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Abstract: The only part of an antigen (a protein molecule found on the surface of a pathogen) that is
composed of epitopes specific to T and B cells is recognized by the human immune system (HIS).
Identification of epitopes is considered critical for designing an epitope-based peptide vaccine (EBPV).
Although there are a number of vaccine types, EBPVs have received less attention thus far. It is
important to mention that EBPVs have a great deal of untapped potential for boosting vaccination
safety—they are less expensive and take a short time to produce. Thus, in order to quickly contain
global pandemics such as the ongoing outbreak of coronavirus disease 2019 (COVID-19) caused
by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), as well as epidemics and
endemics, EBPVs are considered promising vaccine types. The high mutation rate of SARS-CoV-2
has posed a great challenge to public health worldwide because either the composition of existing
vaccines has to be changed or a new vaccine has to be developed to protect against its different
variants. In such scenarios, time being the critical factor, EBPVs can be a promising alternative.
To design an effective and viable EBPV against different strains of a pathogen, it is important to
identify the putative T- and B-cell epitopes. Using the wet-lab experimental approach to identify
these epitopes is time-consuming and costly because the experimental screening of a vast number of
potential epitope candidates is required. Fortunately, various available machine learning (ML)-based
prediction methods have reduced the burden related to the epitope mapping process by decreasing
the potential epitope candidate list for experimental trials. Moreover, these methods are also cost-
effective, scalable, and fast. This paper presents a systematic review of various state-of-the-art and
relevant ML-based methods and tools for predicting T- and B-cell epitopes. Special emphasis is
placed on highlighting and analyzing various models for predicting epitopes of SARS-CoV-2, the
causative agent of COVID-19. Based on the various methods and tools discussed, future research
directions for epitope prediction are presented.

Keywords: machine learning; antigenic determinant; antigen; antibody; immune-relevant determi-
nants; epitope-based peptide vaccine; SARS-CoV-2; COVID-19; epitopes; ensemble model

1. Introduction

An antigenic determinant (AD) is a portion of an antigen molecule known as an
epitope that is recognized by the human immune system, specifically by antibodies or
T and B cells [1]. Recognition of epitopes is considered important in EBPV design to
contain pandemics, epidemics, and endemics due to the outbreak of infectious diseases.
The ongoing COVID-19 pandemic due to the SARS-CoV-2 outbreak is the latest among the
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major pandemics that have occurred in the last decade [1]. COVID-19 can be severe and
has caused millions of deaths around the world. It is a respiratory illness and affects people
according to the physiology and immune system of the human body. Affected people
mostly develop mild to moderate illness and recover without hospitalization [1,2]. While
the progress in COVID-19 vaccine design so far is remarkable, successfully vaccinating the
worldwide population entails numerous hurdles, from manufacturing to distribution and
deployment, and, most crucially, acceptability.

Due to the rate at which SARS-CoV-2 is circulating in the population, thereby causing
unprecedented infections, its chances of mutating more and more have increased by now.
The variant B.1.617.2, named Delta [3], first identified during a serious wave of COVID-19
infections in India in April and May 2021 [4], was declared a variant of concern (VOC)
by the “US Centers for Disease Control and Prevention (CDC)” on 15 June 2021 [5]. Due
to its partial resistance to existing vaccines, the infected cases per day increased to over
400,000 [6]. A study conducted by the Chinese Academy of Medical Sciences confirmed that
viral loads in Delta infections are approximately 1000 times higher than those in previous
SARS-CoV-2 variants [7]. The Mu variant, also known as B.1.621 [3], first identified in
January 2021 in Colombia, was declared a “variant of interest” (VOI) on 26 August 2021 by
the European Centre for Disease Prevention and Control (ECDC) [8]. On August 30, “the
Mu variant was added to the World Health Organization’s (WHO’s) watch list after being
found to have a constellation of mutations that indicate potential properties of immune
escape” [8]. The most recent variant, B.1.1.529, named Omicron, was first reported to WHO
from South Africa on 24 November 2021 [8]. On 26 November 2021, WHO designated
the variant B.1.1.529 a VOC on the advice of the Technical Advisory Group on Virus
Evolution (TAG-VE) [8]. The hotspot of SARS-CoV-2 mutations is the spike S protein.
The spike protein enables the pathogen to infect cells and is the basis for the majority
of the vaccines. In [9], it has been reported that “out of 10333 spike protein sequences
analyzed, 8155 proteins comprised one or more mutations. A total of 9654 mutations were
observed that correspond to 400 distinct mutation sites. The receptor binding domain
(RBD) which is involved in the interactions with human angiotensin-converting enzyme-2
(ACE-2) receptor and causes infection leading to the COVID-19 comprised 44 mutations
that included residues within 3.2 Å interacting distance from the ACE-2 receptor”.

1.1. Epitopes and Paratopes

An antigen is any substance that causes the immune system to produce antibodies
against it. Its molecules are large biological polymers and introduce various molecular
attributes that act as interaction sites between antibodies, TH cells and B cells, and antigen
molecules. These interaction sites are called epitopes [10–12]. Epitopes are of two types: B-
cell epitopes (BCEs) and T-cell epitopes (TCEs). The fragment of an antigen that is attached
to an antibody is called the B-cell epitope [13]. The BCEs are recognized by B cells and
comprise a solvent region that is exposed to an antigen. On the other hand, T cells have a
receptor on their surface, known as the T-cell receptor (TCR) [13]. When presented on the
surfaces of APCs that are linked to MHC molecules, the TCR aids in antigen recognition.
TCEs identified by CD8 and CD4 T cells are represented by MHC class I (MHC I) and
class II (MHC II) molecules, respectively [13]. Figure 1 shows an antibody containing two
paratopes, indicating that these two paratopes can bind to two pathogens [14,15]. Chemical
interactions between epitopes and paratopes that promote antigen–antibody binding are
non-covalent [16–18].

1.2. Need for T- and B-Cell Epitope Prediction

The identification of epitopes is of great importance for many reasons, including EBPV
design, antibody production, and immunodiagnostic tests. They also play a crucial role in
activating the human immune system. Among the reasons listed, EBPV design is important
for researchers, biologists, and scientists because there are numerous drawbacks to using
whole-organism vaccines, particularly in immunocompromised patients [19,20]. EBPVs
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can be utilized to overcome the issues associated with heterogeneous and multicomponent
vaccines and are seen as an alternative to traditional vaccines. They can act as powerful
alternatives to conventional vaccines due to their low production cost, having less reacto-
genic and allergenic responses. A well-trained ML model of experimentally determined
epitopes and non-epitopes can identify potential epitopes as vaccine candidates quickly and
efficiently and can reduce the burden related to the epitope mapping process by decreasing
the potential epitope candidate list for experimental trials. Using the wet-lab experimental
approach to identify these epitopes is time-consuming and costly because the experimental
screening of a vast number of potential epitope candidates is required. However, epitope
prediction methods based on ML can prove to be cost-effective, scalable, and fast. The most
recent vaccine technology is based on RNA vaccines, which have the distinct advantage of
being simple to design and manufacture. Epitopes are critical, but often overlooked, for
boosting the effectiveness of RNA vaccines. Although RNA vaccines can encode any gene
of interest, even the most recent designs commonly encode sequences of original genes
from the natural virus. Epitope prediction can be useful in assisting RNA vaccine design
by guiding the sequence design and vaccine structure. RNA (mRNA) vaccines, on the
other hand, can benefit from epitope-based design approaches, in which both B-cell and
T-cell epitopes can be used for vaccine design. The epitope properties determine whether
or not the RNA vaccine will elicit an immune response and which types of responses will
be elicited.

Figure 1. Antigen recognition by antibodies.

The subsequent sections will provide a systematic review of various state-of-the-art
and relevant ML-based methods and tools developed for predicting TCEs and BCEs in
general, with an emphasis on predicting epitopes for SARS-CoV-2. Based on the various
state-of-the-art machine learning methods and tools discussed, future research directions
for the prediction of epitopes are presented.

