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Abstract: Population growth and industrialization have led to a race for greater food and supply
productivity. As a result, the occupation and population of forest areas, contact with wildlife and
their respective parasites and vectors, the trafficking and consumption of wildlife, the pollution of
water sources, and the accumulation of waste occur more frequently. Concurrently, the agricultural
and livestock production for human consumption has accelerated, often in a disorderly way, leading
to the deforestation of areas that are essential for the planet’s climatic and ecological balance. The
effects of human actions on other ecosystems such as the marine ecosystem cause equally serious
damage, such as the pollution of this habitat, and the reduction of the supply of fish and other
animals, causing the coastal population to move to the continent. The sum of these factors leads
to an increase in the demands such as housing, basic sanitation, and medical assistance, making
these populations underserved and vulnerable to the effects of global warming and to the emergence
of emerging and re-emerging diseases. In this article, we discuss the anthropic actions such as
climate changes, urbanization, deforestation, the trafficking and eating of wild animals, as well as
unsustainable agricultural intensification which are drivers for emerging and re-emerging of zoonotic
pathogens such as viral (Ebola virus, hantaviruses, Hendravirus, Nipah virus, rabies, and severe
acute respiratory syndrome coronavirus disease-2), bacterial (leptospirosis, Lyme borreliosis, and
tuberculosis), parasitic (leishmaniasis) and fungal pathogens, which pose a substantial threat to the
global community. Finally, we shed light on the urgent demand for the implementation of the One
Health concept as a collaborative global approach to raise awareness and educate people about the
science behind and the battle against zoonotic pathogens to mitigate the threat for both humans
and animals.

Keywords: zoonoses; climatic changes; anthropic actions; emerging diseases; Hendra virus; rabies;
hantavirus; leptospirosis; COVID-19; tuberculosis
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1. Introduction

According to the World Organization for Animal Health (WAOH), 75% of the emerg-
ing diseases find their origin in domestic or wild animals, thus they are zoonotic, which
prompts for a close collaboration between the animal and public health authorities [1]. The
term emerging zoonosis is defined by the World Health Organization (WHO), the Food and
Agriculture Organization of the United Nations (FAO), and WAOH as a newly recognized
or evolved pathogen, which is a recent one or it has occurred previously, but which shows
an increase in its incidence or expansion in the geographic area regarding the number of
hosts or vectors [2]. The emergence of zoonotic diseases typically occur as consequences
of several drivers such as: (i) Anthropogenic action such as urbanization, agricultural
expansion, and deforestation, globalization, socio-economic development, agrochemical
usage and the application of antimicrobial treatments as well as other behaviors (such as
bush meat consumption, animal production and marketing, animal–human interfacing,
and globalization); (ii) Environmental factors (such as temperature, drought, and wind);
(iii) Biological drivers (such as genetic drift and reassortment) [3,4]. These factors have
been proposed as direct or indirect contributors in the emergence and re-emergence of
pathogens such as Ebola virus, Hendra virus, Middle East Respiratory Syndrome Coron-
avirus (MERS-CoV), Nipah virus (NiV), and the recently emerged severe acute respiratory
syndrome coronavirus disease-2 (SARS-CoV-2) [5–10]. In this review, we will discuss
the most relevant anthropogenic activities that are associated with the emergence and
re-emergence of some zoonotic diseases.

2. Anthropogenic Actions

A summary of the potential impacts of anthropogenic actions such as climate changes,
urbanization, deforestation, the trafficking and eating of wild animals, as well as the
unsustainable agricultural intensification as the drivers for the emergence and re-emergence
of pathogens are illustrated in Figure 1.
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2.1. Climate Change

According to the Intergovernmental Panel on Climate Change (IPCC), climate change
is a statistically significant variation in the average climate parameters (including its natural
variability) [11,12]. It is defined by the United Nations Framework Convention on climate
change as “a change of climate which is attributed directly or indirectly to human activity
that alters the composition of the global atmosphere and which is in addition to natural
climate variability observed over comparable time periods” [13]. Although the process of
global warming can be occur by natural processes, the action of man, without a doubt, has
been accelerating this process over recent decades. The loss of biodiversity, whether it is in
terrestrial, aquatic and marine ecosystems, as well as the deterioration of the ecosystem’s
services, result from anthropogenic interference, such as urban expansion, deforestation,
and agriculture [14].

Indeed, the climate crisis has arrived, and it is accelerating faster than most scientists
expected it to [15]. During the last 50 years, humanity’s ecological footprint has increased
by nearly 190%, indicating that there is a growing unbalance in the human–environment
relationship, which has been coupled with major environmental and social changes [16].
Climate change could drastically affect the human population. Migratory waves to more
favorable environments and the interiorization of coastal populations to the continent may
occur in the future. The global mean sea level, for example, has risen between 16 and 21 cm
since 1900, and it has continued to rise at a rate of more than 3 mm per year over the past
two decades [14]. A key activity that has accelerated climate change, and consequently,
interfered with the dynamics of diseases is deforestation. The destruction of these natural
habitats causes an increase in the amount of contact between wild animals and human
beings, either by the human activity itself or by the adaptation of some species to the
anthropic environment [17]. Another important foundation is the change in global temper-
atures. Several infectious agents and their vectors lack thermostatic mechanisms [18,19].
Therefore, the factors that affect the temperature can modify the geographic distribution of
pathogens and their vectors [20]. Additionally, the presence of hemolytic bacteria in arctic
environments demonstrates the risk that melting can introduce by bringing these bacteria
in contact with human or wildlife animals, and this melting results from the increase in
global temperatures, which is associated with the destruction or fusion of this habitat,
ecosystem transition, and recolonization [21].

2.2. Deforestation

One of the most likely factors that explains the recent occurrence of new diseases is
the expansion of the human population [22]. It is estimated that the world population
will reach 10 billion by 2050. As big cities become overburdened, people tend to look for
new spaces to live, moving into areas that were previously occupied by forests or other
natural habitats. The population increase has also forced a greater production of food,
which makes the natural areas a target for the occupation of the agricultural sector, use
them for the production of food. According to [23], three interrelated world trends may be
exacerbating the emerging zoonotic risks: income growth, urbanization, and globalization.
The deforestation of these areas can lead to a decrease in biodiversity, generating several
imbalances in the ecosystem. Consequently, deforestation can increase the occurrence of
new cases of zoonotic diseases [24].

In this sense, the deforestation and burning of the Amazon Forest have fundamental
roles in the degradation of the health of our planet [25]. In the first eight months of 2021, the
deforestation rate in the Amazon was 8.2% higher than that which was recorded in the same
period in the previous year, according to the National Institute for Space Research (INPE).
Preliminary data from the TerraBrasilis platform show that from the beginning of 2022
to August, 11 million km2 of forest were destroyed [26]. This situation is very worrying
because, for example, 1 Km2 of deforested Amazon Forest could be equivalent to 27 new
cases of malaria [27]. Due to the change in the rainfall regime, significant effects such as
the outbreaks of infectious diseases which are transmitted by insect vectors and through
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contaminated water are expected to occur [28]. An example of this is the Amazon rainforest,
which accounts for 11,000 km2 of deforestation per year, thereby strongly impacting global
warming, and affecting the regional climate of South America, with it causing changes in
the transport of water vapor [29].

The destruction of forests is often conducted to open up new areas for agriculture,
livestock, or mining. Human activity in forested areas puts humans in close contact with
wildlife [30,31]. The association between the human activities in the Amazon rainforest,
climate change, the changes in the vector dynamics, human migration, the genetic changes
in pathogens and the precarious social and environmental conditions in many Latin Amer-
ican countries can give rise to the “perfect storm” for the emergence and resurgence of
human infectious diseases in Brazil and in other Amazonian countries [32]. The number
of diseases such as rabies, which are known to occur as a result of the deforestation and
invasion of wild areas, tends to increase. In the Amazon Basin in 2004, 46 people died from
this disease [33].

Brazil has a notable position in the agricultural sector as being one of the two largest
grain producers in the world, with an estimated growth in grain production having oc-
curred when it was compared to the 2020/21 season, with there being emphasis on soybeans
and the total amount of corn [34]. The recent data indicate that three out of every four
hectares of public lands that were deforested gave way to pasture for cattle ranching in the
Amazon [35]. Another important biome has also suffered the impacts of anthropic actions.
In the Brazilian Cerrado, which is home to 5% of the planet’s animals and plants, a third of
its area (32.8%) was devastated for cattle and soy production between 2004 and 2017 [36].

Although deforestation is often intended to increase the food production, its conse-
quences go against the grain of climate balance, a factor that is extremely sensitive and
important for maintaining the productivity of vegetables and animal protein. In a study
that was carried out by [37], in which they evaluated whether the expansion and intensifi-
cation of the agriculture on the Amazon–Cerrado agricultural border were approaching a
climatic limit for rainfed production systems, it was pointed out that future climate change
could reduce the land area within the ideal climate space by more than 51% by 2030. It is
essential that global public policies are implemented to protect the world’s main forests,
and in addition to representing an important link with the planet’s climate scenario, they
are essential for maintaining the balance between the pathogens and the natural hosts, and
consequently, they are a key link for the emergence and re-emergence of diseases.

