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Abstract: The epidemiology of Rift Valley fever (RVF) is poorly understood in Malawi. Here,
a cross-sectional study was conducted (March–June 2020) to investigate the seroprevalence and
potential risk factors of RVF virus (RVFV) in cattle, goats, and sheep in three ecological zones of
Malawi. A total of 1523 serum samples were tested for anti-RVFV IgG and IgM antibodies by
ELISA. Additionally, a questionnaire survey was used to assess potential RVF risk factors. The
overall seroprevalence was 17.14% (261/1523; 95% CI = 15.33–19.11) for individual livestock and
33.24% (120/361; 95% CI = 28.18–38.11) for the livestock herd. Seroprevalence was significantly
high in sheep (25.68%, 95% CI = 19.31–33.26) compared with cattle (21.35%, 95% CI = 18.74–24.22)
and goats (7.72%, 95% CI = 5.72–10.34), (p = 0.047). At the individual livestock level, the risk was
elevated in female livestock (OR: 1.74, 95% CI = 1.08–12.82) (p = 0.016), while at the herd level, areas
receiving approximately 1001–1500 mm of rainfall (OR: 2.47, 95% CI = 1.14–5.37) (p = 0.022), areas of
rainfall amount greater than approximately 1600 mm (OR: 2.239, 95% CI = 1.07–8.82) (p = 0.023), and
mixed species herds (OR: 10.410, 95% CI = 3.04–35.59) (p = 0.001), were significant risk factors. The
detection of IgM antibodies confirmed active circulation of RVFV in Malawi. Therefore, monitoring
of RVF in animals, humans, and vectors using a “One Health” approach, along with community
sensitization among the high-risk populations, could help mitigate the threat posed by this zoonotic
disease in Malawi.
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1. Introduction

Rift Valley fever (RVF) is an emerging arthropod-borne viral zoonotic hemorrhagic
fever caused by RVF virus (RVFV), a member of the Phlebovirus genus, family Phenuiviridae,
within the order Bunyavirales [1]. The RVFV genome is organized in three negative-sense,
single-stranded RNA segments, namely large (L), medium (M), and small (S). The large seg-
ment encodes the RNA-dependent RNA polymerase [2]; the M segment encodes envelope
glycoproteins, Gn and Gc, plus two accessory proteins, NSm and the 78-kDa protein [3].
The S ambisense segment encodes for nucleoprotein (NP; 27 kDa) and non-structural pro-
tein (NSs; 31-kDa). RVFV is divided into 15 major genetic lineages (A-O), based on S, M,
and L segments, despite having over 33 strains in circulation [4–6]. Juma et al. [7] reported
a total of 234 sequences of RVFV, which are correctly classified at the phylogenetic level [8].

The RVFV has been detected throughout sub-Saharan Africa since 1931 [9–12]. Even
though RVF is endemic to sub-Saharan Africa, disease outbreaks have been reported in
Egypt, the Arabian Peninsula, Comoros, Mayotte, and Madagascar [10–13]. Primarily, RVF
affects domestic and wild ruminants; however, disease spill-over to humans is occasionally
reported. Recent human RVF outbreaks were reported in Kenya in 2020 [14] and outside
the African continent in the French territory of Mayotte [15]. The spread of RVFV out-
side the endemic region raises concern regarding the threat of virus introduction to new
geographical areas [16].

Rift Valley fever usually manifests as explosive epizootics with prolonged inter-
epidemic periods (IEPs) of approximately 8 to 15 years [17]. The occurrence of RVF
in the sub-Saharan African region is not limited to epizootic periods but also occurs during
IEPs [18–22]. The viral maintenance during IEPs is mainly accomplished by mosquito
species of Aedes (Neomelaniconion) mcintoshi and Aedimorphus [23–25]. Infected mosquitoes
lay eggs at the edges of dambos; they hatch during periods of anomalous rainfall and
initiate disease transmission [25–27]. The recruitment of secondary bridge mosquitoes
such as Culex, Anopheles, and Aedes [25–27] results in wide-spread infection. The low level
of detection of the RVFV in mosquitoes coupled with the high seroprevalence rates in
domestic and wild ruminants during the IEP suggests a wider role of angulates in the
epidemiology of RVF [28]. The RVFV transmission to humans is predominantly by direct
contact with infected animals and body fluids. Nevertheless, to a lesser extent, mosquito
bites indirectly transmit RVFV to humans [29].