1.3. Motivations behind This Study

The main motivations behind this review are as follows:

1. To highlight the work done in T- and B-cell epitope prediction using ML, along with
the strengths and limitations of the existing ML methods and tools, with the aim of
promoting the EBPV design approach as this approach has received less attention so
far. This will also stimulate continuing research efforts for designing an EBPV.

2. With the increase in data related to antigenic determinants (TCEs and BCEs) and
advances in immunoinformatics, the scientific community is overwhelmed.

3. To provide future directions in terms of taking advantage of ensemble ML and explor-
ing additional physicochemical properties of amino acids, and to use other confusion
matrix-based performance metrics apart from accuracy and area under the curve
(AUC) for designing an effective EBPV.
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2. Existing ML-Based Studies for the Prediction of T- and B-Cell Epitopes

ML is concerned with the automated learning of machines that is not explicitly pro-
grammed. It focuses on making data-driven predictions and has several applications in
bioinformatics [21]. Bioinformatics deals with applying computational techniques to derive
knowledge from biological data. It covers the collection, retrieval, storage, manipulation,
and data modeling for analysis or prediction using various algorithms and software [21].
Earlier, one had to explicitly program bioinformatics algorithms, which was an extremely
laborious task for predicting protein structures [21]. However, with the advent of ML algo-
rithms, such problems have become much easier to solve. In recent years, the exponential
growth of T- and B-cell epitope data has become the primary motivation for researchers to
develop ML-based methods for the prediction of ADs or IRDs, i.e., B- and T-cell epitopes.
ML applied to experimentally determined peptide sequence data of pathogens (virus,
bacteria, etc.) opens up new frontiers for areas such as EBPV design, antibody production,
and immunodiagnostic tests. The ML-based in silico approach has emerged as a promising
field for epitope prediction [22]. Accordingly, various ML-based studies and methods exist
that utilize the physicochemical properties of amino acids as features or descriptors for the
prediction of epitopes. Table 1 summarizes these studies, along with our opinions in terms
of their strengths and limitations.

Table 1. Existing studies for T- and B-cell epitope prediction.

Study Conducted Methodology Adopted Strengths/Limitations

T. Liu et al. [23]

A feedforward deep neural network-based ensemble
of 11 classifiers was created to predict BCEs. IEDB

was used to obtain the BCE peptide dataset. On the
test set, the model was evaluated using the

AUROC metric.

Model reports peptide as an epitope if classified
by all 11 classifiers. It would provide the best

results if simple majority voting was used
for classification.

Fatoba, A. J. et al. [24]

In [24], potential epitope-based vaccine candidates
were explored. After retrieving 600 genome

sequences of SARS-CoV-2 from the ViPR repository,
CD8+ and CD4+ epitopes and B-cell (linear)
epitopes were generated and screened for

immunogenicity, antigenicity, and non-allergenicity.

The results of [25] reported 19 candidate T-cell
epitopes (CD8+), which were found to overlap

strongly with 8 B-cell epitopes. The results
provide the basis for an experimental design for
a suitable peptide vaccine against SARS-CoV-2.

R. Moody et al. [26]

Authors used IEDB prediction tools for predicting
B-cell epitopes and those with high scores in terms
of prediction were selected as candidate epitopes.

The epitopes were then matched to human proteins
using NCBI Blast technology.

The findings showed eleven (11) novel B-cell
epitopes in the host that were capable of

explaining key elements of COVID-19
extrapulmonary disease that previous research

had not been able to explain.

Jespersen
MC et al. [27]

The authors employed feedforward neural networks
(FFNN) with two hidden layers, each with

25 neurons, an activation function (sigmoid) at all
neurons, and an ADAM as an optimizing function to
predict antibody-specific epitopes (B cell) or epitope
targets of provided cognate antibodies. The dataset

was obtained from the IEDB database. PCA was
used for dimensionality reduction before the model

was trained.

It was shown that a simple set of attributes
retrieved from the cognate antibody boosted the

rate of accuracy in predicting individual
epitopes. Furthermore, sophisticated features

such as Zernike Moments can improve the
model’s predictive potential. When compared to

DiscoTope 2.0, this model performs better in
finding patches overlapping with an actual patch

of an epitope in cross-validation and on an
independent dataset.

Ling-yun Liu et al. [28]

The authors used PCA and RNN networks. They
converted the physicochemical properties into

digital vectors, intending to have high-dimensional
feature space, and later PCA was applied to process
them. The output from PCA was used as an input to

the RNN for predicting epitopes.

Prediction results obtained by this process
demonstrated that PCA reduced dimensions, but

at the same time, original features of the main
component were retained, and the rate of

prediction was also improved.
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Table 1. Cont.

Study Conducted Methodology Adopted Strengths/Limitations

Bin Cheng et al. [29]

Authors introduced a novel scale to measure feature
importance, called the relevance of amino acid pair
(RAAP). RAAP was calculated by decomposing the

sequences of amino acids based on their
physicochemical properties.

The successful prediction rate was drastically
improved here by using LSTM. It does not suffer
from gradient instability and is good enough for

textual classification sequences. Fivefold
cross-validation was used to test and validate

the models.

Balachandran
Manavalan et al. [30]

Here, a non-redundant dataset was constructed
containing 5500 BCEs experimentally validated, and
6893 non-B-cell epitopes were retrieved from IEDB.
Then, an ensemble model to predict B-cell epitopes
based on ERT (extremely randomized tree) and a

classifier called GB (gradient boosting) was
developed. The model works based on the

physicochemical properties, AA composition, and
combination of dipeptides and PCP as the

input features.

After performing cross-validation on a
benchmark dataset, it was shown that this model

performed far better than the individual
classifiers such as ERT and GB, with an MCC

(Matthews correlation coefficient) of 0.454.

Yuh-Jyh Hu et al. [31]

A cost-sensitive strategy based on bagging MDT was
suggested, which integrates two ensemble-based

learning algorithms. Without employing the
prediction of a pre-trained single predictor, it makes

it independent of multiple prediction tools. It can
also learn a meta-classification architecture with

varied data, without being constrained by a
particular hierarchy.

It was demonstrated that the performance of
prediction is superior as compared to a single

epitope predictor. However, epitope prediction
based on meta-learning is purely dependent
upon the predictive strength of various other
pre-trained linear and conformational epitope

prediction tools, which cannot be retained
directly by users. Hence, this limits the flexibility

and applicability of these meta-classifiers.

Jing Ren et al. [32]

The authors proposed a novel staged
heterogeneity-based learning model. The model

learns both heterogeneity and characteristics of data
in a phased manner to identify residue of antigens of

conformational B-cell type epitopes that are
heterogeneous, purely based on sequences of

antigens. In the first stage, the model is made to
learn the generic epitope pattern with propensities,
and in the second stage, the same model is made to
learn the complementarity of the propensities used
in the first stage, which is heterogeneous but this

time on a small dataset of experimentally
verified epitopes.

It was demonstrated that if heterogeneity was
learned well, the transferability of the model

improved remarkably in handling new data.It
was tested and validated on two different

datasets: one with epitopes determined
experimentally and another with

computationally defined. It showed outstanding
performance that was around twice that of

existing predictors, including CBTOPE.

Georgios A. et al. [33]

A novel method, “SEPIa”, has been proposed here to
predict B-cell epitopes from protein sequences and is

sufficiently faster, and it can also be applied to
large-scale datasets. The model is the combination of

two classifiers, random forest and naïve
Bayes algorithm.

The average prediction accuracy of SEPIa is
limited. The AUC score is 0.65 in both 10-fold
cross-validation and on the independent test

dataset, which is higher than other approaches
tested on the same test dataset.

Gene Sher et al. [25]

Authors proposed a novel, analytically trained
DREEP (Deep Ridge Regressed Epitope Predictor)

based on string kernels using a deep neural network
tailored to predict continuous epitopes.

