with the number of conflicting metric results increasing as disease incidence decreased.
In only one instance each, regardless of the metric, the GLARMA model, for regions with
the highest incidence of typhoid, and the Enc–Dec, for nowcasting of typhoid, performed
the best. But even in these scenarios, the difference in error metrics between these models
and the best tree-based ML model was extremely small. In addition, the corresponding
error metrics were so low in magnitude that the practical implications of using one model
over the other are minimal. In summary, if a single methodology is preferred for simplicity,
our results suggest that XGB-based models are the best option across the study diseases
and locations.

Model comparison. Tree-based ML models and statistical approaches are interpretable
in terms of the relative importance each explanatory variable plays in prediction. However,
the ML models each demonstrate significant advantages over the statistical approach.
These models can incorporate more exogenous variables and more complex interactions
between variables than the univariate GLARMA, which resulted in improved predictions
for the ML models. While the GLARMA model can incorporate some explanatory vari-
ables and their interactions, they require manual construction and pruning, which can
become unmanageable as the number of features grows large. While DL models can also
accommodate many explanatory variables, they generally performed the worst and the
importance of the variables are not interpretable. The DL approaches here could have
suffered from overfitting due to a variety of potential causes, most common being learning
the noise of the training data [23]. DL models generally perform better with more data
and, therefore, the Enc–Dec model may be able to outperform the ML approaches with
more training data and/or greater temporal and/or spatial extents of the data. However,
simple interpretation of the model via variable importance still remains a benefit of the ML
tree-based models over the DL models. Given the evidence of DL models outperforming
ML in other applications [24] and recent developments in hierarchical DL models, in which
basal features are learned and then inform higher-level classification [25], there remains
the potential for hierarchical DL to improve performance in disease forecasting while
maintaining interpretability.

Feature importance. Across all diseases and models, the most significant feature con-
tributing to tree-based ML model forecasting is previous case counts, which emphasizes
the criticality of timely, reliable, and accurate disease surveillance data. The date, number
of months forecasting out, and country-region location are all very accessible information
that also play key roles in prediction. While the country-region location was critical to the
non-Alt models, the fact that the Alt models did, on average, perform better suggests that
the other features that were included were sufficient to predict future case counts. Notably,
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when the country-region location had a high degree of importance, it often was accom-
panied by a reduction in relative importance of previous case counts. These features are
often correlated, as certain regions historically have a higher or lower incidence of different
diseases. Comparing the RF and XGB models, country/region was more important to the
XGB models which could be due to its greedy iterative approach of tree construction. At a
high-level, the next most important features for all diseases included population factors,
neonatal mortality, sanitation metrics, and water resources. The other major contributors
identified are climate, seasonality, livestock consumption, GDP, and waste. However, it is
important to note that including correlated features splits the importance between these
features potentially decreasing their true importance and making the final interpretation of
results challenging. By grouping the individual features together at a high-level, we hope
to overcome this issue to some extent.

Campylobacteriosis, being one of the most common infectious disease of humans glob-
ally, is mainly transmitted through contaminated food and water [26]. Similarly, typhoid is
an important public health concern transmitted largely via sewage contamination of food
or water sources. Given the preponderance of food and water borne transmission of these
diseases, it is not surprising that the most important features in forecasting, aside from case
counts, were largely related to population factors and sanitation metrics. Furthermore, the
typhoid tree-based models in comparison with Q-fever or campylobacteriosis tree-based
models relied less on the previous case counts relative to other factors, suggesting that
the typhoid model learned better from these additional features. Q-fever is an important
zoonotic disease, which has the potential to cause large outbreaks in humans and live-
stock [27]. Q-fever has a complex disease cycle compared to other two diseases in our
study and a range of risk factors associated with it. Additionally, the disease has been
often neglected by health personnel, resulting in a poor understanding of its epidemiol-
ogy [28,29]. Due to these reasons, Q-fever forecasting is a challenge, even in countries with
good disease surveillance infrastructure. In our study, the previous case counts dominated
the most important features in forecasting Q-fever, contrasted with the relatively wide
range of contributing explanatory variables in forecasting typhoid and campylobacteriosis.
Nevertheless, population, seasonality, health, and sanitation metrics were still among the
most important features. Additionally, the majority of the disease forecasting models were
more accurate when country/region was not incorporated (Alt model), suggesting the
models were learning features of the regions rather than the regions themselves.