2.3. Trafficking and Consumption of Wild Animals

Food security is essential in preventing the emergence and re-emergence of diseases,
and consequently, in ensuring human health. The current pandemic, the coronavirus
disease 2019 (COVID-19) one, has had multiple impacts on food production, animals, and
human health [38–40]. Poverty, which has been exacerbated by the pandemic, is a factor
that must be considered, in the sense that hunger can lead to the consumption of wild
animals [41]. Although there are few updated data on the consumption of animals of wild
origin, it is known that they are part of the diet of several populations around the world.
According to an FAO report entitled “The State of the World’s Biodiversity for Food and
Agriculture”, in some communities in Asia, Africa and Latin America between 2004 and
2010, more than 53.5% of households were supplied with wild animals and plants [42].

In a study that was carried out in Brazil with the objective of verifying the demand
and the potential of the commercialization of wild meats in the Municipality of Rio Branco,
Acre/Brazil, 550 people were interviewed. Of those who were interviewed, 78% of them
stated that they consume or have consumed wild animal meat [43]. In other studies, it is
possible to verify the high diversity of the animals that are used in human food [44,45].
Within this aspect, it is important to highlight the conditions to which the communities are
exposed. For example, in isolated regions, such as villages, hunting is the main source of
food [46]. In the Amazon, the meat of game animals represents an essential part of their
basic diet in several communities in the region [47].
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China is one of the biggest consumers of wild animals for food and traditional Chinese
medicine in the world [48]. Although the origin of SARS-CoV-2 is still under debate, the
initial cases were associated with the Huanan South China Seafood Market [49]. According
to Naguib et al. [50], live and wet markets serve as hubs where humans and different animal
species are in close proximity to each other, but they are also crucial for the food supply
in many countries. Live and wet markets have been linked to the emergence of different
epidemic/pandemic diseases, including COVID-19 and different subtypes of influenza A
viruses, and they are also an important source of foodborne pathogens. In addition to being
potential sources of the transmission of several known microorganisms and parasites to
humans, such as tuberculosis [51], leptospirosis [52], rabies [53], and brucellosis [54], these
animals may contain several pathogens that have not yet been identified.

An additional concern in the consumption of these animals is antimicrobial resistance
(AMR), such as Extended-spectrum β-lactamase and AmpC (ESBL/AmpC)-producing
Escherichia coli, which was detected in wild boar, which is a topic of fundamental impor-
tance in One Health [55]. It is essential that food inspection and surveillance tools are
strengthened to ensure food and health safety for humans and animals. However, it is also
essential that this control comes from the citizens through public policies of the awareness
of food, environmental and social education. Within this aspect, the trafficking of wild
animals is a topic that must be discussed and approached more often. This trade, which is
estimated to be worth between USD 7–23 billion a year, is the world’s fourth most lucrative
trafficking industry after drugs, humans, and weapons [56].

In addition to the loss of species and the risk of extinction, the traffic of animals
interferes with and attacks the ecosystems in which these animals live, unbalancing these
habitats. Thus, the possibility of microorganisms adapting from these animals to humans
arises. In addition, there is an illegal trade network of wild animals which are used for
food supplies in many markets [48]. With this, the importance that public bodies play in
ensuring this control is observable. China, for example, in the face of COVID-19, decided
to ban the trade and consumption of wild terrestrial animals. The ban has implications that
extend beyond safeguarding human health to also help to combat illegal trade and protect
endangered species [57]. Wildlife trade controls are very limited because of the bias for the
utilization of wildlife as a natural resource that is to be exploited by government agencies.
The key to public awareness publicity and education is to provide more information on the
negative impacts of wildlife consumption and knowledge about their protection [58].

3. Human–Host–Environment Interaction

The interaction between the host, the host microbiome, the pathogen, and the environ-
ment is called a four-way interaction, and it is complex, and it explains the emergence of
pathogens and predicts the epidemic risks due to anthropogenic actions (Figure 2) [59].

Anthropogenic actions, for example, drive the increasing rate of wildlife-human
contact and the human-driven introductions of pathogens by providing conditions that
promote our interaction with wild animal populations due to fundamental changes in
the environment [60–66]. These impacts are not restricted to the emergence of zoonotic
viruses, however, anthropogenic pollutants have been linked to several chronic diseases
such as Parkinson’s disease and diabetes [67–70]. Additionally, it was proposed that bac-
teria may possess cross-tolerance or cross-resistance properties for herbicides glyphosate
(N-phosphonomethylglycine), leading to the emergence of ESBL-producing Enterobacteri-
aceae [71]. The overuse or misuse of antibiotics can lead to the emergence of antimicrobial
resistance (AMR) [72–74], however, the emergence of carbapenem resistance is increasingly
being reported, and therefore, it presents a significant public health threat in Africa, al-
though carbapenems are generally unavailable in African hospitals [75]. Therefore, this
set of environmental changes favors the interaction of pathogen agents with their vector,
and with wild and domestic hosts, in addition to humans [76]. Consequently, there can be
serious implications for environmental dynamics, such as the disappearance of species that
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serve as natural hosts for potential pathogens. As a result, these agents could spill over to
other hosts, including humans.
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4. Selected Emerging and Re-Emerging Viral Pathogens
4.1. Ebola Virus

Ebola virus, belongs to family Filoviridae, and it is an enveloped, single-stranded,
negative-sense RNA virus of approximately 19 kb [77]. The Filoviridae family is divided
into three genera: Ebolavirus, Marburgvirus, and Cuevavirus. The genus Ebolavirus contains
five distinct species, namely, Zaire ebolavirus, Sudan ebolavirus, Taï forest ebolavirus,
Bundibugyo ebolavirus, and Reston ebolavirus, which is represented by EBOV, Sudan virus
(SUDV), Taï forest virus, Bundibugyo virus (BDBV), and Reston virus, respectively [78].
In the most recent decade, EBOV, SUDV, and BDBV have produced Ebola virus disease
(EVD) epidemics in Central and West Africa with increased frequency, and the case fatality
rates range from 30% to 90% [79]. Bombali virus (BOMV), which is a novel ebolavirus
belonging to the proposed new species Bombali ebolavirus, was recently detected in bats in
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Sierra Leone and Kenya [80,81]. Mengla virus (MLAV) was also discovered in fruit bats in
China. Olivero et al. [82] investigated the effect of anthropogenic actions on the emergence
of EVD. It was proposed that there is a significant link between forest degradation and
its fragmentation and human EVD outbreaks. Deforestation has the potential to alter the
composition, abundance, behavior, and perhaps exposure of reservoir species. As a result,
the interaction between the infected animals and humans is increased [82].

4.2. Hantaviruses

Hantaviruses, belonging to Bunyaviridae family, are an RNA single-stranded negative-
polarity virus that can cause two types of infection in humans: hemorrhagic fever with
renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). Twenty-
eight hantaviruses have been identified so far. The reservoirs of the virus include rodents,
insectivore hosts and bats, which can infect human mostly by the inhalation of contaminated
aerosolized rodent excreta [83].

The infection is correlated to human–rodent interactions, and so in developed coun-
tries, some professional people are more exposed to the risk of contracting the disease
(forest workers, pet rats owner, laboratory personnel trapping workers, hunters) [84–87],
meanwhile, in rural or developing countries, the risk is also widespread among the general
population [88,89]. Several serological studies have been conducted in many countries of
the world, revealing the variable prevalence of it from 6% to 36% [90–95]. The concern
for these viruses is high, so much so [96] that it is hypothesized whether they could be
responsible for the next pandemic. The influence of the landscape and other environmental
factors were analyzed in [97], in which climatic variables, land use variables, vegetation
indices, soil variable and human distribution were identified as factors affecting the risk of
hantaviruses. The same factors are all influenced by anthropic actions.

4.3. Hendravirus

Hendra is closely related to the Henipavirus genus, with it having around 78% nucleo-
capsid (N) gene sequence homology with NiV [98]. Hendra viruses were first described
in Australia in 1995. They cause severe infections in horses, and under experimental
conditions, it infects cats and guinea pigs [99]. In humans, it causes severe encephalitis
(inflammation of the brain), which is accompanied by respiratory symptoms. Similar to
NiV, the reservoir for Hendravirus is the fruit bat of the genus Pteropus, which are found
in a wide swath from south and southeast Asia to northern and eastern Australia, as well
as in Madagascar and some islands of the western Pacific. The expansion of the human
populations into the wildlife habitats appears to be the primary driver of the introduction
of Hendra virus [64].

4.4. Nipah Virus

The NiV belongs to the family Paramyxoviridae, and it is an enveloped pleomorphic
virus of the genus Henipavirus [100]. The genome of the virus is represented by a non-
segmented negative-sense single-stranded RNA, which encodes six structural proteins,
namely, N, phosphoprotein (P), matrix protein (M), fusion protein (F), glycoprotein, and
RNA polymerase [101]. While the G protein mediates binding with the host cellular Ephrin-
B2 and -B3 receptors, the F protein induces the viral–cell membrane fusion that facilitates
the virus’ entry [102,103]. The natural reservoir for the NiV is the fruit bat of the genus
Pteropus (flying foxes), which are endemic in tropical and subtropical regions of Asia, East
Africa, Australian continents, and some oceanic islands [104,105]. The route of transmission
occurs via contact with the excretions or secretions of infected animals, the ingestion of fruit
that is contaminated with NiV, or close contact with infected human bodily fluids [106,107]
(Figure 3).
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Figure 3. Transmission of Nipah virus (NiV), adapted after [108]. Fruit bats are the natural reservoir
for NiV Transmission occurs via contact with infected animals, ingestion of contaminated fruits,
consumption of contaminated pork, or human-to human transmission.