The model was tested with input as long
sequences of proteins from datasets such as

AntiJen, Pellequer, and HIV. The results were
compared with epitope predictors such as

DMNLBE, LBtope, etc. Using the area under the
curve (AUC) metric, the model achieved

performance improvements over SARS by 13.7%,
HIV by 8.9%, and Pellequer by 1.5%.
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Table 1. Cont.

Study Conducted Methodology Adopted Strengths/Limitations

Wen Zhang et al. [34]

Authors attempted to differentiate immunogenic
epitopes from non-immunogenic epitopes based
purely on their primary structure. To effectively

utilize various features, an ensemble method based
on a genetic algorithm was proposed.

The model was tested on two benchmark
datasets: IMMA2, PAAQD. The model was

compared with methods such as POPI, PAAQD,
and POPISK, which are considered

state-of-the-art in nature. The model performed
better, with an AUC score on IMMA2 of 0.846

and 0.829 on PAAQD.

Wei Zheng et al. [35]

The authors used ensemble learning to improve the
prediction of BCEs. Their ensemble method

combined twelve SVMs. To handle imbalanced
datasets, resampling and AdaBoost methods

were used.

The proposed ensemble model achieved an AUC
score of 0.642–0.672 on the training dataset with
five-fold cross-validation and an AUC score of

0.579–0.604 on the test dataset.

Jian Zhang et al. [36]

To predict antigenic determinants, the authors
devised a cost-sensitive ensemble approach, and a

spatial clustering-based algorithm was used to
identify probable epitopes.

The model performed admirably in terms of
prediction. AUC scores of 0.721 and 0.703 were
obtained using leave-one-out cross-validation
(LOOCV) on two benchmark datasets: bound

and unbound.

Kavitha K V et al. [37]
PCA was used to reduce dimensions and to filter out

the essential features; for prediction purposes, a
random forest algorithm was used.

Experimental results showed that the random
forest-based classifier had an improved

prediction accuracy rate as compared to BCPred,
AAP, etc.

Wen Zhang et al. [38]
The authors used sequence-derived features and
developed an ensemble model based on random

forest to predict epitopes accurately.

The model was evaluated using the
leave-one-out cross-validation procedure, and an

AUC score of 0.687 and 0.651 on bound and
unbound datasets was obtained.

Ping Chen et al. [39]

Authors reviewed various prediction models for
epitopes, such as models based on SVM, neural

network, random forest, etc., to defend
computational approaches in the prediction of

epitopes as in silico methods require a lot of effort
and time.

Apart from defending the computational
approaches, it was also concluded that there is a
limitation to current models as it is impossible to
devise an exact model without having complete
knowledge of the immune system, and current

models are simply best at approximation.

Claus Lundegaard
et al. [40]

Here, an artificial neural network was used. The
standard feedforward neural network with

backpropagation was employed to predict epitopes.
The dataset was retrieved from the

SYFPEITHI database.

The model efficiently and accurately predicts
MHC class I type peptides and outperforms the

existing methods.

3. Existing Tools for T- and B-Cell Epitope Prediction

The specific regions of proteins responsible for triggering an immune response me-
diated by B or T cells are known as epitopes. As epitopes are central to the EBPV design
process, the use of computational techniques to predict them is urgently needed. In the
following sub-sections, we discuss the tools being used for the prediction of T- and B-
cell epitopes.

3.1. Tools for T-Cell Epitope Prediction

The primary basis for T-cell epitope prediction is peptide–MHC binding prediction.
A number of tools and methodologies for predicting T-cell epitopes have been developed
and are freely available online. We hereby provide a categorized review of these tools
based on the methods they use for prediction. The methods used are structure-based (SB),
motif matrix (MM), sequence motif (SM), quantitative affinity matrix (QAM), artificial
neural network (ANN), support vector machine (SVM), the quantitative structure–activity
relationship model (QSAR), and combined (using QAM and ANN). All these tools have
been illustrated in Table 2. For each tool, we have mentioned the URL and which class of
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MHC binding prediction is supported (class I or II or both). As shown in Table 2, these tools
only assess a peptide’s binding capability. It is still difficult for these methods to estimate
deterministically whether a given peptide is an epitope or not. CTLpred [41], one of the
servers, works in this category; however, it is limited to peptides with a length of up to
9 mers only. However, the benefit of using ML algorithms for epitope prediction for the
methods illustrated in Table 2 is that they address two distinct problems: the differentiation
of MHC binders from non-binders and the prediction of the binding affinity of a peptide
to MHC molecules. The first issue has been addressed by using classifiers such as ANNs,
SVMs, decision trees (DT), and Hidden Markov models (HMMs). All of these classifiers
have been trained on data containing peptides that have or do not have binding affinity to
the MHC molecule. ML classifiers were developed on a dataset of peptides with an affinity
to the MHC molecule to solve the second problem, i.e., binding affinity prediction. Here,
SVMs and ANNs have been used to first predict affinity for MHC I and then for MHC
II molecules. However, when using the MHC binding model to predict T-cell epitopes,
difficulty arises due to MHC polymorphism [42]. To address this, pan MHC-specific models
were created by training ANNs on data containing MHC residues [43]. Furthermore, it has
been established that combining different approaches and providing a consensus prediction
improves peptide–MHC prediction [44].

Table 2. Prediction tools for T-cell epitopes categorized based on the methods they use (CITATION).

Tool Name Web URL
MHC Class Prediction

Supported (MHC I or MHC
II or Both)

S A P T

Structure-based

EpiDOCK [45] epidock.ddg-pharmfac.net, accessed on
10 December 2021 II - - - -

MM-based

Vaxign [46] www.violinet.org/vaxign/, accessed on
10 December 2021 Both - - - -

PEPVAC [47] imed.med.ucm.es/PEPVAC/, accessed on
10 December 2021 I X - X -

EPISOPT [48] bio.med.ucm.es/episopt.htmL, accessed on
10 December 2021 I X - - -

MAPPP [49] mpiib-berlin.mpg.de/MAPPP/, accessed on
10 December 2021 I X - X -

PREDIVAC [50] predivac.biosci.uq.edu.au/, accessed on
10 December 2021 II - - - -

SYFPEITHI [51] syfpeithi.de, accessed on 10 December 2021 Both - - - -

Rankpep [52] imed.med.ucm.es/Tools/rankpep.html,
accessed on 10 December 2021 Both - - X -

SM-based

MotifScan [53]
www.hiv.lanl.gov/content/immunology/

motif_scan/motif_scan, accessed on
10 December 2021

Both X - - -

QAM-based

EpiJen [54] ddg-pharmfac.net/epijen/EpiJen/EpiJen.htm,
accessed on 10 December 2021 I - X X X

Propred [55] imtech.res.in/raghava/propred/, accessed on
10 December 2021 II X X - -

epidock.ddg-pharmfac.net
www.violinet.org/vaxign/
imed.med.ucm.es/PEPVAC/
bio.med.ucm.es/episopt.htmL
mpiib-berlin.mpg.de/MAPPP/
predivac.biosci.uq.edu.au/
syfpeithi.de
imed.med.ucm.es/Tools/rankpep.html
www.hiv.lanl.gov/content/immunology/motif_scan/motif_scan
www.hiv.lanl.gov/content/immunology/motif_scan/motif_scan
ddg-pharmfac.net/epijen/EpiJen/EpiJen.htm
imtech.res.in/raghava/propred/
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Table 2. Cont.