This study has several strengths as it represents a significant advancement in disease
forecasting in a few key respects. Firstly, this study engineered a single data set containing
46 explanatory variables spanning seven different countries both at the regional spatial scale
and monthly temporal scale which could be used to create and evaluate forecasts for almost
any disease and model type. Secondly, we applied several different ML models (RF, XGB,
Enc–Dec, and MLP) and a statistical model (GLARMA) using the same feature inputs for
three internationally notifiable diseases (campylobacteriosis, Q-fever, and typhoid), which
have highly divergent epidemic processes and incidences. These models were compared to
each other using three metrics, MAE, RMSE, and Poisson deviance, which provided slightly
differing analyses of each model’s performance. Thirdly, we used an interpretable ML
approach to determine the relative importance of each explanatory variable in predicting
future incidences of each of the three diseases. The most important features were retrieved
from the tree-based ML models with and without one-hot encoded country/region vectors
(RF and XGB versus Alt-RF and Alt-XGB) to provide a perspective of which data are
most predictive with and without knowledge of specific country/regions. The study also
had many limitations. Many data sets were only available for a subset of the locations
studied and were, therefore, not incorporated into the model. As more data becomes
available, we expect the models we examined here could incorporate them readily and
improve the performance. Additionally, these models could be applied to additional
locations and at finer spatiotemporal resolutions. While this data set is novel in the
breadth of the explanatory variables considered, these disease forecasting models were
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limited by the available biosurveillance data and would benefit greatly from improved
diagnostics and reporting of each disease as there is relatively limited labeled data to build
a training dataset. There is very likely a bias undercounting disease incidence in rural and
impoverished regions with less access to the most accurate diagnostic tools [30,31]. This
bias and underreporting underscore the countries included in this study, which are higher
in many socioeconomic metrics as compared with the median country and compared
with the countries with the highest incidences of these diseases. Additionally, a future
direction would be to consider a spatial component, as nearby regions appear to potentially
be linked.

In conclusion, we have demonstrated the efficacy of forecasting campylobacteriosis,
Q-fever, and typhoid, three internationally notifiable diseases of significant public health
impact, using ML, DL, and statistical models. Overall, we found the tree-based ML
models to be more accurate in forecasting compared to DL and statistical autoregressive
models. Previous case counts were among the most important features in forecasting all
diseases, with population density and factors relating to clean water and sanitation also
very important across diseases. This study demonstrates the application of ML approaches
in forecasting disease, and the wide range of data that can be incorporated into such models.
This work has the potential to greatly improve the lives of people living in these areas
and the safety of travelers. These ML models, particularly the XGB model, can offer a
significant improvement in predicting emerging outbreaks over traditional surveillance
methods, as its predictions can be updated rapidly by retraining the model in a matter of
hours as digital data streams are updated [32]. Further use of ML models may improve our
ability to mitigate future epidemics and may aid our understanding of which combinations
of factors are likely to lead to outbreaks.

4. Methods
4.1. Data Collection

This study focused on three human infectious diseases: campylobacteriosis, Q-fever,
and typhoid. Case count data of each disease from 2009–2018 were collected from Epi-
Archive [33]. The regional data, across seven countries from 2009–2017, were used to build
the models and the final model performances were evaluated on available 2018 data, which
was consistent only from Australia, Israel, and United States through August (Table 4).

Table 4. Summary of case count data used in the analysis by country and disease name for the study
period of January 2009 through August 2018.

Country
Campylobacteriosis Q-Fever Typhoid

Date Range # Regions Date Range # Regions Date Range # Regions

Australia 2009–2018 8 2009–2018 8 2009-2018 8
Finland 2009–2017 18 NA 0 NA 0
Israel 2012–2018 6 2012–2018 6 2009–2018 6
Japan NA 0 2012–2017 47 2012–2017 47

Norway 2009–2017 18 2009–2017 18 2009–2017 18
Sweden 2009–2017 21 NA 0 2009–2017 21

United States 2015–2018 51 2009–2018 51 2009–2018 51

“NA” means no data available in EpiArchive for the specified diseases and countries. “#” means number of.