The emergence and transmission of NiV could be attributed to several anthropogenic
factors: (i) Density population: The NiV outbreaks were reported in regions with the
densest populations in the world such as Kerala (Bangladesh) and in the south Indian
states [109,110]. The high population density mediates a high rate of interaction between
the individuals and the environments. Additionally, the co-existence of farm animals
in regions of dense human inhabitation generates a high risk of virus spillover [108].
(ii) Deforestation: Due to the loss of bat habitats, climate changes and deforestation has
enforced bats to resort to fruiting trees which has led to the spillover of the virus to the
pigs or directly to humans via the consumption of bat-bitten fruits [106]. An NiV outbreak
was reported in Malaysia (1998–1999) and in Kerala (2016) following the drought and
deforestation due to El Nino [111,112]. (iii) Reservoir Distribution (demography): bats
have been driven to remain close to human communities in metropolitan areas across the
world due to habitat loss [113,114]. Further, bats are the reservoir of NiV, which uses pigs
as an intermediate host. The NiV virus may also be transmitted directly from bats by the
ingestion of contaminated date palms. The hunting of bats for human consumption should
be also considered [115,116]. (iv) Socio-economic scenarios: In Malaysia, the NiV outbreak
originated in pigs, the main source of income for farmers [117]. In Bangladesh, date palm
sap was the main source for the NiV infection [118]. Transportation, tourism, and high
proportions of health care units in the West Bengal and Kerala states account for the high
rate of nosocomial NiV incidences [108].

4.5. Rabies

Rabies is an ancient, underreported, and progressive neurological zoonotic disease
with nearly a 100% mortality rate [119]. It is caused by a single-stranded RNA virus that
belongs to the Lyssavirus genus of the Rhabdoviridae family [120]. Although rabies can be
prevented by vaccines, about 59,000 people die from rabies each year, globally [119]. Rabies
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is endemic in many countries, except for Australia and Antarctica and rabies, and it is
more common in developing African and Asian countries due to various factors including
rapid urbanization, a high volume of waste, and a lack of vaccination facilities and proper
hygiene [121,122]. Rabies circulates through the urban cycle, including interactions between
domesticated and stray dogs, and through the sylvatic cycle with interactions occurring
among wild animals such as foxes, wolves, jackals, mongoose, raccoons, skunks, and bats.
These two cycles are interrelated and sometimes overlapped [119]. In developing countries
and developed countries, dogs and wildlife, respectively, are the main causes of rabies
transmission [123]. Rabies is believed to affect all mammals, however, only some of them
are reservoirs of the virus [124]. Domestic animals (cats, cattle, and dogs) account for less
than 10% of the reported rabies cases [125,126]. Rabies is often transmitted by the saliva
and bite of an infected host. Moreover, this infection can also occur through scratches,
aerosols, organ transplants, and body fluids such as tears [119,127]. Anxiety, bewilderment,
hallucination, and hydrophobia are some of the symptoms of this disease [128]. A variety
of social and environmental factors have been shown to play a role in emerging and re-
emerging zoonoses such as rabies. Urbanization, deforestation, and waste accumulation
are the most significant among them [129,130].

4.5.1. Rabies and Urbanization

Today, 54% of the world’s population reside in cities. Urbanization can facilitate
the spread of rabies in cities and complicate its control because of its social and spatial
aspects [131]. Urbanization causes population displacement and migration by providing
employment, higher salaries, and better health care services [130]. Rural migrants, due to
their connection to rural wildlife and the animals that may bring to the city, increase the
risk of rabies transmission [132]. Bat bites in humans were originally documented in rural
regions, but they now also occur in urban areas [133]. International travelers are exposed to
intentional or unintentional contact with animals that coexist with humans, and as a result,
travelers are predicted to be exposed to the rabies virus at a rate of 0.4 per 1000 for every
month that they spend abroad [134,135].

Illegal imports, natural migration, and translocation (both purposeful and involuntary)
may facilitate the entry of rabies viruses into virus-free areas [136,137]. Over the last decade,
the interest in companion animal travel programs to improve the outcomes for dogs and
cats in animal shelters has grown significantly in North America and Europe [136]. Garbage
trucks and other vehicles can accidentally transport raccoons and other wildlife species
that scavenge among human waste [138].

Some urban structures, such as water canals and roads, increase the spread of ra-
bies [131,133,139]. Garbage that is dumped in water canals increases the density of the
dogs around them. They also create barriers for pedestrians and limit the access to rabies
vaccination centers [131]. Bats use mines, tunnels, wells, culverts, and abandoned houses
to reside in, which helps to enhance the bat population [133,140].

4.5.2. Rabies and Garbage Accumulation

The rising population of cities has a considerable influence on the amount of household
garbage that is produced. Urban populations create two to three times the amount of
municipal garbage (measured in kilograms per capita per day) as rural residents do.
Unfortunately, most of the local governments and municipalities are not able to manage and
remove this amount of waste, which leads to the accumulation of waste in residential areas
and open dumping grounds [141]. Only around 25% of the total amount of garbage that is
created in Europe is placed in landfills, with the rest of the waste being composted, recycled,
or burnt, whereas Asian rabies-endemic nations dump over 85% of their generated waste.
This number reaches almost 97% in African countries [121]. Open garbage dumps are a
public health obstacle in the community and lead to the proliferation of stray dogs [142,143].
Accumulated waste increases the number of possible vectors for rabies by providing food
and habitats for animals such as stray dogs and omnivorous raccoons [130,142,144]. Dogs
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that obtain their food from garbage that is left by bakeries and abattoirs do not recognize
that humans are the food suppliers, and they are more likely to attack them [142]. The
aggression of hungry dogs competing for food endangers the residents and increases the
risk of rabies transmission to people, dramatically [145]. Proper waste management is
necessary to minimize the population of potential rabies carriers.

4.5.3. Rabies and Pets

Growing urbanization is causing an increase in the number of conventional pets such
as cats and dogs in households, which may increase the danger of contracting rabies [146].
Millions of cats are kept as pets, with 34% of households keeping cats in the United
States, 26% of them keeping cats in the European Union, and 27% of them keeping cats
in Australia [147,148]. Additionally, in recent years, the population of domestic dogs
in European countries, the United States, and India have increased by 6–7.7%, 15.29%,
and 65%, respectively [121,149,150]. Bites by an infected pet dog (Canis familiaris) are
a major cause of human rabies [151]. Many pet owners live in multi-unit apartments,
which increases the amount of contact between the people and the pets in the surrounding
environment, such as in playgrounds and recreational areas. In addition, approximately
14–62% of them permitting their pets to have entry into their bedrooms [129,146]. In urban
areas, some domestic dogs and cats are poorly monitored or roam freely, so they are more
likely to come into contact with wildlife and other rabid animals [147]. Pet cats can hunt
wildlife such as bats, and humans are more likely to get rabies from the bites of these
cats [147,152,153]. Taking proper care of pets, compulsory vaccinations, the monitoring of
their habitat, and having training on wildlife and pet risk factors are some of the factors
that can help reduce the risk of rabies [130].

4.5.4. Rabies and Deforestation

Human population growth, urban development, increasing land productivity, mining,
dams, and deforestation are some of the factors that cause wildlife to overflow into human
environments [154]. In 1990, there were 4129 million hectares of forest on the planet,
whereas in 2015, this had decreased to 3999 million ha [155]. By converting many of these
forests into agricultural or urban development land, natural wildlife habitats have been
reduced, and the number of wildlife interactions with humans and domestic animals is
enhanced [122,130,154]. Bat colonies are located in urban areas that are close to human
homes, which increases the risk of sustaining injuries through bat bites [122,152]. Bats
have made it difficult to eradicate rabies due to their aerial lifestyle and the problems in
developing and prescribing vaccines for them [156]. In Taiwan, the outbreak of rabies
in ferret badgers has endangered the long-term stability of rabies vaccination among
dogs [157]. In modified anthropogenic areas, raccoons have a superb relationship with
the cities, and they made little use of forest cover because of the human resources and the
shelter that they offer from larger predators [158].

4.5.5. Rabies and Food Supply

Following the increase in the population and the need for food, the number of livestock
animals and dogs has increased [122,130]. Increasing the number and habitats of different
livestock animals in the same environment creates a dynamic microenvironment that aids
interspecies transmission [130]. Additionally, in Latin America, where livestock production
is a primary source of food, there has been an increase in the risk of hematophagous bat
attacks in recent years [159]. Dog slaughtering is also one of the means of transmission
in many countries because dog meat is a popular food in places such as China, South
Korea, and Ghana. Although dog meat does not cause the disease, the risk of transmission
increases during correlated activities. Moreover, most butchers do not know enough about
rabies, and the slaughterhouse environment is unsanitary [122].
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4.6. SARS-CoV-2

COVID-19, which is caused by SARS-CoV-2, is a new pandemic that emerged in
December 2019 in Wuhan, Hubei Province of China [160,161]. To date (6 October 2022),
about 625,079,727 confirmed cases and 6,555,942 deaths have been reported worldwide.
Although several recommended preventive measures such as vaccinations, lockdowns, test,
trace, and isolation measures, wearing masks, social distancing, and the frequent washing
of hands were implemented to control this pandemic, several ongoing challenges are still
being faced [162].