Tool Name Web URL
MHC Class Prediction

Supported (MHC I or MHC
II or Both)

S A P T

TEPITOPE [56]
dataminingiip.fudan.edu.cn/service/

TEPITOPEpan/TEPITOPEpan.htm, accessed on
10 December 2021

II - X - -

Propred 1 [57] http://www.imtech.res.in/raghava/propred1/,
accessed on 10 December 2021 I X X X -

BIMAS [58] bimas.cit.nih.gov/molbio/hla_bind/, accessed
on 10 December 2021 I - X - -

QSAR-based

EpiTOP [59] pharmfac.net/EpiTOP, accessed on
10 December 2021 II - X - -

MHCPred [60] ddg-pharmfac.net/mhcpred/MHCPred/,
accessed on 10 December 2021 Both - X - -

ANN-based

NetCTL [41] cbs.dtu.dk/services/NetCTL/, accessed on
10 December 2021 I X X X X

MULTIPRED2 [61] cvc.dfci.harvard.edu/multipred2/index.php,
accessed on 10 December 2021 Both X - - -

NetMHC [62] cbs.dtu.dk/services/NetMHC/, accessed on
10 December 2021 I - X - -

NetMHCpan [63] cbs.dtu.dk/services/NetMHCpan/, accessed on
10 December 2021 I - X - -

NetMHCII [64] cbs.dtu.dk/services/NetMHCII/, accessed on
10 December 2021 II - X - -

NetMHCIIpan [65] cbs.dtu.dk/services/NetMHCIIpan/, accessed
on 10 December 2021 II - X - -

NHLApred [66] imtech.res.in/raghava/nhlapred/, accessed on
10 December 2021 I - - X -

SVM-based

IL4pred [67] webs.iiitd.edu.in/raghava/il4pred/index.php,
accessed on 10 December 2021 II - - - -

WAPP [68] abi.inf.uni-tuebingen.de/Services/WAPP/
index_html, accessed on 10 December 2021 I - - X X

SVRMHC [69] us.accurascience.com/SVRMHCdb/, accessed on
10 December 2021 Both - X - -

SVMHC [70] abi.inf.uni-tuebingen.de/Services/SVMHC/,
accessed on 10 December 2021 Both - - - -

MHC2PRED [71] imtech.res.in/raghava/mhc2pred/index.html,
accessed on 10 December 2021 II - - - -

Combined (QAM and ANN)

IEDB-MHCI [72] tools.immuneepitope.org/mhci/, accessed on
10 December 2021 I - X - -

IEDB-MHCII [72] tools.immuneepitope.org/mhcii/, accessed on
10 December 2021 II - X - -

S: Prediction of supertypes, A: Quantitative binding affinity, P: Proteasomal cleavage, T: TAP binding.

dataminingiip.fudan.edu.cn/service/TEPITOPEpan/TEPITOPEpan.htm
dataminingiip.fudan.edu.cn/service/TEPITOPEpan/TEPITOPEpan.htm
http://www.imtech.res.in/raghava/propred1/
bimas.cit.nih.gov/molbio/hla_bind/
pharmfac.net/EpiTOP
ddg-pharmfac.net/mhcpred/MHCPred/
cbs.dtu.dk/services/NetCTL/
cvc.dfci.harvard.edu/multipred2/index.php
cbs.dtu.dk/services/NetMHC/
cbs.dtu.dk/services/NetMHCpan/
cbs.dtu.dk/services/NetMHCII/
cbs.dtu.dk/services/NetMHCIIpan/
imtech.res.in/raghava/nhlapred/
webs.iiitd.edu.in/raghava/il4pred/index.php
abi.inf.uni-tuebingen.de/Services/WAPP/index_html
abi.inf.uni-tuebingen.de/Services/WAPP/index_html
us.accurascience.com/SVRMHCdb/
abi.inf.uni-tuebingen.de/Services/SVMHC/
imtech.res.in/raghava/mhc2pred/index.html
tools.immuneepitope.org/mhci/
tools.immuneepitope.org/mhcii/
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It is also illustrated in Table 2 whether the tools provide a prediction of supertypes—S,
quantitative binding affinity—A, proteasomal cleavage—P, and TAP binding—T. These are
denoted by a cross (X) in an affirmative case.

3.2. Tools for B-Cell Epitope Prediction

The goal of predicting BCEs is to make it easier to identify a BCE for antigen replace-
ment in an antibody production process. BCEs are classified into two types: conformational
and linear. As shown in Figure 2, linear BCEs are composed of consecutive peptides and
residues. Conformational ones, on the other hand, are formed of patches of solvent-exposed
atoms from non-sequential residues. As a result, conformational and linear BCEs are also
known as discontinuous and continuous BCEs.

Figure 2. Linear and conformational B-cell epitopes.

Only a few native antigens have linear BCEs, while approximately 90% of BCEs are
conformational [73]. There are a number of tools and methods developed to predict B-cell
epitopes and many are available online and free to use. In this review, we have categorized
these tools based on the type of epitope they predict (linear or conformational), as illustrated
in Table 3.

Table 3. Prediction tools for B-cell epitopes.

Tool Name Web URL Methodology Used

Prediction of Linear B-Cell Epitopes

BepiPred [74] cbs.dtu.dk/services/BepiPred/, accessed on 10 December 2021 Decision tree

PEOPLE [75] iedb.org, accessed on 10 December 2021 Propensity scale

LBtope [76] imtech.res.in/raghava/lbtope/, accessed on 10 December 2021 ANN

SVMTriP [77] sysbio.unl.edu/SVMTriP/prediction.php, accessed on 10 December 2021 SVM

BCPREDS [78] ailab.ist.psu.edu/bcpred/, accessed on 10 December 2021 SVM

ABCpred [79] imtech.res.in/raghava/abcpred/, accessed on 10 December 2021 ANN

Prediction of Conformational B-Cell Epitopes

DiscoTope [80] tools.iedb.org/discotope/, accessed on 10 December 2021 Structure-based (SM)

PEPITO [81] pepito.proteomics.ics.uci.edu/, accessed on 10 December 2021 SM

ElliPro [82] tools.iedb.org/ellipro/, accessed on 10 December 2021 SM

CEP [73] bioinfo.ernet.in/cep.htm, accessed on 10 December 2021 SM

EPITOPIA [83] epitopia.tau.ac.il/, accessed on 10 December 2021 SM (Naïve Bayes)

EPIPRED [84] opig.stats.ox.ac.uk/webapps/sabdab-sabpred/EpiPred.php, accessed on
10 December 2021 SM (Docking, ASEP)

EPSVR [85] sysbio.unl.edu/EPSVR/, accessed on 10 December 2021 SM

PEPITOPE [86] pepitope.tau.ac.il/, accessed on 10 December 2021 Mimotope

CBTOPE [87] imtech.res.in/raghava/cbtope/submit.php, accessed on 10 December 2021 SM (SVM)

EpiSearch [88] curie.utmb.edu/episearch.htm, accessed on 10 December 2021 Mimotope

cbs.dtu.dk/services/BepiPred/
iedb.org
imtech.res.in/raghava/lbtope/
sysbio.unl.edu/SVMTriP/prediction.php
ailab.ist.psu.edu/bcpred/
imtech.res.in/raghava/abcpred/
tools.iedb.org/discotope/
pepito.proteomics.ics.uci.edu/
tools.iedb.org/ellipro/
bioinfo.ernet.in/cep.htm
epitopia.tau.ac.il/
opig.stats.ox.ac.uk/webapps/sabdab-sabpred/EpiPred.php
sysbio.unl.edu/EPSVR/
pepitope.tau.ac.il/
imtech.res.in/raghava/cbtope/submit.php
curie.utmb.edu/episearch.htm
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Regarding Linear BCEs, although being in the minority, their prediction has received
more attention. A few existing bioinformatics-based tools, such as PEOPLE [75] and PRED-
ITOP [89] for BCE prediction, make use of propensity scales. The tool PREDITOP [89] is
based on a multi-parametric method using the accessibility, hydrophilicity, and flexibility
properties of amino acids. On the other hand, PEOPLE [75] is also based on these parameters
but includes the assessment of β-turns. However, in [90], by Blythe and Flower, it has been
shown that the amino acid propensity scale is unreliable for predicting epitope location.