Identification of potential explanatory variables was informed by a literature review
of the diseases. Only publicly accessible data available for all countries of interest were
considered and collected (Table 5). However, some variables contained missing data for
some time periods within a region of interest. These data were imputed, as described in
Section 4.3.
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Table 5. Explanatory variable data types, website for public access, individual features by name,
geographic location, geographic resolution, time period, and periodicity.

Data Type Website Individual
Features

Geographic
Location

Geographic
Resolution Time Period Periodicity

Case Counts

epiarchive.
bsvgateway.org
accessed on 28

May 2019

Incidences of select
human diseases.

Countries of
interest Region-level 2009–2018 Daily

Political Borders
gadm.org

accessed on 28
May 2019

Geopolitical borders
(country and within

country)

Countries of
interest Region-level 2018 Single instance

Climate

disc.gsfc.nasa.
gov; earthdata.

nasa.gov accessed
on 28 May 2019

air temperature,
humidity, precipitation,
soil moisture, and wind

speed

Global
Gridded

0.25◦ × 0.25◦,
1◦ × 1◦

2012–2018 Monthly

Gross Domestic
Product

www.ers.usda.
gov accessed on

28 May 2019
Gross Domestic Product Global Country-level Varies Yearly

Elevation
www.diva-gis.

org accessed on
28 May 2019

Digital Elevation Map Global 43,200 × 17,200
(30 arc seconds) NA NA

Mortality
www.who.int
accessed on 28

May 2019

Deaths by country, year,
sex, age group, and

cause of death.
Global Country-level 2009–2018 Yearly

Municipal waste
stats.oecd.org
accessed on 28

May 2019

Municipal waste
generation and

treatment

Countries of
interest Country-level 2009–2017 Yearly

Socio-political
and Physical data

www.
naturalearthdata.
com accessed on

28 May 2019

Country and internal
administrative borders;

socioeconomic and
political attributes

Global Varies by country;
1: 10 m–110 m 2019 Single instance

Population
population.un.

org accessed on
28 May 2019

Population by age
intervals by location Global Country-level 2009–2015 Every 5 years

Population
Density

sedac.ciesin.
columbia.edu
accessed on 28

May 2019

Population density Global 30 arc-seconds 2009–2015 Every 5 years

Water Potability
and Treatment

stats.oecd.org
accessed on 28

May 2019

Freshwater resources,
available water,

wastewater treatment
plant capacity, surface

water

Countries of
interest Country-level 2009–2017 Yearly

“NA” means no data available.

4.2. Data Engineering

Relevant features were extracted from each data source for the countries of interest.
This raw data contained different file types, organization, spatial extents, spatial resolu-
tions, temporal extents, and temporal resolutions. Data were resampled to a uniform
monthly temporal and regional-level spatial resolution using GDAL [34]. The ML algo-
rithms required tabular data without missing values. In instances where feature data
were not continuously available every month through 2017, missing values were linearly
extrapolated from the last date available [35].

Separate training data matrices were engineered for each disease. To build these matri-
ces, all feature data types were combined into a single data set, in which each row denoted
a single disease/location/region/time bin with corresponding explanatory variables. To
enable the use of region-country as a feature in ML algorithms, each region-country was
one-hot encoded, i.e., the categorical variable is represented by several columns equal to

epiarchive.bsvgateway.org
epiarchive.bsvgateway.org
gadm.org
disc.gsfc.nasa.gov
disc.gsfc.nasa.gov
earthdata.nasa.gov
earthdata.nasa.gov
www.ers.usda.gov
www.ers.usda.gov
www.diva-gis.org
www.diva-gis.org
www.who.int
stats.oecd.org
www.naturalearthdata.com
www.naturalearthdata.com
www.naturalearthdata.com
population.un.org
population.un.org
sedac.ciesin.columbia.edu
sedac.ciesin.columbia.edu
stats.oecd.org
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the number of entries; the rows corresponding to a particular entry contain a “1” in that
entry’s column and a “0” in all other entry columns [36].

4.3. Data Analysis

A separate model was created in python for each disease for each algorithm type:
moving average models, tree-based ML models, and DL models, described below. The
response variable of each model was disease case counts for the countries/regions and
dates available (Table 2). The same explanatory variables were included as features for all
diseases (Table 3).