Several anthropogenic factors (human-related factors) have influenced the transmis-
sion and spread of SARS-CoV-2: (i) The COVID-19 pandemic was exacerbated by wild
animal wet markets [163]. It is widely argued that people became infected with SARS-CoV-2
through the interaction with wild animals at the Huanan seafood wholesale market [164].
(ii) Globalization (international travel and trade). The outbreaks occurred at an extraor-
dinary frequency and speed as a result of the globalized environment of interconnected
trade, travel, and migrations, and the infection does not function along geopolitical borders.
Travel limitations can only lead to delays in the epidemic peaks that last from a few days
to a few weeks. Therefore, the early detection of the outbreaks, and performing hygienic
measures, self-isolation, and household quarantine were more successful at limiting the
pandemic than travel limitations would have been [165]. Additionally, the molecular epi-
demiology of SARS-CoV-2 could explain the critical role of air travel in the global spread of
SARS-CoV-2 [166–168]. (iii) The demographic changes in the population size and density.
Urbanization affects the dynamics that lead to persistent outbreaks in more populous,
denser urban region [169].

5. Selected Bacterial Diseases
5.1. Leptospirosis

Leptospirosis is a common bacterial zoonotic disease. This disease is prolific, world-
wide, because it is caused by a wide range of host mammals [170–172]. In addition, the
studies show that birds, amphibians, reptiles, and fish also carry the causative agent of this
disease [173]. It is one of the most prominent causes of morbidity and mortality, especially
in tropical zones [171]. Leptospirosis is caused by Leptospira spp, which are helical and
highly motile spirochetes [174]. Leptospirosis is transmitted directly from one host to
another or indirectly through soil, contaminated water, and infected animal urine. This
microorganism enters the body through the skin, mucous membranes of the mouth, and
conjunctiva, and it then causes the disease [175].

Leptospirosis causes 60,000 deaths, worldwide, each year [171]. Over the past few
decades, it has been a severely neglected and underestimated threat. Many studies show
that leptospirosis is re-emerging, and it is becoming a public health problem, worldwide,
with significant increases in its incidence and there being multiple outbreaks [176]. Recently,
the disease has become widespread in Nicaragua, Brazil, India, Southeast Asia, the United
States, and in several other countries [177–184]. Despite this, there are a few reports of
leptospirosis in South and Southeast Asia, especially in the densely populated countries
such as India and Indonesia, because the monitoring of it is very poor [171]. Various factors
are effective in the occurrence of this disease. One of the most important of these factors
is the rise in urbanization. Global warming, severe climate change events such as floods,
increasing poverty and marginalization, urban sprawl, and the destruction of wildlife
habitats, and increasing contact with rodents and domestic animals such as dogs and cats
are all due to a rise in urbanization.

5.1.1. Leptospirosis and Urbanization

Urbanization has been occurring for more than 250 years, but only in the 21st century
has it become a global feature, especially in the poorer parts of Asia and Africa [185].
Excessive urban population growth causes the cities to expand more rapidly than the
number of jobs and houses can. Under these conditions, urban slum communities expand



Pathogens 2022, 11, 1376 12 of 26

with poor sanitation infrastructure, the presence of vermin, a lack of waste disposal facilities,
and poor water quality [186]. Rodents are the most important reservoir of Leptospira [187].
Rodents such as wild rats grow in urban and domestic environments, which leads to
frequent instances of human exposure to them [188]. Due to there being little knowledge
of rat ecology, controlling rats is largely impossible [189]. In a study that was conducted
in Baltimore, USA, Leptospira were isolated from 95% of the trapped mice [190]. The
prevalence of Leptospira in the populations of urban rodent species in Switzerland has also
been reported to be between 10 and 20% [191].

5.1.2. Leptospirosis and Extreme Weather Events

Extensive urbanization increases greenhouse gas emissions, global warming, and the
amount of heavy rainfall [192]. The expansion of the cities can cause floods by destroying
the main river routes [176,193]. Additionally, in recent years, there has been an increasing
amount of rainfall, and storms and floods occur more intensely, which may lead to an
increase in the prevalence of leptospirosis [194,195]. In Brazil, it was estimated that for
every millimeter of daily rainfall per month, the number of leptospirosis cases increased by
0.55% when it was compared to the average of that period [196]. Global warming can also
be a factor in increasing the likelihood of Leptospira surviving in the environment [197].

5.1.3. Leptospirosis and Socio-Economic Phenomena

Changes in the economic statuses following urbanization, such as impoverishment and
homelessness, increase the incidence of leptospirosis. It is also very worrying that rodents
and domestic animals are increasingly exposed to the living environment of homeless
people or people living in slums or uninhabited neighborhoods of cities wherein Leptospira
is transmitted to them [190,198,199]. Leptospirosis is considered to be an important disease
in the poor parts of Europe [200]. In industrialized and developing countries, the migration
from rural to urban areas has caused urban epidemics [201]. The prevalence of Leptospira
is at 16% among Baltimore residents in the US, and it is at 30 percent among the children in
Detroit neighborhoods [202,203].

5.1.4. Leptospirosis and Pets

Cats and dogs have a significant relationship with humans, and they are popular pets
around the world. In the US, 40.1% of households own a dog and 26.5% of them own a
cat, while in the EU, 26% of households own a cat and 24% of them own a dog [204,205].
Recently, some epidemiological studies have reported the risk of the transmission of Lep-
tospira to humans from pets. Dogs are known to be a potential reservoir of Leptospira.
However, they were commonly infected with Leptospira canicola and icterohaemorrhagiae.
These two serovars are commonly used in polyvalent vaccines in dogs. Vaccines have effec-
tively prevented the transmission of these two serovars to humans. Recently, some studies
have shown the development of leptospirosis from serovars such as Leptospira autumnalis or
pomona, which have previously been rarely found in dogs [206,207]. The antigens of these
new serovars are not yet present in the vaccines, so it is possible to cause and transmit the
disease from "vaccinated" dogs [176]. The transmission of leptospirosis from dogs has also
been shown to be one of the most important causes of human leptospirosis in the last two
decades in Russia [208].

5.1.5. Leptospirosis and Wildlife Animals

The intrusion of wildlife species living in the suburbs increases the potential risk of
the Leptospira transmission from animals to humans. Urban development, increasing the
population densities in the cities, and occupying non-residential areas allow them to have
easy access to food. Wild boars, foxes, deer, martinis, skunks, and raccoons can be seen
frequently not only in the suburbs, but also sometimes in old urban neighborhoods. In a
study in Berlin, Leptospira was isolated from 18% of the wild boars in the suburbs [209].
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5.2. Lyme-Borreliosis

Lyme-Borreliosis, which is also known as Lyme disease, was initially discovered
in Lyme, Connecticut (USA) in 1975. Later on, the disease has been reported in North
Ameri-ca, Europe, South Korea, and Asia [210]. Lyme disease, which is a tick-borne
disease, is caused by several bacterial species that cause clinical manifestations in the skin
(Erythe-ma migrans). However, B. garinii and B. bavariensis are associated with neurological
manifestations [211]. B. afzelii can develop acrodermatitis chronica atrophicans, while
B. burgdorferi sensu stricto is associated with Lyme-Arthritis [212–214].

5.2.1. Borrelia spp. and Geographical Distribution

B. burgdorferi sensu stricto is known to cause Lyme disease in North America and
Eu-rope [212,215]. In 2011, it was isolated from wild rodents in South Korea and from
human samples in Taiwan [216,217]. In 2016, a new pathogenic Borrelia burgdorferi sensu lato
genospecies (Borrelia mayonii) was reported in the upper midwestern USA [218]. In Europe,
at least five Borrelia spp. (B. afzelii, B. garinii, B. burgdorferi sensu stricto, B. spielmanii, and
B. bavariensis) have been identified, in which B. afzelii and B. garinii are the predominant
species. In Asia, all of the human pathogenic species except B. burgdorferi sensu stricto
and B. mayonii have been identified; B. garinii is the predominant species. Borrelia spp.
are known to infect numerous animal species including small mammals, lizards, and
birds [219,220].

The tick, Ixodes spp, is the vector of Lyme disease, and it transmits the Borrelia spp.
be-tween the different hosts. Tick is the only natural agent that is known to cause infections
in humans [212,221]. The worldwide geographic distribution of borreliosis correlates to the
concurrent presence of both the reservoir and ticks. In the northeastern and midwestern
United States, I. scapularis (black-legged tick) is the predominant vector, whereas, in the
western states [222], I. pacificus (western black-legged tick) is the main vector. In Asia and
Europe, I. persulcatus (taiga tick) and I. ricinus (European sheep tick) are the main vectors
for Lyme disease, respectively [223,224].

5.2.2. Impacts of Climatic Changes and Anthropogenic Activities on Lyme Disease

Deciduous and mixed forests, pastures, and urban parks are the favored habitats
for ticks [225]. These habitats ensure the optimal micro-environmental conditions such
as humidity and temperature, particularly during the juvenile stages, which are most
vulnerable to water loss [226,227]. Additionally, these habitats are populated by rodents,
which serve as tick hosts, which are necessary for the tick life cycle [228]. Ticks are known to
be highly dependent on the climate patterns, and their seasonal activity varies significantly
depending on the thermal conditions [229–233]. The differences in the I. ricinus activity
between the regions in Europe are mainly associated with differences in the thermal
conditions and ecological habitat types, thus, 98% of the two-year life cycle takes place
inside the host. Climatic changes play a vital role in the emergence and re-emergence of
this disease through its impact on the vector distribution and activities [226,234].