The unreliability issue in predicting BCEs due to amino acid scales has been mitigated
using ML algorithms. To differentiate BCEs from non-epitopes, ML algorithms have
been trained on feature vectors extracted from BCEs. A few methods, as illustrated in
Table 3, based on ML include ABCpred [79], BCPREDS [78], LBtope [76], SVMtrip [77],
and BepiPred [74]. It has been reported that methods based on ML techniques outperform
the techniques based on amino acid scales [91]. Conformational BCEs constitute the
majority portion; however, their prediction is lagging behind that of linear types due to two
main reasons. Firstly, their prediction necessitates knowledge of the 3D protein structure.
Only a limited percentage of proteins have 3D information [92]. Secondly, extracting
conformational epitopes for specific antibody synthesis from a protein context is a difficult
process that requires the use of appropriate scaffolds for epitope grafting. Therefore, their
prediction thus far is of less relevance for EBPV design. The methods and tools listed in
Table 3 for the prediction of conformational BCEs identify only generic antigenic areas,
ignoring antibodies, which are typically overlooked [93]. As previously stated, these
approaches require knowledge of an antigen’s 3D structure. Ansari and Raghava [94]
proposed a model termed “CBTOPE” to predict these epitopes using an antigen’s primary
sequences. The model has been developed using SVM, utilizing sequence-derived and
physicochemical properties of epitopes. Using cross-validation techniques, the CBTOPE
model achieved an accuracy rate of 86.6%.

4. Studies Conducted for Predicting SARS-CoV-2 Epitopes

Coronaviruses belong to the family Coronaviridae, the enveloped viruses having a large
single-stranded RNA genome whose length ranges from 26 to 32 kilobases [95]. In [96], by
Lineburg and colleagues, it has been found that, among 26 viral proteins of SARS-CoV-2, a
few proteins on its surface, such as the spike protein (S), are more variable, while others
are more conserved and internal, such as the nucleocapsid protein (N). It has been found
that the spike protein (S) is responsible for activating cytotoxic CD8+ T cells and hence is
considered an ideal vaccine target.

The infection caused by SARS-CoV-2 elicits both adaptive and innate arms of immu-
nity [97]. In general, antigen-presenting cells recognize viruses. Once T-cell activation
happens, CD4+ T cells mainly differentiate into effector cells, which produce cytokines
and chemokines; cytotoxic CD8+ T cells, on the other hand, are key players in the immune
response to viral infection, as they participate directly in viral clearance [98]. It has been
demonstrated that T cells, apart from targeting the structural proteins of coronaviruses,
are also responsible for lung immunopathological damage due to SARS-CoV and MERS-
CoV [99,100]. Thus, in the case of SARS-CoV-2, the major focus has been on identifying
viral T-cell epitopes presented on human leukocyte antigens (HLA) [101,102]. Therefore,
the focus of this review in the case of SARS-CoV-2 is the prediction of TCEs.

According to the literature review, authors started using ML methods reasonably
quickly, as soon as the initial genome sequences of SARS-CoV-2 became public in early
2020, to recommend T-cell epitopes as potential vaccine candidates for SARS-CoV-2 [103].
The existing methods based on ML that have been utilized can predict either CD8+ or CD4+
T-cell epitopes and are listed in Table 4.



Pathogens 2022, 11, 146 11 of 18

Table 4. Existing ML methods used in SARS-CoV-2 epitope prediction.

Sr. No. Method Name Usage

01 NetMHC [61]

To predict HLA I class or
CD8+ SARS-CoV-2

T-cell epitopes

02 NetMHCpan [62]

03 NetCTLpan_1.1 [104]

04 NetMHC_4.0 [105]

05 HLAthena [106]

06 MHCflurry [107]

07 NetHMCII_2.3 [108]

To predict HLA II class or
CD4+ SARS-CoV-2

T-cell epitopes

08 NetMHCIIpan_3.0 [109]

09 NetMHCIIpan_4.0 [110]

10 NeonMHC2 [111]

11 MARIA [112]

A few techniques listed in Table 4 have “pan” as a suffix, which indicates an ability to
predict the binding of HLA peptides for a huge collection of the alleles inside a particular
HLA type, including those not present in the training dataset [111]. A few studies have also
used algorithms specific to HLA-I, namely Net_Chop [113] and NetCTL1.2 [114], where
extra- and intracellular variables responsible for the presentation of HLA antigens were
integrated to improve the prediction accuracy of the binding of peptide HLA. The methods
NetCTL-1.2 [114] and NetChop [113] have also been utilized in a few studies, where extra-
and intracellular variables have been integrated, which are responsible for presenting HLA
antigens. It is essential to mention here that almost all modern T-cell epitope prediction
systems use ANNs. A few early ones (such as RANKPEP [115] and CTLPred [41]) used a
different ML approach, support vector machines (SVM). The spike proteins in the original
virus bind to the ACE2 receptor on human cells. It has been reported in [116] that the
D614G mutation alters the genetic code of the spike protein of SARS-CoV-2, where a change
in a single amino acid takes place, and most of the COVID-19 vaccines are based on this
spike protein. Due to this mutation, the virus spreads faster and the spikes become more
stable than those in the original virus. As a result, more functional spikes are available to
bind to ACE2 receptors, making the virus more infectious. Crooke et al. [117] developed a
computational model using various open-source algorithms and web-based tools to analyze
the SARS-CoV-2 proteome so as to identify antigenic and putative T-cell and B-cell epitopes
as potential vaccine targets. After using a set of stringent selection criteria to filter out the
peptide epitopes, the study discovered 41 T-cell epitopes (5 HLA class I, 36 HLA class II)
and six B-cell epitopes that have the potential to serve as primary targets for epitope-based
peptide vaccine development against SARS-CoV-2.

5. Future Research Directions in T- and B-Cell Epitope Prediction

By now, it is clear that the key to designing an EBPV is the identification of BCEs
and TCEs [118,119]. Several studies have been performed to predict BCEs and TCEs, as
illustrated in Table 1. For each study, we have mentioned our opinions in terms of their
strengths and limitations. Apart from these studies, several tools and methods are available
online for free to predict B- and T-cell epitopes, as illustrated in Tables 2 and 3. The methods
used to predict SARS-CoV-2 epitopes are listed in Table 4; again, these predict only the
peptide-binding capacity. This is a limitation with these methods; instead of predicting the
binding capability of a peptide, predicting epitopes deterministically is desired. Because
viruses continue to mutate, as with SARS-CoV-2, existing vaccines may prove to be some-
what less effective against new variants. Either the vaccine’s composition has to be changed
or a new vaccine needs to be developed to protect against these variants [120]. Time being
the critical factor, EBPVs can be a great solution. Based on the research conducted, EBPVs
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are highly recommended vaccines and should be considered in the quest for the rapid
development of protective vaccines. Below, we mention the future research directions for
epitope prediction as predicting epitopes is a sensitive task and needs due attention in
order to improve it.

1. The majority of current state-of-the-art approaches estimate a peptide’s binding capa-
bility. These approaches struggle to predict deterministically whether a given peptide
is an epitope or not. CTLpred [41], one of the servers, operates in this category;
however, it is limited to peptides that are up to 9 mers in length. To circumvent
the limitations of the previous approaches, a direct method of predicting epitopes is
sought. Furthermore, the technique should be capable of predicting variable-length
peptides with a length greater than 9 mers.

