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Abstract: Occult hepatitis B infection (OBI) is characterized by the presence of low levels of hep-
atitis B virus (HBV) DNA and undetectable HBsAg in the blood. The prevalence of OBI in blood
donors in Asia ranges from 0.013% (China) to 10.9% (Laos), with no data available from Vietnam
so far. We aimed to investigate the prevalence of OBI among Vietnamese blood donors. A total of
623 (114 women and 509 men) HBsAg-negative blood donors were screened for anti-HBc and anti-
HBs by ELISA assays. In addition, DNA from sera was isolated and nested PCR was performed for
the HBV surface gene (S); a fragment of the S gene was then sequenced in positive samples. The
results revealed that 39% (n = 242) of blood donors were positive for anti-HBc, and 70% (n = 434)
were positive for anti-HBs, with 36% (n = 223) being positive for both anti-HBc and anti-HBs. In
addition, 3% of blood donors (n = 19) were positive for anti-HBc only, and 34% (n = 211) had only
anti-HBs as serological marker. A total of 27% (n = 170) were seronegative for any marker. Two of the
blood donors (0.3%) were OBI-positive and sequencing revealed that HBV sequences belonged to
HBV genotype B, which is the predominant genotype in Vietnam.

Keywords: occult hepatitis B; hepatitis B virus; Vietnam; blood donors; hepatitis B surface antigen

1. Introduction

Hepatitis B occurs worldwide, and according to the World Health Organization
(WHO), 296 million people were living with the virus in 2019, resulting in more than
800,000 HBV-related fatalities [1]. Of note, WHO South-East Asia and the WHO Western Pa-
cific Region are among the areas with highest infection rates and account for approximately
half of global chronic infections [1,2].

Following infection, HBV-associated hepatitis has an incubation period of 28 to
180 days. In most cases, the virus causes a self-limited acute infection [3,4]. However,
about 5% of infections do not resolve and develop into a chronic state of disease [5]. Long-
term HBV chronic carriers are exposed to an increased risk of cirrhosis, liver failure, and
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hepatocellular carcinoma [6]. It has been estimated that 15-40% of chronically infected HBV
patients will develop serious sequelae during their lifetime [7].

In recent decades, extensive HBV vaccine implementation and improvements in
hygiene, healthcare, and diagnostics have greatly reduced the risk of HBV infection. Never-
theless, HBV still remains among the most common posttransfusion infections today, as
donors with occult HBV infection may be misdiagnosed, representing risks for the blood
recipients [8–10]. Occult HBV infection (OBI) is defined as the presence of replication-
competent HBV DNA (i.e., episomal HBV covalently closed circular DNA (cccDNA)) in
the liver and/or HBV DNA in the blood of people who test negative for hepatitis B surface
antigen (HBsAg) by currently available assays [11]. This phenomenon has been described
for decades and its clinical implications have been recognized worldwide. However, the
molecular mechanisms underlying OBI are not well characterized. In the post-window
period, while HBV-DNA can be detected in low concentration, HBsAg maybe undetectable
due to the resolution of the acute or chronic infection [12]. Alternatively, low S-gene ex-
pression or the presence of immune escape S-gene mutations in the “a” determinant and
the Major Hydrophilic Region (MHR) have been postulated to cause false-negative HBsAg
results [13]. Anyhow, it has been shown that OBI is associated with advanced chronic liver
disease, and the virus remains transmissible in OBI cases [14,15].

In line with WHO’s Sustainable Development Goal 3, which calls for sustained action
to eliminate viral hepatitis infections by 2030 [16], some developed countries have now
required to assess the combination of HBsAg, anti-HBc, and HBV DNA detection in order
to allow the diagnosis of the window period, as well as of occult infections [17]. However,
in resource-limited settings, HBV screening in blood donors still relies on HBsAg tests
alone, which can mask the true occurrence of OBI and lead to unintentional transmission of
HBV via blood transfusion. Therefore, there is an urgent need to determine the prevalence
of OBI in blood donors to fully understand the risk of transfusion-related HBV infections
and to implement screening strategies accordingly, especially in HBV endemic regions.

Vietnam, despite mandatory HBV vaccination policy from 2003, is still among the
countries with a high burden of viral hepatitis. The rate of HBV infections in the Vietnamese
population has been estimated to range from 8 to 13.3% [18], in particular in rural areas
and older age groups [19,20]. Furthermore, previous studies have shown that the HBV
genotypes B and C are dominant and occur in 75 % and 25 % of cases, respectively [21–23].
Nevertheless, reliable data on the occurrence of OBI among blood donors in Vietnam are
still lacking.

In the present study, we use serology and molecular tests to investigate the prevalence
and genotypes of OBI in HBsAg-screened blood samples from blood donors in Hanoi,
Vietnam. The results from this study can help assess the risk factors for OBI transmission
in the Vietnamese population.