Indeed, several anthropogenic activities impact the epidemiology of Lyme disease.
In North America, most (>90%) of the borreliosis cases were reported in the northeast
and mid-Atlantic region and the north-central region [235–237]. These regions have been
subjected to a substantial expansion, highlighting the role of anthropogenic activities in the
epidemiological distribution of Lyme disease [237]. In the U.S., James et al. (2013) found
that Lyme disease increased as a result of the changes to land use and a sharp rise in the deer
population which in turn increased the risk of exposure to ticks carrying Borrelia spp [216].

Brownstein and others predicted the influence of climate change on the epidemiology
of Lyme disease and the likely public implications of it in North America [238]. The authors
estimated a significant spread of I. scapularis northward into Canada by the 2080s with a
213% increase in the appropriate habitats. The authors suggested also that climate change
will cause the vector to recede from the southern United States and move into the middle
of the US. Collectively, studying the environmental parameters that are associated with tick
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abundance and the prevalence of the disease may be helpful in reducing risk and predicting
the future distribution of borreliosis in the face of climate change.

5.3. Tuberculosis

Tuberculosis, which is caused by Mycobacterium tuberculosis, continues to be a global
public health problem worldwide. According to the WHO report in 2022, 10.6 million
tuberculosis cases were diagnosed worldwide in 2021 [239]. Additionally, multidrug-
resistant tuberculosis still poses a threat to the public health.

McIver et al. investigated the indirect drivers of tuberculosis transmission in the
Pacific atoll countries. The authors have summarized these drivers in three main risk
factors “Triple Whammy” which are: (i) Socioeconomic (poverty, overall population density,
and household-level overcrowding), and (ii) Smoking and non-communicable diseases
(diabetes mellitus and malnutrition, and (iii) Climatic changes (extreme weather events
and sea levels), highlighting the bidirectional relationship between tuberculosis and the
environment [240–243].

The impact of climatic changes on tuberculosis transmission can be explained by
it having numerous pathways, for instance: (i) Climatic changes have an influence on
food security and nutrition through erratic rainfall patterns, extreme weather events,
high temperatures, a reduction in the arable land due to saltwater infiltration, and by
decreasing the crop production. In many high-tuberculosis-burden countries such as India,
malnutrition is the biggest risk factor for tuberculosis [241]. (ii) Extreme weather may also
force population displacement into cramped conditions, increasing the risk of tuberculosis
transmission [243]. Collectively, predicting and limiting the impact of climatic changes on
food security and water quality should be taken into consideration to eradicate tuberculosis
in countries with a high incidence of the disease.

6. Selected Parasitic Diseases
Leishmaniasis

Leishmaniasis is an anthropozoonotic parasitic that is caused by protozoa of the
Trypanosomatidae family and Leishmania genus, with the species L. infantum being one of
the main etiological agents of canine visceral leishmaniasis (CVL) and its human variant
(HVL) [244]. The protozoan is transmitted through blood, and this is carried out by female
sand fly vectors belonging to the genera Lutzomyia in the New World and Phlebotomus in
the Old World [245]. The disease is considered to be one of the most neglected ones in
the world, with there being a higher prevalence in populations with socioeconomic and
food vulnerability [246]. Approximately 95% of the annual cases occur in just 10 countries:
Bangladesh, Brazil, China, Ethiopia, India, Kenya, Nepal, Somalia, South Sudan, and
Su-dan [247]. The main reservoirs of the disease in the urban cycle are infected dogs,
especial-ly asymptomatic ones [248]. Humans are accidental hosts and do not seem to have
an important role in maintaining the parasites in nature [249].

The occurrence of the cases of leishmaniasis is related to human actions, such as the
urbanization and occupation of areas in a disorderly manner, resulting in environmental
imbalances [250]. In this way, the deforestation and the occupation of these areas promotes
the adaptation of sandflies to anthropized areas [251,252]. Additionally, even though
environmental degradation can negatively affect the abundance and diversity of sand fly
populations, many species end up successfully adapting to the degraded habitats [253].
It should be noted that the occurrence of cases among animals precedes the cases among
humans [254]. Since the dog is the main reservoir in the urban cycle, practicing responsible
ownership and the abandonment of animals should be discussed since transmission can
occur transplacentally, through colostrum ingestion, and venereally, which is a problem
when one is referring to stray dogs [255–258].

Climate change may facilitate zoonotic spillover through the modification of the
environments and ecosystems, and with that, by altering the habitat of many animals along
with their parasites and pathogens [259]. The effects of climate change can modify the
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distribution of leishmaniasis in three ways: directly, through the effect of temperature on
the parasite and on the development and vector competence; indirectly, by the effect of
temperature and other environmental variables on the range and abundance of sandfly
species that act as vectors; indirectly, through socioeconomic changes that quantitatively
affect the amount of human contact with transmission cycles [260]. In addition, changes
in the global climate can lead to food shortages and famine, generating an increase in
movement of populations and migratory waves, and consequently, allowing both the
introduction of Leishmania into Leishmania-free areas, as well as the insertion of susceptible
individuals into endemic areas [261].

7. Fungal Diseases

The prevalence of fungal diseases has increased alongside the rise of immunosuppres-
sive diseases in human and animal populations. Although new antifungal drugs have been
recently developed, the prevalence of fungal infections has continued to rise. As a result,
the rate of drug resistance to these medications has also increased greatly, thereby posing
serious health issues [262].

The potential impacts of anthropogenic activities and climatic changes on fungal dis-
eases can be summarized as follows: (i) The emergence of new human pathogenic fungal
species such as Candida auris [263]. This yeast was initially isolated in 2009 in Japan, and
since then, it has spread globally [264,265]. The mechanism for the emergence of this yeast
has been explained as the evolution of a “novel” human fungal pathogen in response to
climatic change, or as a consequence of anthropogenic activities such as the expansion of
farming and aquaculture as well as the use of fungicides [265,266]. (ii) By impacting the
geographical distribution of fungal pathogens. As a result of climate change, pathogenic
fungi or their vectors may spread, geographically, more widely, causing the emergence
of diseases in regions where they had not previously been noted. Floods, storms, and
hurricanes can disseminate and aerosolize fungi or deposit them into traumatic wounds,
leading to infections by previously unusual or unknown fungal species [263,267]. Global
climate change is also contributing to the geographical spread of pathogenic fungi, includ-
ing dermatophytes, leading to higher numbers of dermatophytosis [268]. (iii) The evolution
of being thermotolerant. The ability of the vast majority of fungal species to multiply
at high temperatures restricts the colonization and infection of mammals. However, in
response to an environmental stress such as global warming, the fungi may evolve to
become thermotolerant, which could increase the number of pathogens [267,269]. Gadre
et al. reported that persistently high temperatures lead to the expansion of the geographic
ranges of the dimorphic fungi Coccidioides, Blastomyces, Histoplasma, and Sporothrix [270].
(iv) Environmental stresses may also promote the evolution of novel features such as viru-
lence and antifungal resistance of fungal pathogens, including those that are traditionally
considered to be human commensals such as Candida albicans [271,272].

8. Recommendations

Mitigating the effect of anthropic action on the spread of emerging and re-emerging
diseases is a very complex matter that only a One Health approach could solve. The
control of ongoing and future pandemics should involve international cooperation from
governments, pharmaceutical companies, diagnosticians, epidemiologists, public health
specialists, vaccinologists, and medical and veterinary clinicians. In order to implement the
One Health strategy, the following measures are recommended: (i) Hiring professionals
with the necessary training; (ii) Performing the rapid and accurate diagnosis and treat-
ment of infected individuals and animals; (iii) Developing and providing vaccines for
virus control in humans; (iv) enhancing the hygienic measures; (v) Employing veterinary
expertise; (vi) The monitoring of wildlife for the identification and characterization of
potential reservoirs and the monitoring of people who come into contact with wildlife to
identify the risk factors in human behaviors and living conditions [160,161,273]. Regular
epidemiological studies in regions, countries, and around the world can mitigate the risk
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and help to control and prevent zoonotic pathogens [274]. Therefore, it is crucial to identify
the risk factors in detail to take intervention measures to control the pandemic [275].

Nonetheless, the scientific community, alone, apart from improving awareness of the
risks to human health through the publication of reliable data, can contribute little to the
change of perspective. Political actions at all levels, international, national, and local, are
the only actions that are capable of reversing the real attitudes. The first big issue that is
always overlooked, for ethic, economic, and religious reasons, is the increase in human
population, which is constantly rising, and that should be addressed by introducing control
measures. The second one is the economic gap between the nations, which has forced some
populations to make choices that have the negative effects on the environment, and these
are reinforced by some legal procedures such as selling fish or carbon stocks to foreign
nations. The third one is to adopt a non-homogeneity stance on the political management
of natural resources and the protection of the natural reserves.

Raising awareness and educating people about the drivers of emerging and re-
emerging pathogens could also reduce the risk of infection among people. This included
and not limited to: (i) Mitigating the risk of vectors-to-human transmission by limiting the
vector access to food products, protecting animals and their feed from bats where applica-
ble, as well as practicing hygienic measures, (ii) Mitigating the risk of animal-to-human
transmission by reducing the amount of contact with wild animals, wearing gloves and
other protective clothing while handling sick animals or their tissues and during slaughter-
ing and culling measures, and (iii) Mitigating the risk of human-to-human transmission,
through avoiding contact with infected/sick persons, and practicing regular hand washing.