2. Current state-of-the-art ML epitope prediction approaches rely heavily on just a
few classifiers, including ANNs, SVMs, and Hidden Markov models (HMM) [121].
There are other robust classifiers available that can be utilized to achieve even more
promising results, including decision trees (DT), random forest (RF), convolutional
neural networks (CNNs), and AdaBoost [122]. In the literature surveyed, ANN-based
models constitute the majority of the epitope prediction methods. However, relying
on ANNs only is not safe. ANNs suffer from a hardware dependency as they require
processors with parallel processing power in accordance with their structure [123].
Because epitope prediction is such a delicate task, the ANN’s behavior is occasionally
unexplainable. When an ANN generates a probing solution, it does not explain why or
how it was generated, which reduces the trust in the network [123]. However, to have
high-performing models and robust models for applications such as the healthcare
domain, explainable ML can be explored, which is in its initial stage and remains an
open issue [124]. Gagniuc et al. have proposed a spectral-based forecast model as
an alternative to the classical ANN. In their experiment, the ANN categorized the
collection of data fairly but failed to reveal any useful information about the evolution
of a subject over time. In this regard, forecasts based on Markov chains or traditional
statistical methodologies have produced more trustworthy outcomes in the biology
and medicine domains. The proposed novel method of analysis based on spectral
forecasts outperformed the classical ANNs [125].

3. Moreover, instead of relying on predictions by a single model, we can combine
several robust classifiers, called an ensemble model. Ensemble learning (EL) is a
powerful technique for boosting the model accuracy by combining a number of base
classifiers [126]. Such a technique has considerably better generalization capability
than its individual counterparts. Indeed, EL is appealing because it can elevate
weak learners (also known as base classifiers), which are marginally better than
random guesses, to strong learners, which can make accurate forecasts [127]. The base
classifiers vote for a new data instance, and, based on the majority of votes, a class
label is returned. An ensemble model can be created by training homogeneous base
models on different subsets of the training set or heterogeneous base models using the
same training dataset. The main three types of ensembling techniques are bagging,
boosting, and stacking. Multiple base learners (homogenous) can be integrated in
bagging using different sub-samples from the same dataset [128]. The final prediction
is obtained by taking the average prediction from multiple base learners. In boosting,
base learners are added sequentially, and the predictions reported by previous learners
are corrected. The final output is decided by taking the weighted average of all the
predictions [128]. On the other hand, stacking involves fitting heterogeneous base
learners on the same dataset [128] and then using another learner to learn how to
best combine all the predictions. Moreover, while dealing with complex data, such as
high-dimensional, imbalanced, noisy data, etc., traditional ML algorithms may fail
to produce satisfactory results. The reason for this is that, for these methods, it is
difficult to capture various attributes and the underlying layout of the data. Ensemble
learning aims to combine data modeling, data fusion, and data mining into a cohesive
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framework [129] To conclude, the main reasons for employing ensemble learning in
epitope prediction are as follows:

• Performance: An ensemble can outperform any single contributing model in
terms of prediction and performance [130].

• Robustness: An ensemble narrows the spread or dispersion of predictions and
improves model robustness and reliability [130].

4. In the literature surveyed, not all physicochemical properties of amino acids have been
utilized to extract features from peptide sequences. To have a robust epitope prediction
system in place, additional physicochemical properties need to be explored [131,132].

5. The existing ML-based methods for epitope prediction have been assessed using
metrics such as accuracy and area under the curve (AUC). However, other confusion
matrix-based performance metrics such as Gini, specificity, sensitivity, F-score, kappa,
Matthews correlation coefficient (MCC), and precision, etc., can be utilized to analyze
the performance of the model in a better way.

6. Conclusions

Prediction of T- and B-cell epitopes can play a game-changing role in the EBPV design
process, as well as in disease diagnosis. In this study, a review of various existing studies
for epitope prediction has been provided. Moreover, a review has been provided for the
state of-the-art ML-based tools that are available online and free to use for researchers
working in vaccine design. The COVID-19 pandemic, caused by the SARS-VoV-2 virus,
has resulted in a dramatic loss of human life worldwide and poses an unprecedented
challenge to public health, food systems, and the workplace [133]. Accordingly, a special
emphasis has been placed on highlighting and analyzing various ML-based methods that
have been proposed and used for predicting epitopes of SARS-CoV-2 for EPBV design in
order to contain the COVID-19 pandemic. However, it is important to mention here that the
application of epitope prediction tools/methods to SARS-CoV-2 presented in this review
is not satisfactorily developed, and only a few them have been applied for SARS-CoV-2
epitope prediction. Another reason to place special emphasis on SARS-CoV-2 is that the
EPBV design approach seems to be a promising alternative in order to quickly design new
vaccines against different variants of the virus as it continues to mutate [134]. Based on
the various state-of-the-art ML methods discussed, future research directions for epitope
prediction have been presented. From the literature reviewed, it has been observed that
focus has been given to peptide-binding capability prediction instead of deterministically
predicting whether a peptide is an epitope or not. In addition, the majority of the ML-
based prediction models are based on a single classifier. However, instead of relying on
a single model, several robust classifiers can be combined into an ensemble model in
order to enhance the epitope prediction accuracy. To conclude, it is important to mention
that the prediction of T-cell epitopes is much more reliable and advanced as compared
to the prediction of B-cell epitopes. Moreover, if epitopes are predicted efficiently using
computational approaches (ML-based methods), they can be used as futuristic vaccine
candidates with fewer side effects compared to conventional vaccine designs subjected
to in vitro and in vivo scientific assessments. The technology developed would help the
broad scientific community working in vaccine development to save time in screening the
active epitope candidates against the inactive ones. In conclusion, it is relevant to provide
a review of the existing ML-based state-of-the-art methods for TCE and BCE prediction
because EBPVs have significant potential and should be considered in the quest for the
rapid development of a protective vaccine against a pathogen, specifically for SARS-CoV-2,
as there is a strong likelihood that the virus will mutate further. This will also stimulate
continuing research efforts for the EBPV design process.
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peptide motifs. Immunogenetics 1999, 50, 213–219. [CrossRef]

52. Reche, P.A.; Glutting, J.P.; Zhang, H.; Reinherz, E.L. Enhancement to the RANKPEP resource for the prediction of pep-tide
binding to MHC molecules using profiles. Immunogenetics 2004, 56, 405–419. [CrossRef]

53. Yusim, K.; Korber, B.T.; Brander, C.; Barouch, D.; de Boer, R.; Haynes, B.F.; Koup, R.; Moore, J.P.; Walker, B.D.; Watkins, D. HIV
Molecular Immunology; Los Alamos National Lab: Los Alamos, NM, USA, 2015. [CrossRef]

54. Doytchinova, I.A.; Guan, P.; Flower, D.R. EpiJen: A server for multistep T cell epitope prediction. BMC Bioinform. 2006, 7, 131.
[CrossRef]

55. Singh, H.; Raghava, G.P.S. ProPred: Prediction of HLA-DR binding sites. Bioinformatics 2001, 17, 1236–1237. [CrossRef]
56. Sturniolo, T.; Bono, E.; Ding, J.; Raddrizzani, L.; Tuereci, O.; Sahin, U.; Braxenthaler, M.; Gallazzi, F.; Protti, M.P.; Sinigaglia, F.;

et al. Generation of tissue specific and promiscuous HLA ligand databases using DNA mi-croarrays and virtual HLA class II
matrices. Nat. Biotechnol. 1999, 17, 555–561. [CrossRef]

57. Singh, H.; Raghava, G. ProPred1: Prediction of promiscuous MHC Class-I binding sites. Bioinformatics 2003, 19, 1009–1014.
[CrossRef]

58. Parker, K.C.; Bednarek, M.A.; Coligan, J.E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding
of individual peptide side-chains. J. Immunol. 1994, 152, 163–175. [PubMed]

59. Dimitrov, I.; Garnev, P.; Flower, D.R.; Doytchinova, I. EpiTOP—A proteochemometric tool for MHC class II binding prediction.
Bioinformatics 2010, 26, 2066–2068. [CrossRef] [PubMed]

60. Guan, P.; Doytchinova, I.; Zygouri, C.; Flower, D.R. MHCPred: A server for quantitative prediction of peptide-MHC binding.
Nucleic Acids Res. 2003, 31, 3621–3624. [CrossRef] [PubMed]