4.3.1. Moving Average Models

Moving average models served as a baseline statistical time-series analysis. ARIMA
and ARIMAX were considered but were not viable solutions for this dataset because
the data did not meet the normality requirement and struggled to converge with many
explanatory variables. However, GLARMA with a negative binomial distribution was
robust and useful for comparison in this study.

4.3.2. Tree-Based ML Models

RF [37] and XGB [38] are the ensemble, tree-based ML regression methods used in
the analyses. Our XGB models were built using the XGBoost python package [39], while
our tree-based models, evaluation and tuning methods were created using the scikit-
learn framework [40]. Two variations of each of the disease’s model were included, one
containing all explanatory features collected (Table 2), and a second model, “Alt,” which
lacked the one-hot encoded country/region data. The Alt-XGB and Alt-RF models enabled
the comparison of model performance in situations when the country/region data are
unknown. The data were split into test and training subsets using nested K-fold time-series-
split cross-validation with five folds. The models were retrained 10 times across each fold,
varying the hyper-parameters. The final model was trained on all of the data through 2017
using the best hyper-parameters.

Each tree-based ML model output generated 12 predictions for each region-month
interval by generating predictions from data one to 12 months before the prediction interval.
For example, 12 predicted case counts in Wisconsin (USA) for January 2018 were generated,
each one based on all explanatory variables in Wisconsin from a single month from January
2017 to December 2017. To extract a single prediction for each region and month, these
12 predictions were pooled via four approaches: maximum prediction, minimum predic-
tion, standard average and average weighted by the inverse of the number month forward
being predicted to reflect a decrease in confidence in longer-term predictions.

4.3.3. DL Models

The MLP and Enc–Dec models were created using pytorch [41] and tuned using avail-
able data from years 2009–2016 and validated on the year 2017. Since the computational
time required for an exhaustive search of all hyperparameters was unreasonable for the DL
models, we choose to tune on learning rate and optimizer (namely, Adam and stochastic
gradient descent). Different methods of regularization (i.e., dropout and batch normal-
ization) and model architecture (i.e., depth and breadth) were also explored in the early
stages of model development. The final models were trained on all of the available data
from 2009–2017. The encoder portion of the Enc–Dec model uses a gated recurrent unit
(GRU) model to create a vector representation of the previous year of data by processing it
sequentially. The decoder then takes that representation as input to a separate GRU and
sequentially decodes it into predictions for the next year.

4.4. Metrics

Model performance was assessed by mean absolute error (MAE), root mean square
error (RMSE), and by the Poisson deviance (deviance). Note that MAE and deviance
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are preferred metrics for skewed and highly discrete data, and that MAE, in particular,
offers a more natural measure of average error which (unlike RMSE) is unambiguous [42].
However, we included all metrics (i.e., MAE, RMSE, and deviance) for completeness.

The deviance statistic for the Poisson distribution from each disease/location/time
case count prediction was computed and averaged over each disease. The aggregate
score was calculated by first averaging over time, then region, and finally country. Each
model’s performance was assessed in generating disease incidence predictions over three
time intervals: nowcast, i.e., the proximal month after the training data (January 2018);
short-term forecast, i.e., 2–5 months after the training data (February 2018–May 2018);
and long-term forecast, i.e., 6–8 months after the training data (June 2018–August 2018).
Additionally, each model’s performance was assessed within individual countries and
within individual regions.
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Abbreviations

In-Text Abbreviation Description
-Alt a model trained without country-region as a feature
ARIMA auto-regressive integrated moving average
ARIMAX auto-regressive integrated moving average with exogenous variables
DE encoder-decoder model
Deviance Poisson deviance
DL deep learning
DLR dynamic linear regression
GLARMA generalized linear autoregressive moving averages
GRU gated recurrent unit
MAE mean absolute error
ML machine learning
MLP multi-layer perceptron
RF random forest
RMSE root mean squared error
RNN recurrent neural networks
SARIMA seasonal auto-regressive integrated moving average
SIR susceptible, infectious, and removed
SVM support vector machines
XGB extreme gradient boosted trees
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