9. Conclusions

Anthropic actions pose a determinant role in emerging and re-emerging diseases, and
future pandemics could be worse than the past and ongoing pandemics have been/are
because we are forcing nature to its limits by destroying the incredibly diverse ecosystems
which will eventually remove the natural buffers and expand the interface between wildlife
and people where pathogens emerge/re-emerge. Therefore, the multidisciplinary One
Health efforts must be adopted and implemented, worldwide.

Author Contributions: Conceptualization, P.M.D., A.A.S. and S.S.T.; methodology, P.M.D., A.A.S.
and S.S.T.; resources, P.M.D., S.S.T. and R.N.; writing—original draft preparation, P.M.D., S.S.T., A.A.S.
and R.N.; writing—review and editing, P.M.D., S.S.T., R.N., A.A.S. and M.S.; supervision, P.M.D.,
S.S.T., A.A.S. and R.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank Giulia Pacchiarotti, Istituto Zooprofilattico
Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy, for the support in the revision of
the text and references.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Acha, P.N.; Szyfres, B. Preface of the first English edition. In Zoonoses and Communicable Diseases Common to Man and Animals,

3rd ed.; OIE: Paris, France, 2005; Volume 1, p. ix.
2. Cutler, S.J.; Fooks, A.R.; van der Poel, W.H.M. Public health threat of new, reemerging, and neglected zoonoses in the industrialized

world. Emerg. Infect. Dis. 2010, 16, 1–7. [CrossRef] [PubMed]
3. El-Sayed, A.; Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res.

2020, 27, 22336–22352. [CrossRef] [PubMed]
4. WHO. Anticipating Emerging Infectious Disease Epidemics; Meeting Report; WHO: Geneva, Switzerland, 2015. Available online:

https://apps.who.int/iris/bitstream/handle/10665/252646/WHO-OHE-PED-2016.2-eng.pdf (accessed on 1 August 2022).

http://doi.org/10.3201/eid1601.081467
http://www.ncbi.nlm.nih.gov/pubmed/20031035
http://doi.org/10.1007/s11356-020-08896-w
http://www.ncbi.nlm.nih.gov/pubmed/32347486
https://apps.who.int/iris/bitstream/handle/10665/252646/WHO-OHE-PED-2016.2-eng.pdf


Pathogens 2022, 11, 1376 17 of 26

5. Adhikari, S.P.; Meng, S.; Wu, Y.; Mao, Y.; Ye, R.; Wang, Q.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; et al. Epidemiology, causes,
clinical manifestation and diagnosis, prevention, and control of coronavirus disease (COVID-19) during the early outbreak period:
A scoping review. Infect. Dis. Poverty 2020, 9, 1–12. [CrossRef] [PubMed]

6. Morand, S. Emerging diseases, livestock expansion and biodiversity loss are positively related at global scale. Biol. Conserv. J.
2020, 248, 108707. [CrossRef] [PubMed]

7. Sironi, M.; Hasnain, S.E.; Rosenthal, B.; Phan, T.; Luciani, F. SARS-CoV-2 and COVID-19: A genetic, epidemiological, and
evolutionary perspective. Infect. Genet. Evol. 2020, 84, 104384. [CrossRef]

8. Beyer, R.M.; Manica, A.; Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of
SARS-CoV-1 and SARS-CoV-2. Sci. Total Environ. 2021, 767, 145413. [CrossRef]

9. Halonen, J.I.; Erhola, M.; Furman, E.; Haahtela, T.; Jousilahti, P.; Barouki, R.; Bergman, A.; Billo, N.E.; Fuller, R.; Haines, A.; et al. A
call for urgent action to safeguard our planet and our health in line with the Helsinki declaration. Environ. Res. 2021, 193, 110600.
[CrossRef]

10. Morand, S.; Lajaunie, C. Outbreaks of vector-borne and zoonotic diseases are associated with changes in Forest Cover and Oil
Palm expansion at global scale. Front. Vet. Sci. 2021, 8, 1–11. [CrossRef]

11. Bowler, D.E.; Bjorkman, A.D.; Dornelas, M.; Myers-Smith, I.H.; Navarro, L.M.; Niamir, A.; Supp, S.R.; Waldock, C.; Winter, M.;
Vellend, M.; et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People
Nat. 2020, 2, 380–394. [CrossRef]

12. IPCC. Climate Change 2014 Synthesis Report—Summary Chapter for Policymakers. 2014. Available online: https://www.ipcc.
ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf (accessed on 1 August 2022).

13. Farber, D.A.; Carlarne, C.P. Climate Change Law; Law Work Paper; West Academic Publishing: St. Paul, MN, USA, 2017; p. 419.
14. IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental

Science-Policy Platform on Biodiversity and Ecosystem Services; Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Guèze, M., Agard, J.,
Arneth, A., Balvanera, P., Brauman, K.A., Butchart, M.S.H., et al., Eds.; IPBES Secretariat: Bonn, Germany, 2019; 56p. Available
online: https://ipbes.net/sites/default/files/inline/files/ipbes_global_assessment_report_summary_for_policymakers.pdf
(accessed on 20 January 2022).

15. Ripple, W.J.; Wolf, C.; Newsome, T.M.; Gregg, J.W.; Lenton, T.M.; Palomo, I.; Eikelboom, J.A.J.; Law, B.E.; Huq, S.; Duffy, P.B.; et al.
World scientists’ warning of a climate emergency 2021. Bioscience 2021, 71, 894–898. [CrossRef]

16. Collins, A.; Galli, A.; Hipwood, T.; Murthy, A. Living within a one planet reality: The contribution of personal footprint calculators.
Environ. Res. Lett. 2020, 15, 025008. [CrossRef]

17. Volpato, G.; Fontefrancesco, M.F.; Gruppuso, P.; Zocchi, D.M.; Pieroni, A. Baby pangolins on my plate: Possible lessons to learn
from the COVID-19 pandemic. J. Ethnobiol. Ethnomed. 2020, 16, 19. [CrossRef] [PubMed]

18. Goulet, C. A Multi-Scale Evaluation of Eastern Hognose Snake (Heterodon platirhinos) Habitat Selection at the Northern Extent of
Its Range. Master’s Thesis, University of New Hampshire, Durham, NH, USA, 2010. Available online: https://scholars.unh.edu/
cgi/viewcontent.cgi?article=1546&context=thesis (accessed on 20 January 2022).

19. Patz, J.; Githeko, A.; McCarty, J.; Hussain, S.; Confalonieri, U.; de Wet, N. Climate change and infectious diseases. In Climate
Change and Human Health: Risks and Responses; World Health Organization: Geneva, Switzerland, 2003; pp. 103–110.

20. Gorris, M.E. Environmental Infectious Disease Dynamics in Relation to Climate and Climate Change. Ph.D. Thesis, University of
California, Irvine, CA, USA, 2019.

21. Mogrovejo-Arias, D.C.; Brill, F.H.H.; Wagner, D. Potentially pathogenic bacteria isolated from diverse habitats in Spitsbergen,
Svalbard. Environ. Earth Sci. 2020, 79, 109. [CrossRef]

22. Panda, A.K.; Thakur, S.D.; Katoch, R.C. Rabies: Control strategies for Himalayan states of the Indian subcontinent. J. Commun.
Dis. 2008, 40, 169–175. [PubMed]

23. Wu, T.; Perrings, C.; Kinzig, A.; Collins, J.P.; Minteer, B.A.; Daszak, P. Economic growth, urbanization, globalization, and the risks
of emerging infectious diseases in China: A review. Ambio 2017, 46, 18–29. [CrossRef]

24. Bloomfield, L.S.P.; McIntosh, T.L.; Lambin, E. Habitat fragmentation, livelihood behaviors, and contact between people and
nonhuman primates in Africa. Landsc. Ecol 2020, 35, 985–1000. [CrossRef]

25. Van der Werf, G.R.; Morton, D.C.; DeFries, R.S.; Giglio, L.; Randerson, J.T.; Collatz, G.J.; Kasibhatla, P.S. Estimates of fire emissions
from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling. Biogeosciences
2009, 6, 235–249. [CrossRef]

26. Americo, T. Dia da Amazônia: Desmatamento da Floresta É 8,2 % Maior em 2021. CNN Brasil. 2021. Available online:
https://www.cnnbrasil.com.br/nacional/dia-da-amazonia-desmatamento-da-floresta-e-82-maior-em-2021/ (accessed on
20 January 2022).