61. Zhang, G.L.; DeLuca, D.S.; Keskin, D.B.; Chitkushev, L.; Zlateva, T.; Lund, O.; Reinherz, E.L.; Brusic, V. MULTIPRED2: A
computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles. J. Immunol.
Methods 2011, 374, 53–61. [CrossRef] [PubMed]

62. Nielsen, M.; Lundegaard, C.; Worning, P.; Lauemøller, S.L.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O. Reliable prediction of
T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003, 12, 1007–1017. [CrossRef]

63. Nielsen, M.; Lundegaard, C.; Blicher, T.; Lamberth, K.; Harndahl, M.; Justesen, S.; Røder, G.; Peters, B.; Sette, A.; Lund, O.; et al.
NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence.
PLoS ONE 2007, 2, e796. [CrossRef]

64. Nielsen, M.; Lundegaard, C.; Lund, O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix
alignment method. BMC Bioinform. 2007, 8, 238. [CrossRef]

65. Nielsen, M.; Lundegaard, C.; Blicher, T.; Peters, B.; Sette, A.; Justesen, S.; Buus, S.; Lund, O. Quantitative Predictions of Peptide
Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan. PLoS Comput. Biol. 2008, 4, e1000107. [CrossRef]

66. Doytchinova, I.; Flower, D.R. In Silico Identification of Supertypes for Class II MHCs. J. Immunol. 2005, 174, 7085–7095. [CrossRef]
67. Dhanda, S.K.; Gupta, S.; Vir, P.; Raghava, G.P.S. Prediction of IL4 Inducing Peptides. Clin. Dev. Immunol. 2013, 2013, 263952.

[CrossRef]
68. Dönnes, P.; Kohlbacher, O. Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Sci.

2005, 14, 2132–2140. [CrossRef] [PubMed]
69. Liu, W.; Meng, X.; Xu, Q.; Flower, D.R.; Li, T. Quantitative prediction of mouse class I MHC peptide binding affinity using support

vector machine regression (SVR) models. BMC Bioinform. 2006, 7, 182. [CrossRef] [PubMed]
70. Dönnes, P.; Elofsson, A. Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinform. 2002, 3, 25. [CrossRef]

[PubMed]
71. Bhasin, M.; Raghava, G.P.S. SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence.

Bioinformatics 2004, 20, 421–423. [CrossRef]
72. Zhang, Q.; Wang, P.; Kim, Y.; Haste-Andersen, P.; Beaver, J.; Bourne, P.E.; Bui, H.-H.; Buus, S.; Frankild, S.; Greenbaum, J.; et al.

Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008, 36, W513–W518. [CrossRef]
73. Kulkarni-Kale, U.; Bhosle, S.; Kolaskar, A.S. CEP: A conformational epitope prediction server. Nucleic Acids Res. 2005, 33,

W168–W171. [CrossRef]
74. Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using

conformational epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [CrossRef]
75. Alix, A.J.P. Predictive estimation of protein linear epitopes by using the program PEOPLE. Vaccine 1999, 18, 311–314. [CrossRef]
76. Singh, H.; Ansari, H.R.; Raghava, G.P.S. Improved Method for Linear B-Cell Epitope Prediction Using Antigen’s Primary

Sequence. PLoS ONE 2013, 8, e62216. [CrossRef]
77. Yao, B.; Zhang, L.; Liang, S.; Zhang, C. SVMTriP: A Method to Predict Antigenic Epitopes Using Support Vector Machine to

Integrate Tri-Peptide Similarity and Propensity. PLoS ONE 2012, 7, e45152. [CrossRef]
78. El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit. 2008, 21, 243–255.

[CrossRef] [PubMed]
79. Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct.

Funct. Bioinform. 2006, 65, 40–48. [CrossRef] [PubMed]

http://doi.org/10.1007/s002510050595
http://doi.org/10.1007/s00251-004-0709-7
http://doi.org/10.2172/1248095
http://doi.org/10.1186/1471-2105-7-131
http://doi.org/10.1093/bioinformatics/17.12.1236
http://doi.org/10.1038/9858
http://doi.org/10.1093/bioinformatics/btg108
http://www.ncbi.nlm.nih.gov/pubmed/8254189
http://doi.org/10.1093/bioinformatics/btq324
http://www.ncbi.nlm.nih.gov/pubmed/20576624
http://doi.org/10.1093/nar/gkg510
http://www.ncbi.nlm.nih.gov/pubmed/12824380
http://doi.org/10.1016/j.jim.2010.11.009
http://www.ncbi.nlm.nih.gov/pubmed/21130094
http://doi.org/10.1110/ps.0239403
http://doi.org/10.1371/journal.pone.0000796
http://doi.org/10.1186/1471-2105-8-238
http://doi.org/10.1371/journal.pcbi.1000107
http://doi.org/10.4049/jimmunol.174.11.7085
http://doi.org/10.1155/2013/263952
http://doi.org/10.1110/ps.051352405
http://www.ncbi.nlm.nih.gov/pubmed/15987883
http://doi.org/10.1186/1471-2105-7-182
http://www.ncbi.nlm.nih.gov/pubmed/16579851
http://doi.org/10.1186/1471-2105-3-25
http://www.ncbi.nlm.nih.gov/pubmed/12225620
http://doi.org/10.1093/bioinformatics/btg424
http://doi.org/10.1093/nar/gkn254
http://doi.org/10.1093/nar/gki460
http://doi.org/10.1093/nar/gkx346
http://doi.org/10.1016/S0264-410X(99)00329-1
http://doi.org/10.1371/journal.pone.0062216
http://doi.org/10.1371/journal.pone.0045152
http://doi.org/10.1002/jmr.893
http://www.ncbi.nlm.nih.gov/pubmed/18496882
http://doi.org/10.1002/prot.21078
http://www.ncbi.nlm.nih.gov/pubmed/16894596


Pathogens 2022, 11, 146 17 of 18

80. Andersen, P.H.; Nielsen, M.; Lund, O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein
Sci. 2006, 15, 2558–2567. [CrossRef] [PubMed]

81. Sweredoski, M.J.; Baldi, P. PEPITO: Improved discontinuous B-cell epitope prediction using multiple distance thresholds and half
sphere exposure. Bioinformatics 2008, 24, 1459–1460. [CrossRef]

82. Ponomarenko, J.V.; Bui, H.-H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the
prediction of antibody epitopes. BMC Bioinform. 2008, 9, 514. [CrossRef]

83. Rubinstein, N.D.; Mayrose, I.; Martz, E.; Pupko, T. Epitopia: A web-server for predicting B-cell epitopes. BMC Bioinform. 2009,
10, 287. [CrossRef]

84. Krawczyk, K.; Liu, X.; Baker, T.; Shi, J.; Deane, C.M. Improving B-cell epitope prediction and its application to global antibody-
antigen docking. Bioinformatics 2014, 30, 2288–2294. [CrossRef]

85. Liang, S.; Zheng, D.; Standley, D.M.; Yao, B.; Zacharias, M.; Zhang, C. EPSVR and EPMeta: Prediction of antigenic epitopes using
support vector regression and multiple server results. BMC Bioinform. 2010, 11, 381. [CrossRef]

86. Mayrose, I.; Penn, O.; Erez, E.; Rubinstein, N.D.; Shlomi, T.; Freund, N.T.; Bublil, E.M.; Ruppin, E.; Sharan, R.; Gershoni, J.M.; et al.
Pepitope: Epitope mapping from affinity-selected peptides. Bioinformatics 2007, 23, 3244–3246. [CrossRef]

87. CBTOPE- Prediction of Conformational B-cell Epitopes. Retrieved 26 October 2021. Available online: https://webs.iiitd.edu.in/
raghava/cbtope/ (accessed on 10 December 2021).