2. Materials and Methods
2.1. Study Cohort

This cross-sectional study was carried out at the Department of Blood Transfusion,
108 Military Central Hospital, Hanoi, Vietnam. For this study, a total of 623 HBsAg-negative
serum samples were collected from blood donors on 2 October 2021 and 12 October 2021.
The study cohort was collected on two independent blood donation days, as mentioned
above. All healthy adult volunteers from northern Vietnam were representative of this
cohort and were predominantly from the Kinh ethnic group. No chronic diseases were
recorded in the medical history. However, eligibility for blood donation was determined by
the doctors of the transfusion department based on their routine guidelines. Demographic
data and written informed consent were obtained from all donors. In accordance with
standard hospital practice, the samples were serologically tested for HIV, HCV, and HBV
(HBsAg) and were confirmed negative (VITROS Immunodiagnostic Products HBsAg, Anti-
HIV 1+2, Anti-HCV (Ortho-Clinical Diagnostic, Felindre Meadows, UK). All blood donor
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samples were additionally tested for anti-HBs and anti-HBc antibodies and HBV DNA
(Figure 1).
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Figure 1. Study design and summary of results. A total of 623 HBsAg (-) blood donors were screened
for anti-HBc and anti-HBs by ELISA before nested PCR targeting a highly conserved S/P region of
the HBV genome. Two samples were found to be HBV DNA (+).

2.2. Serological Assays

The blood donor serum samples were screened for anti-HBs and anti-HBc using
MonolisaTM Anti-HBs PLUS and MonolisaTM Anti-HBc PLUS (BIO-RAD, Hercules, CA,
USA) ELISA kits according to the manufacturer’s instructions. Absorbance was measured
using a CLARIOstar microplate reader (BMG Labtech, Ortenberg, Germany) and anti-HBs
positivity was defined as a titer value >10 mIU/mL.

2.3. Nucleic Acid Isolation

Nucleic acid isolation from serum samples was done using QIAmp DNA Mini Kit
(Qiagen GmbH, Hilden, Germany) according to the manufacturer’s protocol. For the
isolation, 200 µl of serum was used and the nucleic acids were eluted in 80 µL of elution
buffer. The quality and quantity of the DNA were measured using NanoDrop™ (Thermo
Fisher Scientific, Waltham, MA, USA) and stored at −80 ◦C until use.

2.4. HBV Screening and Sequencing

HBV DNA in serum samples was investigated using a nested PCR by targeting a
highly conserved S/P region (332 bp) of the HBV genome as previously described [8,22].
Amplification reactions were carried out in 25 µL (1× PCR buffer, 0.2 mM dNTPs, 0.4 µM
specific primer, and 1U HotStarTaq DNA Polymerase (Qiagen GmbH, Hilden, Germany).
Primers HBV-022, HBV-065, and HBV-066 were used for outer PCR, while primers HBV-
024, HBV-041, and HBV-064 were used for inner PCR (Table S1). The thermal cycling
program for the outer PCR: initial denaturation at 95 ◦C for 15 mins; followed by 35 cycles
of denaturation (94 ◦C, 30s), annealing (55 ◦C, 30s), and extension (72 ◦C, 30s); and lastly
a final extension of 5 mins at 72 ◦C. For the inner PCR, the thermal parameters remained
the same, except for the annealing step being at 50 ◦C (30s) and the number of cycles
being reduced to 30. A positive control (HBV plasmid DNA) and a negative control of the
master mix were integrated to each run to validate the PCR products that produce a 340 bp
fragment. The detection limit of HBV DNA by nested PCR was approximately 2.5 copies
per reaction (between 30 and 40 copies/mL) [8].
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Amplicons were checked by agarose gel electroporation, and the positive samples
were purified and cleaned using ExoSAP-IT PCR (Thermo Fisher Scientific, USA) and sub-
sequently sequenced using the BigDyeTM Terminator v.3.1 Cycle Sequencing Kit (Thermo
Fisher Scientific, USA) on an Applied Biosystems 3130xl Genetic Analyzer (Thermo Fisher
Scientific, USA).

2.5. Statistical and Phylogenetic Analysis

The illustration for age distribution was generated using R version 4.0 (http://www.r-
project.org accessed on 4 October 2022). The sequences were trimmed in BioEdit Ver.7.2.5
(https://bioedit.software.informer.com/7.2/ accessed on 4 October 2022) and the resulting
consensus sequences were aligned with known HBV B sequences from the Hepatitis B Virus
database (HBVdb) online (https://hbvdb.lyon.inserm.fr/HBVdb/ accessed on 25 October
2022). Phylogenetic analysis was performed using Mega 11 (https://www.megasoftware.
net/download_form accessed on 25 October 2022). The phylogenetic tree was constructed
using the maximum likelihood method by using 52 HBV genomes randomly selected from
the NCBI database representing all the genotypes. The tree was constructed using the
model with the lowest BIC score (Table S2) and a bootstrap value of 1000. In our case, the
GTR+G+I model was the best possible approximation. The two sequences were submitted
to GenBank and were assigned accession numbers: OP038923 and OP038924.