27. Chaves, L.S.M.; Conn, J.E.; López, R.V.M.; Sallum, M.A.M. Abundance of impacted forest patches less than 5 km is a key driver of
the incidence of malaria in Amazonian Brazil. Sci. Rep. 2018, 8, 7077. [CrossRef]

28. Shuman, E.K. Global climate change and infectious diseases. N. Engl. J. Med. 2010, 362, 1061–1063. [CrossRef]
29. Nagy, L.; Forsberg, B.R.; Artaxo, P. Interactions between biosphere, atmosphere and human land use in the Amazon Basin analysis

and synthesis. In Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2016; Volume 227, ISBN 978-3-662-49900-9.
30. Wilkinson, D.A.; Marshall, J.C.; French, N.P.; Hayman, D.T.S. Habitat fragmentation, biodiversity loss and the risk of novel

infectious disease emergence. J. R. Soc. Interface 2018, 15, 20180403. [CrossRef]

http://doi.org/10.1186/s40249-020-00646-x
http://www.ncbi.nlm.nih.gov/pubmed/32183901
http://doi.org/10.1016/j.biocon.2020.108707
http://www.ncbi.nlm.nih.gov/pubmed/32834060
http://doi.org/10.1016/j.meegid.2020.104384
http://doi.org/10.1016/j.scitotenv.2021.145413
http://doi.org/10.1016/j.envres.2020.110600
http://doi.org/10.3389/fvets.2021.661063
http://doi.org/10.1002/pan3.10071
https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf
https://ipbes.net/sites/default/files/inline/files/ipbes_global_assessment_report_summary_for_policymakers.pdf
http://doi.org/10.1093/biosci/biab079
http://doi.org/10.1088/1748-9326/ab5f96
http://doi.org/10.1186/s13002-020-00366-4
http://www.ncbi.nlm.nih.gov/pubmed/32316979
https://scholars.unh.edu/cgi/viewcontent.cgi?article=1546&context=thesis
https://scholars.unh.edu/cgi/viewcontent.cgi?article=1546&context=thesis
http://doi.org/10.1007/s12665-020-8853-4
http://www.ncbi.nlm.nih.gov/pubmed/19245154
http://doi.org/10.1007/s13280-016-0809-2
http://doi.org/10.1007/s10980-020-00995-w
http://doi.org/10.5194/bg-6-235-2009
https://www.cnnbrasil.com.br/nacional/dia-da-amazonia-desmatamento-da-floresta-e-82-maior-em-2021/
http://doi.org/10.1038/s41598-018-25344-5
http://doi.org/10.1056/NEJMp0912931
http://doi.org/10.1098/rsif.2018.0403


Pathogens 2022, 11, 1376 18 of 26

31. Mackenstedt, U.; Jenkins, D.; Romig, T. The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban
areas. Int. J. Parasitol. Parasites Wildl. 2015, 4, 71–79. [CrossRef] [PubMed]

32. Ellwanger, J.H.; Kulmann-Leal, B.; Kaminski, V.L.; Valverde-Villegas, J.M.; DA VEIGA, A.B.G.; Spilki, F.R.; Fearnside, P.M.; Caesar,
L.; Giatti, L.L.; Wallau, G.L.; et al. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious
diseases and public health. An. Acad. Bras. Cienc. 2020, 92, 1–33. [CrossRef] [PubMed]

33. Chomel, B.B.; Belotto, A.; Meslin, F.X. Wildlife, exotic pets, and emerging zoonoses. Emerg. Infect. Dis. 2007, 13, 6–11. [CrossRef]
[PubMed]

34. CONAB. Boletim da Safra de Grãos. 2021. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-
safra-de-graos (accessed on 20 January 2022).

35. Madeiro, C. Pecuária Responde por 75% do Desmatamento em Terras Públicas da Amazônia. UOL. 2021. Available on-
line: https://noticias.uol.com.br/meio-ambiente/ultimas-noticias/redacao/2021/10/27/amazonia-87-do-desmate-em-terras-
publicas-ocorreu-em-areas-nao-destinadas.htm (accessed on 20 January 2022).

36. UOL. WWF: Aumento do Desmatamento no Brasil Piora Risco de Zoonoses e COVID. UOL. 2021. Available online: https://
noticias.uol.com.br/meio-ambiente/ultimas-noticias/redacao/2021/01/12/estudo-wwf-desmatamento-brasil-amazonia.htm
(accessed on 10 January 2022).

37. Rattis, L.; Brando, P.M.; Macedo, M. Climatic limit for agriculture in Brazil. Nat. Clim. Chang. 2021, 11, 1098–1104. [CrossRef]
38. Rahimi, P.; Islam, M.S.; Duarte, P.M.; Tazerji, S.S.; Sobur, M.A.; El Zowalaty, M.E.; Ashour, H.M.; Rahman, M.T. Impact of the

COVID-19 pandemic on food production and animal health. Trends Food Sci. Technol. 2022, 121, 105–113. [CrossRef]
39. Rahman, M.T.; Islam, M.S.; Shehata, A.A.; Basiouni, S.; Hafez, H.M.; Azhar, E.I.; Khafaga, A.F.; Bovera, F.; Attia, Y.A. Influence of

COVID-19 on the sustainability of livestock performance and welfare on a global scale. Trop. Anim. Health Prod. 2022, 54, 309.
[CrossRef]

40. Attia, Y.A.; Rahman, M.T.; Shehata, A.A.; Hafez, H.M.; Hossain, M.J.; Basiouni, S.; Khafaga, A.F. Poultry production and
sustainability in developing countries under the COVID-19 crisis: Lessons learned. Animals 2022, 12, 644. [CrossRef]

41. United Nations. More than Half a Billion Pushed into Extreme Poverty Due to Health Costs. 2021. Available online: https:
//news.un.org/en/story/2021/12/110775 (accessed on 20 January 2022).

42. FAO Commission on Genetic Resources for Food and Agriculture Assessments. The State of the World’s Biodiversity for Food and
Agriculture; Bélanger, J., Pilling, D., Eds.; FAO: Rome, Italy, 2019; 57p. Available online: http://www.fao.org/3/CA3129EN/CA3
129EN.pdf (accessed on 20 September 2022).

43. Ribeiro, V.M.F.; De Carvalho, Y.K.; Peruquetti, R.C.; Medeiros, L.S.; Freitas, H.J. De Consumo e Comercialização de Carnes
Silvestres: Potencial econômico para a Amazônia Ocidental. J. Amaz. Health Sci. 2016, 2, 1–11.

44. Cajaiba, R.L.; Da Silva, W.B.; Piovesan, P.R.R. Animais silvestres utilizados como recurso alimentar em assentamentos rurais no
município de Uruará, Pará, Brasil. Desenvolv. Meio Ambient. 2015, 34. [CrossRef]

45. De Souza, L.S.; Progênio, M.; de Souza, L.S.; de Araújo Santos, F.G. Consumption of wild animals in extractive communities in
the State of Acre, Brazilian Amazon. Biota Amaz. 2021, 11, 27–30.

46. Jerozolimski, A.; Peres, C.A. Bringing home the biggest bacon: A cross-site analysis of the structure of hunter-kill profiles in
Neotropical forests. Biol. Conserv. 2003, 111, 415–425. [CrossRef]

47. Dias, C.J.; Almeida, M.W.B. A floresta como mercado: Caça e conflito na Reserva Extrativista do Alto Juruá (AC). Bol. Rede Amaz.
2004, 3, 9–27.

48. Chow, A.T.; Cheung, S.; Yip, P.K. Wildlife markets in south China. Hum. -Wildl. Interact. 2014, 8, 108–112.
49. Contini, C.; Di Nuzzo, M.; Barp, N.; Bonazza, A.; de Giorgio, R.; Tognon, M.; Rubino, S. The novel zoonotic COVID-19 pandemic:

An expected global health concern. J. Infect. Dev. Ctries. 2020, 14, 254–264. [CrossRef] [PubMed]
50. Naguib, M.M.; Li, R.; Ling, J.; Grace, D.; Nguyen-Viet, H.; Lindahl, J.F. Live and wet markets: Food Access versus the risk of

disease emergence. Trends Microbiol. 2021, 29, 573–581. [CrossRef]
51. Thomas, J.; Balseiro, A.; Gortázar, C.; Risalde, M.A. Diagnosis of tuberculosis in wildlife: A systematic review. Vet. Res. 2021,

52, 31. [CrossRef]
52. Goosen, W.; Moseley, M.H.; Kerr, T.J.; Potts, A.; Miller, M. The seroepidemiology of a neglected zoonotic and livestock pathogen

in free-ranging bovids: Leptospirosis in African buffaloes (Syncerus caffer). Pathogens 2021, 10, 1072. [CrossRef]
53. Pinto, C.C.; Amin da Silva, B.L.; Santos, E.S.A.; Oliveira, S.R.M.; Amorim, M.T.; Amaro, O.; Gomes, E.P.A.; Casseb, S.M.M. Perfil

Epidemiológico da Raiva Humana na Região Norte do Estado do Pará durante o período de 2000 a 2019. Saúde Coletiva 2021,
11, 6937–6948. [CrossRef]

54. Godfroid, J.; Al Dahouk, S.; Pappas, G.; Roth, F.; Matope, G.; Muma, J.; Marcotty, T.; Pfeiffer, D.; Skjerve, E. A “One Health”
surveillance and control of brucellosis in developing countries: Moving away from improvisation. Comp. Immunol. Microbiol.
Infect. Dis. 2013, 36, 241–248. [CrossRef]

55. Formenti, N.; Calò, S.; Parisio, G.; Guarneri, F.; Birbes, L.; Pitozzi, A.; Scali, F.; Tonni, M.; Guadagno, F.; Giovannini, S.; et al.
ESBL/AmpC-producing Escherichia coli in wild boar: Epidemiology and risk factors. Animals 2021, 11, 1855. [CrossRef]

56. Zoological Society of London. Illegal wildlife Trade Impacts. 2022. Available online: https://www.zsl.org/conservation/how-
we-work/illegal-wildlife-trade-crisis/illegal-wildlife-trade-impacts (accessed on 20 January 2022).

