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Xylella fastidiosa is a vector-borne plant vascular bacterial pathogen that causes sev-
eral economically important diseases, including Pierce’s disease (PD) in grapevine and
olive quick decline syndrome (OQDS) in olive trees, among others [1]. The severity and
timing of symptoms produced by X. fastidiosa differ among olive cultivars in Italy, with
‘Cellina di Nardò’ being one of the most severely affected cultivars, while other cultivars
such as ‘Leccino’ exhibit milder symptoms and have been regarded as resistant [2]. De-
pending on the host plant, X. fastidiosa can establish non-symptomatic associations as a
commensal endophyte [1,3]. In fact, in the majority of plant hosts, X. fastidiosa does not
cause severe disease [4], and recent discoveries indicate that, even in its parasitic form, the
bacterium displays the hallmarks of a commensal lifestyle [3]. What drives the transitions
of X. fastidiosa along the ‘parasite–mutualist continuum’ [5]? Resistance in the ‘Leccino’ olive
trees has been associated with the amount of lignin [6] or secondary metabolites, such as
hydroxytyrosol glucoside [7], produced by this cultivar. In grapevine plants, immunity to
the X. fastidiosa O-antigen was found to dictate the type of association of the bacteria with
the host plant as a commensal or a parasite [3,8]. In addition, genetic factors such as gene
gain/loss, recombination, genetic diversity, and linkage disequilibrium could also influence
the host specificity and pathogenicity of X. fastidiosa [9,10]. However, drivers of X. fastidiosa
virulence and/or plant-resistant traits are not completely understood. Are balanced plant–
pathogen interactions enough to explain the changes in X. fastidiosa pathogenicity across
plant hosts? Can other factors such as plant microbiota counterbalance plant resistance
and/or X. fastidiosa commensal lifestyles?

A recent research paper by Vergine et al. [11] attempts to answer these questions.
In their study, major differences in the bacterial and fungal microbiota of X. fastidiosa-
infected and -uninfected olive trees of the ‘Leccino’ and ‘Cellina di Nardò’ cultivars were
found [11]. Variations in microbiota composition can drive pathogen colonization resis-
tance in animals [12] and plants [13]. Microbiota evolved complex mechanisms to reduce
pathogen growth, including nutrient competition, competitive metabolic interactions, niche
exclusion, and the induction of host immune response [11,13]. For example, in the flow-
ering plant Catharanthus roseus, the endophyte Curtobacterium flaccumfaciens inhibited the
growth of X. fastidiosa in vitro and reduced the symptoms caused by this bacterium to
the plant host [14]. It can be challenging to identify beneficial plant-associated microbes
with antagonistic activity against X. fastidiosa [15], but it is crucial to develop novel control
methods against diseases caused by these bacteria [16]. In their work, Vergine et al. [11]
identified some taxa found predominantly in the ‘Leccino’ cultivar which were proposed
to be potentially involved in the resistance of cultivar to X. fastidiosa. Among them was an
unidentified member of the Burkholderiaceae family. Within this bacterial family, there
are some other species (e.g., Paraburkholderia phytofirmans strain PsJN) with strong activity
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against X. fastidiosa [17]. Furthermore, network analysis, a powerful tool to infer microbe–
microbe interactions [18], revealed that several bacterial taxa specifically associated with
‘Leccino’ showed potential interactions with X. fastidiosa [11]. Further studies could benefit
from the evidence laid by Vergine et al. [11] and further develop potential mechanisms of
colonization resistance associated with the microbiota of the ‘Leccino’ cultivar.

Plant resistance to pathogens is usually considered from the perspective of the host
plant and is highly regarded when designing strategies for pathogen control. However,
mechanisms that reduce pathogen virulence can be equally relevant for the control of
pathogens affecting plants. In addition to mechanisms associated with direct competition
of olive microbiota against X. fastidiosa itself, the microbiota associated with ‘Leccino’
and ‘Cellina di Nardò’ cultivars may also drive changes in X. fastidiosa virulence, as
invading pathogens evolve in response to host microbiota [19]. Theory shows that pathogen
virulence can be influenced by within-host microbial competition [20], as microbe-microbe
interactions can decrease [21] or increase [22] pathogen virulence. For example, greenhouse
experiments showed that different fungal endophyte strains reduced plant infestation by
the aphid Rhopalosiphum padi, but the endophytes had no impact on levels of barley yellow
dwarf virus (BYDV), an obligate aphid-transmitted virus [23]. Interestingly, BYDV virulence
was reduced in endophyte-colonized plants, suggesting that host response modulation
by endophytes could reduce pathogen virulence [23]. Similarly, the inoculation of the
endophytic bacterium P. phytofirmans strain PsJN triggered the expression of the grapevine
PR-1 gene and reduced plant colonization by X. fastidiosa, and also decreased the PD
symptoms caused by the pathogen in grapevine [16]. PR-1 activation is indicative of the
induction of salicylic acid (SA)-mediated host defenses [8,16]. Interestingly, X. fastidiosa
infection does not trigger SA-mediated defense pathways during early phases of infection,
which is associated with higher virulence in plants [8]. Thus, by inducing the expression
of innate immune resistance pathways in host plants, endophytic bacteria could prime
the plant immunity to an early response against X. fastidiosa, in turn reducing virulence
traits [16].

Host–microbiota balance is critical for host health, and infection-induced changes
can result in dysbiosis with deleterious effects for animal hosts [19,24]. Vergine et al. [11]
observed dysbiosis in the X. fastidiosa-infected ‘Cellina di Nardò’ cultivar, while ‘Leccino’
maintained a similar highly diverse microbiota in both X. fastidiosa-infected and -uninfected
plants. In other resistant olive cultivar, FS17, a higher alpha diversity, was linked to a
lower Xylella abundance, compared to susceptible cultivars [25]. X. fastidiosa-induced
dysbiosis was characterized by reduced microbial diversity in susceptible olive trees [11].
Similarly, X. fastidiosa infection was correlated with a reduction in bacterial alpha diversity
measures in almond trees [26]. Differences in the endophytic grapevine microbial commu-
nity were found when severely symptomatic, mildly symptomatic, or asymptomatic PD
phenotypes were considered [27]. In citrus, there were significant differences in endophyte
incidence between leaves and branches and among healthy citrus-variegated chlorosis
(CVC)-asymptomatic and CVC-symptomatic plants [28]. Within-plant–microbial interac-
tions are so strong that the type and strength of pairwise connections can reliably predict
the outcome of pathogen invasions [13]. Knowledge of the intricacies of microbe–microbe
interactions within the microbiota may help to determine the key microbial players in
X. fastidiosa–plant interactions, which may inform interventions such as synthetic microbial
communities with broad plant-protective activities [29] for the control of X. fastidiosa.
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