3. Results
3.1. Baseline Characteristics

A total of 623 sera were collected from potential blood donors at the Military Central
Hospital 108 in Hanoi. All donors were from the urban areas of the city and had a median
age of 33 years (IQR = 29; 38.5). Male participants accounted for 82% of the cohort (n = 509).

3.2. HBV Serology and Nucleic Acid Detection

The sera were transported to the Institute of Tropical Medicine in Tübingen, Germany
for serologic assays and HBV-DNA detection. The results (Table 1, Figure 1) showed that
27.3% (n = 170) were negative for both anti-HBs and anti-HBc antibodies, indicating a
susceptible population, while 70% (n = 434) were positive for anti-HBs antibodies alone,
indicating immunity due to vaccination [24]. On the other hand, 3.1% (n = 19) were positive
for anti-HBc alone and 35.8% (n = 223) were positive for both anti-HBc and anti-HBs
antibodies, suggesting prior infection [24].

Table 1. Overall prevalence of anti-HBs and anti-HBc markers and combination.

Serology Number (%)

Anti-HBc-positive 242 (39)
Anti-HB-positive 434 (70)

Anti-HB-negative and anti-HBc-positive 19 (3)
Anti-HB-positive and anti-HBc-negative 211 (34)
Anti-HB-positive and anti-HBc-positive 223 (36)

Anti-HB-negative and anti-HBc-negative 170 (27)

We found by nested PCR that HBV DNA was present in two samples (0.3%; in
OP038923 and OP038924). The OBI positive blood donors were 31 and 30 years old
(Figure 2). As expected, both OBI carriers were seropositive and had anti-HBc antibodies;
in addition, the OP038924 individual was positive for anti-HBs. It is evident that OBI is
more likely to be found in people with anti-HBc positive but anti-HB-negative serology
profiles [25,26], however, we found only 1 OBI positive case out of 19 samples in this group
(Figure 1).

http://www.r-project.org
http://www.r-project.org
https://bioedit.software.informer.com/7.2/
https://hbvdb.lyon.inserm.fr/HBVdb/
https://www.megasoftware.net/download_form
https://www.megasoftware.net/download_form
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3.3. OBI Genotyping

After nested PCR, amplicons were purified and sequenced. BLAST searches against
the NCBI database revealed that the two OBI cases belonged to HBV genotype B, which
is predominant in Vietnam [21–23]. A phylogenetic tree was then constructed using the
sequences of the two OBI positive samples and 52 representative S/preS HBV sequences of A-
H genotypes from the HBV database (HBVdb), which showed the two OBI positive samples
clustering with genotype group B, consistent with the BLAST search results (Figure 3).
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Multiple nucleotide mutations were identified, using sequence AF100309 from HBVdb
as the reference. Nucleotide substitutions C510T, A521G, and A531G were observed in
both Vietnamese OBI carriers, while G651A was only observed in OP038923. Due to the
overlapping nature of the viral Open Reading Frames (ORFs), these single nucleotide
polymorphisms lead to five amino acid changes in both the S (Reading Frame 1) and the
P (Reading Frame 2) genes. For the S gene, mutation K122R in the MHR was observed
for both samples, while W165X, resulting in a stop codon, was only present in OP038923
(Figure 4). For the P gene, three amino acid changes were observed, R473W and N480D in
both samples and G520S only in OP038923 (Figure 5).
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4. Discussion

To eliminate the spread of HBV through vertical or horizontal transmission, the
diagnosis of OBI among blood donors is of importance. In general, OBI prevalence varies
considerably by regions, genotypes, molecular methods used, detection limits of HBsAg
tests, and risk groups [8,11,27]. In Laos, a prevalence of 10.9% was reported among HBsAg-
negative blood donors [28], while a study from China found a low OBI prevalence of 0.013%
only [29]. In eastern India, OBI cases were found in 2.96% of blood donors [30], and in
Nigeria, a 17% OBI prevalence was reported in a population of 429 blood donors [8]. In the
present study, in a study population of 623 HBsAg-negative blood donors from Hanoi, we
found an OBI prevalence of 0.3%, which is low compared to the number of cases reported in
a literature review for Asia (0.013–5.5%) [27,31]. This is noteworthy considering the fact that
Vietnam is highly endemic for HBV [19,22], which is confirmed by the high seroprevalence
of HBV markers found in this study. In fact, 73% of our samples tested positive for at
least one HBV antibody (anti-HBs and anti-HBc), with 39% being positive for anti-HBc. In
addition, a recent meta-analysis indicated that OBI prevalence in blood donors in highly
endemic regions ranged between 0.44 and 1.72% [12]. However, it is important to point
out that these data are largely derived from studies on Chinese populations, which may
not be predictive of the OBI prevalence in Vietnam. Low levels of OBI could also be due
to the sensitivity of the HBsAg test used, or good health care that reduces the risk of OBI
transmission [32,33]. Furthermore, regionality and socioeconomic status have been shown
to influence the discrepancy in HBV infections and OBI rates between populations [34].