88. Negi, S.S.; Braun, W. Automated Detection of Conformational Epitopes Using Phage Display Peptide Sequences. Bioinform. Biol.
Insights 2009, 3, 71–81. [CrossRef]

89. Pellequer, J.-L.; Westhof, E. PREDITOP: A program for antigenicity prediction. J. Mol. Graph. 1993, 11, 204–210. [CrossRef]
90. Blythe, M.J.; Flower, D.R. Benchmarking B cell epitope prediction: Underperformance of existing methods. Protein Sci. 2005, 14,

246–248. [CrossRef] [PubMed]
91. Greenbaum, J.A.; Andersen, P.H.; Blythe, M.; Bui, H.-H.; Cachau, R.E.; Crowe, J.; Davies, M.; Kolaskar, A.S.; Lund, O.; Morrison,

S.; et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J. Mol. Recognit.
2007, 20, 75–82. [CrossRef] [PubMed]

92. Levitt, M. Nature of the protein universe. Proc. Natl. Acad. Sci. USA 2009, 106, 11079–11084. [CrossRef]
93. Sela-Culang, I.; Ofran, Y.; Peters, B. Antibody specific epitope prediction—Emergence of a new paradigm. Curr. Opin. Virol. 2015,

11, 98–102. [CrossRef]
94. Ansari, H.R.; Raghava, G.P. Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome

Res. 2010, 6, 6–9. [CrossRef]
95. Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, Genetic Recombination, and

Pathogenesis of Coronaviruses. Trends Microbiol. 2016, 24, 490–502. [CrossRef]
96. Lineburg, K.E.; Grant, E.J.; Swaminathan, S.; Chatzileontiadou, D.S.; Szeto, C.; Sloane, H.; Panikkar, A.; Raju, J.; Crooks, P.; Rehan,

S.; et al. CD8+ T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal
coronaviruses. Immunity 2021, 54, 1055–1065.e5. [CrossRef]

97. Zhang, X.; Tan, Y.; Ling, Y.; Lu, G.; Liu, F.; Yi, Z.; Jia, X.; Wu, M.; Shi, B.; Xu, S.; et al. Viral and host factors related to the clinical
outcome of COVID-19. Nature 2020, 583, 437–440. [CrossRef]

98. Schmidt, M.E.; Varga, S.M. The CD8 T Cell Response to Respiratory Virus Infections. Front. Immunol. 2018, 9, 678. [CrossRef]
[PubMed]

99. Ng, O.-W.; Chia, A.; Tan, A.T.; Jadi, R.S.; Leong, H.N.; Bertoletti, A.; Tan, Y.-J. Memory T cell responses targeting the SARS
coronavirus persist up to 11 years post-infection. Vaccine 2016, 34, 2008–2014. [CrossRef] [PubMed]

100. Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and
immunopathology. Semin. Immunopathol. 2017, 39, 529–539. [CrossRef] [PubMed]

101. Huber, S.E.; Beek, J.E.; de Jonge, J.; Eluytjes, W.; Baarle, D.E. T Cell Responses to Viral Infections—Opportunities for Peptide
Vaccination. Front. Immunol. 2014, 5, 171. [CrossRef]

102. Seder, R.A.; Darrah, P.A.; Roederer, M. T-cell quality in memory and protection: Implications for vaccine design. Nat. Rev.
Immunol. 2008, 8, 247–258. [CrossRef]

103. Saqib, M.; Faraz, S.; Abdul, A.; Mckay, M.R. In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. Adv.
Drug Deliv. Rev. 2021, 171, 29–47.

104. Stranzl, T.; Larsen, M.V.; Lundegaard, C.; Nielsen, M. NetCTLpan: Pan-specific MHC class I pathway epitope predictions.
Immunogenetics 2010, 62, 357–368. [CrossRef]

105. Paul, S.; Croft, N.P.; Purcell, A.W.; Tscharke, D.C.; Sette, A.; Nielsen, M.; Peters, B. Benchmarking predictions of MHC class I
restricted T cell epitopes in a comprehensively studied model system. PLoS Comput. Biol. 2020, 16, e1007757. [CrossRef]

106. Abelin, J.; Keskin, D.B.; Sarkizova, S.; Hartigan, C.R.; Zhang, W.; Sidney, J.; Stevens, J.; Lane, W.; Zhang, G.L.; Eisenhaure,
T.M.; et al. Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope
Prediction. Immunity 2017, 46, 315–326. [CrossRef]

107. O’Donnell, T.J.; Rubinsteyn, A.; Bonsack, M.; Riemer, A.B.; Laserson, U.; Hammerbacher, J. MHCflurry: Open-Source Class I
MHC Binding Affinity Prediction. Cell Syst. 2018, 7, 129–132.e4. [CrossRef]

108. Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved methods
for predicting peptide binding affinity to MHC class II molecules. Immunology 2018, 154, 394–406. [CrossRef]

http://doi.org/10.1110/ps.062405906
http://www.ncbi.nlm.nih.gov/pubmed/17001032
http://doi.org/10.1093/bioinformatics/btn199
http://doi.org/10.1186/1471-2105-9-514
http://doi.org/10.1186/1471-2105-10-287
http://doi.org/10.1093/bioinformatics/btu190
http://doi.org/10.1186/1471-2105-11-381
http://doi.org/10.1093/bioinformatics/btm493
https://webs.iiitd.edu.in/raghava/cbtope/
https://webs.iiitd.edu.in/raghava/cbtope/
http://doi.org/10.4137/BBI.S2745
http://doi.org/10.1016/0263-7855(93)80074-2
http://doi.org/10.1110/ps.041059505
http://www.ncbi.nlm.nih.gov/pubmed/15576553
http://doi.org/10.1002/jmr.815
http://www.ncbi.nlm.nih.gov/pubmed/17205610
http://doi.org/10.1073/pnas.0905029106
http://doi.org/10.1016/j.coviro.2015.03.012
http://doi.org/10.1186/1745-7580-6-6
http://doi.org/10.1016/j.tim.2016.03.003
http://doi.org/10.1016/j.immuni.2021.04.006
http://doi.org/10.1038/s41586-020-2355-0
http://doi.org/10.3389/fimmu.2018.00678
http://www.ncbi.nlm.nih.gov/pubmed/29686673
http://doi.org/10.1016/j.vaccine.2016.02.063
http://www.ncbi.nlm.nih.gov/pubmed/26954467
http://doi.org/10.1007/s00281-017-0629-x
http://www.ncbi.nlm.nih.gov/pubmed/28466096
http://doi.org/10.3389/fimmu.2014.00171
http://doi.org/10.1038/nri2274
http://doi.org/10.1007/s00251-010-0441-4
http://doi.org/10.1371/journal.pcbi.1007757
http://doi.org/10.1016/j.immuni.2017.02.007
http://doi.org/10.1016/j.cels.2018.05.014
http://doi.org/10.1111/imm.12889


Pathogens 2022, 11, 146 18 of 18

109. Karosiene, E.; Rasmussen, M.; Blicher, T.; Lund, O.; Buus, S.; Nielsen, M. NetMHCIIpan-3.0, a common pan-specific MHC class II
prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics 2013, 65,
711–724. [CrossRef] [PubMed]

110. Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC
antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020,
48, W449–W454. [CrossRef]

111. Abelin, J.; Harjanto, D.; Malloy, M.; Suri, P.; Colson, T.; Goulding, S.P.; Creech, A.L.; Serrano, L.R.; Nasir, G.; Nasrullah, Y.; et al.
Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction. Immunity
2019, 51, 766–779.e17. [CrossRef] [PubMed]

112. Chen, B.; Khodadoust, M.S.; Olsson, N.; Wagar, L.; Fast, E.; Liu, C.L.; Muftuoglu, Y.; Sworder, B.; Diehn, M.; Levy, R.; et al.
Predicting HLA class II antigen presentation through integrated deep learning. Nat. Biotechnol. 2019, 37, 1332–1343. [CrossRef]
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