57. Koh, L.P.; Li, Y.; Lee, J.S.H. The value of China’s ban on wildlife trade and consumption. Nat. Sustain. 2021, 4, 2–4. [CrossRef]

http://doi.org/10.1016/j.ijppaw.2015.01.006
http://www.ncbi.nlm.nih.gov/pubmed/25830108
http://doi.org/10.1590/0001-3765202020191375
http://www.ncbi.nlm.nih.gov/pubmed/32321030
http://doi.org/10.3201/eid1301.060480
http://www.ncbi.nlm.nih.gov/pubmed/17370509
https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos
https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos
https://noticias.uol.com.br/meio-ambiente/ultimas-noticias/redacao/2021/10/27/amazonia-87-do-desmate-em-terras-publicas-ocorreu-em-areas-nao-destinadas.htm
https://noticias.uol.com.br/meio-ambiente/ultimas-noticias/redacao/2021/10/27/amazonia-87-do-desmate-em-terras-publicas-ocorreu-em-areas-nao-destinadas.htm
https://noticias.uol.com.br/meio-ambiente/ultimas-noticias/redacao/2021/01/12/estudo-wwf-desmatamento-brasil-amazonia.htm
https://noticias.uol.com.br/meio-ambiente/ultimas-noticias/redacao/2021/01/12/estudo-wwf-desmatamento-brasil-amazonia.htm
http://doi.org/10.1038/s41558-021-01214-3
http://doi.org/10.1016/j.tifs.2021.12.003
http://doi.org/10.1007/s11250-022-03256-x
http://doi.org/10.3390/ani12050644
https://news.un.org/en/story/2021/12/110775
https://news.un.org/en/story/2021/12/110775
http://www.fao.org/3/CA3129EN/CA3129EN.pdf
http://www.fao.org/3/CA3129EN/CA3129EN.pdf
http://doi.org/10.5380/dma.v34i0.38889
http://doi.org/10.1016/S0006-3207(02)00310-5
http://doi.org/10.3855/jidc.12671
http://www.ncbi.nlm.nih.gov/pubmed/32235085
http://doi.org/10.1016/j.tim.2021.02.007
http://doi.org/10.1186/s13567-020-00881-y
http://doi.org/10.3390/pathogens10091072
http://doi.org/10.36489/saudecoletiva.2021v11i67p6937-6948
http://doi.org/10.1016/j.cimid.2012.09.001
http://doi.org/10.3390/ani11071855
https://www.zsl.org/conservation/how-we-work/illegal-wildlife-trade-crisis/illegal-wildlife-trade-impacts
https://www.zsl.org/conservation/how-we-work/illegal-wildlife-trade-crisis/illegal-wildlife-trade-impacts
http://doi.org/10.1038/s41893-020-00677-0


Pathogens 2022, 11, 1376 19 of 26

58. Zhang, L.; Hua, N.; Sun, S. Wildlife trade, consumption, and conservation awareness in southwest China. Biodivers. Conserv. 2008,
17, 1493–1516. [CrossRef] [PubMed]

59. Bernardo-Cravo, A.P.; Schmeller, D.S.; Chatzinotas, A.; Vredenburg, V.T.; Loyau, A. Environmental factors and host microbiomes
shape host–pathogen dynamics. Trends Parasitol. 2020, 36, 616–633. [CrossRef] [PubMed]

60. Despommier, D.; Ellis, B.R.; Wilcox, B.A. The role of ecotones in emerging infectious diseases. Ecohealth 2006, 3, 281–289.
[CrossRef]

61. Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.;
Morand, S.; et al. The one health concept: 10 years old and a long road ahead. Front. Vet. Sci. 2018, 5, 14. [CrossRef] [PubMed]

62. Di Marco, M.; Baker, M.L.; Daszak, P.; de Barro, P.; Eskew, E.A.; Godde, C.M.; Harwood, T.D.; Herrero, M.; Hoskins, A.J.; Johnson,
E.; et al. Sustainable development must account for pandemic risk. Proc. Natl. Acad. Sci. USA 2020, 117, 3888–3892. [CrossRef]
[PubMed]

63. Murray, K.A.; Daszak, P. Human ecology in pathogenic landscapes: Two hypotheses on how. Curr. Opin. Virol. 2013, 3, 78–83.
[CrossRef]

64. Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Anthropogenic environmental change, and the emergence of infectious diseases in
wildlife. Acta Trop. 2001, 78, 103–116. [CrossRef]

65. Patz, J.A.; Daszak, P.; Tabor, G.M.; Aguirre, A.A.; Pearl, M.C.; Epstein, J.; Wolfe, N.D.; Kilpatrick, A.M.; Foufopoulos, J.; Molyneux,
D.; et al. Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environ. Health
Perspect. 2004, 112, 1092–1098. [CrossRef]

66. Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of major human infectious diseases. Nature 2007, 447, 279–283. [CrossRef]
67. Dimakakou, E.; Johnston, H.J.; Streftaris, G.; Cherrie, J.W. Exposure to environmental and occupational particulate air pollution

as a potential contributor to neurodegeneration and diabetes: A systematic review of epidemiological research. Int. J. Environ.
Res. Public Health 2018, 15, 1704. [CrossRef] [PubMed]

68. Roca, M.; Manes, F.; Chade, A.; Gleichgerrcht, E.; Gershanik, O.; Arévalo, G.G.; Torralva, T.; Duncan, J. The relationship between
executive functions and fluid intelligence in Parkinson’s disease. Psychol. Med. 2012, 42, 2445–2452. [CrossRef] [PubMed]

69. DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics,
2019. CA. Cancer J. Clin. 2019, 69, 438–451. [CrossRef] [PubMed]

70. Cocco, P.; Blair, A.; Congia, P.; Saba, G.; Ecca, A.R.; Palmas, C. Long-term health effects of the occupational exposure to DDT. A
preliminary report. Ann. N. Y. Acad. Sci. 1997, 837, 246–256. [CrossRef] [PubMed]

71. Krüger, M.; Basiouni, S.; Eder, I.; Rodloff, A. Susceptibility of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae
to Roundup. Ger. J. Microbiol. 2021, 1, 7–15. [CrossRef]

72. Kaonga, N.; Hang’ombe, B.M.; Lupindu, A.M.; Hoza, A.S. Detection of CTX-M-type extended-spectrum beta-lactamase producing
Salmonella Typhimurium in commercial poultry farms in Copperbelt Province, Zambia. Ger. J. Vet. Res. 2021, 1, 27–34. [CrossRef]

73. Shehata, A.A.; Basiouni, S.; Abd Elrazek, A.; Sultan, H.; Tarabees, R.; Elsayed, M.S.A.; Talat, S.; Moharam, E.; Said, A.; Mohsen,
W.A.; et al. Characterization of Salmonella enterica isolated from poultry hatcheries and commercial broiler chickens. Pak. Vet. J.
2019, 39, 515–520. [CrossRef]

74. Benrabia, I.; Hamdi, T.M.; Shehata, A.A.; Neubauer, H.; Wareth, G. Methicillin-resistant Staphylococcus aureus (MRSA) in poultry
species in Algeria: Long-term study on prevalence and antimicrobial resistance. Vet. Sci. 2020, 7, 54. [CrossRef]

75. Njeru, J. Emerging carbapenem resistance in ESKAPE pathogens in Sub-Saharan Africa and the way forward. Ger. J. Microbiol.
2021, 1, 3–6. [CrossRef]

76. Bogitsh, B.J.; Carter, C.E.; Oeltmann, T.N. Human Parasitology, 3rd ed.; Academic Press: New York, NY, USA, 2005.
77. Baseler, L.; Chertow, D.S.; Johnson, K.M.; Feldmann, H.; Morens, D.M. The pathogenesis of Ebola virus disease. Annu. Rev. Pathol.

2017, 12, 387–418. [CrossRef]
78. Kuhn, J.H.; Bào, Y.; Bavari, S.; Becker, S.; Bradfute, S.; Brauburger, K.; Rodney Brister, J.; Bukreyev, A.A.; Caì, Y.; Chandran, K.;

et al. Virus nomenclature below the species level: A standardized nomenclature for filovirus strains and variants rescued from
cDNA. Arch. Virol. 2014, 159, 1229–1237. [CrossRef] [PubMed]

79. Burk, R.; Bollinger, L.; Johnson, J.C.; Wada, J.; Radoshitzky, S.R.; Palacios, G.; Bavari, S.; Jahrling, P.B.; Kuhn, J.H. Neglected
filoviruses. FEMS Microbiol. Rev. 2016, 40, 494–519. [CrossRef] [PubMed]

80. Goldstein, T.; Anthony, S.J.; Gbakima, A.; Bird, B.H.; Bangura, J.; Tremeau-Bravard, A.; Belaganahalli, M.N.; Wells, H.L.; Dhanota,
J.K.; Liang, E.; et al. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat. Microbiol. 2018,
3, 1084–1089. [CrossRef] [PubMed]

81. Forbes, K.M.; Webala, P.W.; Jääskeläinen, A.J.; Abdurahman, S.; Ogola, J.; Masika, M.M.; Kivistö, I.; Alburkat, H.; Plyusnin, I.;
Levanov, L.; et al. Bombali Virus in Mops condylurus Bat, Kenya Kristian. Emerg. Infect. Dis. 2019, 25, 955–957. [CrossRef]

82. Olivero, J.; Fa, J.E.; Farfán, M.; Márquez, A.L.; Real, R.; Juste, F.J.; Leendertz, S.A.; Nasi, R. Human activities link fruit bat presence
to Ebola virus disease outbreaks. Mamm. Rev. 2020, 50, 1–10. [CrossRef]
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