Pathogens 2022, 11, 1524 7 of 10

The cohort in the present study was from the capital of Vietnam, which has more access
to vaccination, improved health care access, and higher socioeconomic status. Therefore,
the OBI rate in Vietnam is likely higher in the general population and even higher in rural
regions. It is also important to note that the analytical sensitivity of the molecular tests for
HBV DNA may have had an impact on the results of this study and may be another source
of discrepancy in the prevalence of OBI in different studies.

In Asia, HBV genotypes B and C are common [21] and approximately 75% of all HBV
infections in Vietnam are caused by genotype B [21,35], which is the genotype identified
in both our OBI-positive individuals. Of note, HBV group B has been particularly asso-
ciated with immune escape variants and early viral load reduction due to early HBeAg
clearance [36]. It is also noteworthy that many HBV immune escape and OBI-associated
virus variants harbor mutations in the S gene, especially in the MHR [37–39]. Mutations in
this region can alter the epitope binding site and reduce the efficacy of neutralizing antibod-
ies [40], resulting in anti-HB-negative and anti-HBc-positive serology [41]. In addition, it
has been shown that anti-HBc-positive and HBsAg-negative carriers may still have replica-
tive HBV DNA due to highly stable covalently closed circular DNA or genome-integrated
viral DNA [41,42]. The mutations in sample OP038923 (positive for anti-HBc alone) reflect
the above observations. On the other hand, although none of the two OBI-positive samples
had an amino acid substitution in the “a” determinant, OP038923 harbored a mutation
in the MHR (W165X) that could lead to the early termination of HBsAg. As a result, the
shorter S protein might have led to a structural change that reduced the immunogenicity of
the epitope and possibly explains the subsequent loss of anti-HBsAg in ELISA assays or in
the host. Alternatively, a dysfunction could have occurred, causing the S-proteins to not
fully anchor in the envelope, reducing the viral load. On the other hand, the presence of
HBV-DNA with anti-HBs and anti-HBc-double-positive profile could be explained by a
resolved infection without complete elimination of the virus in the hepatocytes [43,44].

The substitution K122R in the S protein, which was present in both carriers, has previ-
ously been associated with OBI. An in vitro study investigated the effect of three different
mutations, including K122R, on HBsAg secretion [45]. K122R alone had no effect on HBsAg
secretion, but in combination with the other mutations, secretion was reduced. Furthermore,
K122R changed the serotype from "d" to "y", possibly resulting in an anti-HBs escape vari-
ant [45,46]. Other studies mentioned that the amino acid substitution K122R is quite common
in genotype B in Chinese and Vietnamese populations [47,48]. For the polymerase protein,
both carriers harbored the amino acid substitution N480D in the non-epitope site of the
protein. Wang et. al. reported this mutation in two patients with chronic HBV genotype B
infection [49], which potentially affect the polymerase activity [41,50]. Of note, R473W, G520S
and W165X have never been reported in polymerase or S protein, respectively. Contrary
to the general assumption that OBI is related to mutations in the S gene, particularly in the
MHR [37], 40% of the mutations found in the present study are in the MHR and 60% in the
polymerase gene. However, it is also important to note that this study is limited to a 239 bp
sequence of the genome, and sequencing of the whole viral genome could reveal mutations
in other regions that may have an impact. Another limitation of the present study is that the
viral loads of OBI-positive individuals cannot be quantified.

5. Conclusions

In conclusion, this study focused on molecular and serological screening of sera from
Vietnamese blood donors in order to identify OBIs. Despite the high anti-HBc positivity
rate, we found a low prevalence of OBI (0.3%) in 623 blood donors. Both OBI-HBV DNA
showed typical mutations in the surface antigen gene. These results demonstrate the
importance of molecular testing in preventing the spread and reactivation of HBV in
immunocompromised patients and high-risk groups; and supports the introduction of
molecular tests in accordance with WHO’s goal of eradicating HBV by 2030. Further studies
in different provinces of Vietnam will help to determine the relative risk of transfusion-
transmitted HBV infection in the Vietnamese population in the coming years.
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