In many areas where RVF is endemic, the IEP is mostly followed by outbreaks either
in livestock or humans soon after heavy rainfall [30,31]. Many RVF outbreaks reported
in livestock are associated with heavy rainfall and flooding and cause high mortality in
young animals and/or abortions in pregnant animals [32,33]. Several other economic
burdens, including reduced productivity and international livestock trade restrictions,
were reported [34–36]. For example, the 2006–2007 RVF outbreak in Tanzania caused
economic losses ranging from USD 352,750.00 to USD 4,243,250.00, attributed to decreased
productivity, livestock mortality, and suspension of international trade in livestock and
livestock products [34–36]. Subsequent to the huge adverse impact of the outbreaks,
some East African countries developed policies for preparedness and control measures
against RVFV [37]. Furthermore, these countries described potential risk factors associated
with RVFV seropositivity of animals and humans that varied with the time at which
the study was conducted (outbreak or IEP) [38,39]. The common risk factors associated
with RVFV seropositivity for humans and animals include heavy rainfall, vegetation
density, topography, large water bodies, land use, drainage, temperature, age, and mosquito
abundance [38–42].

Information on the current status of RVF in Malawi remains speculative [43]. The
last report on RVF in Malawi was made in 1992, when a seroprevalence of 18.1% was
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reported in cattle [44]. Since then, there have been no reports of RVFV circulation in cattle,
goats, or sheep. For the last five years of this period, RVF was reported in Mozambique,
Tanzania, and Zambia [18,19,22]. In these reports, the evidence of the possible circulation of
RVFV was detected from serum samples obtained from susceptible hosts, including those
showing no clinical signs [18,19,22,31,33]. Of note, Malawi’s neighboring countries reported
higher frequencies of RVFV circulation in their respective countries. Of special concern
is the increased livestock movement between Malawi and the neighboring countries and
lack of awareness among livestock farmers in Malawi [43]. In addition, there are no
surveillance, control, or prevention measures such as routine vaccination in place for the
same [43]. This situation hinders generation of important epidemiological baseline data
for RVF. Lack of recent epidemiological data on RVF in Malawi makes it difficult to design
evidence-based preventive and control strategies, as those demonstrated in Kenya [37].
Furthermore, the lack of information on such an important zoonosis is detrimental to the
efforts of safeguarding public health and livestock development. Thus, the current study
was conducted to provide evidence of RVFV circulation, identify the associated risk factors,
and update our current knowledge on the epidemiology of RVF in livestock in Malawi.

2. Materials and Methods
2.1. Study Sites

Malawi is a landlocked and agriculture-based country covering 118, 484 square kilo-
meters in southeast Africa, situated within latitudes 9◦ and 18◦ S, and longitudes 32◦ to
36◦ E. Malawi shares borders with Tanzania to the north, Mozambique to the southeast and
southwest, and Zambia to the west. The study was conducted in eight districts selected
from all three ecological zones of Malawi, as shown in (Figure 1). The eight districts were
purposively selected to include different annual rainfall patterns, vegetation, and livestock
density. The districts were Chitipa (CP), Karonga (KA), Salima (SA), Mangochi (MH),
Chiradzulu (CZ), Thyolo (TO), Chikwawa (CK), and Nsanje (NE). CP and KA are located
in the northern part of Malawi along Songwe River bordering Tanzania and Zambia. SA in
the central part of Malawi and MH in the southern part of Malawi are located along the
shores of Lake Malawi with characteristic wide range of dambo areas and dense vegetation
cover; CZ and TO in the southern part of Malawi are located adjacent to Zomba district
where RVF was previously reported [44,45]. CK and NE are on the southernmost part of
Malawi along the Shire River valley bordering Mozambique. These two districts have high
ruminant population and experience frequent flooding.

2.2. Agro-Ecological Zones in Malawi

The majority of livestock activities are conducted under extensive management sys-
tems in all three agro-ecological zones. Ecological Zone 1 (EZ1) covers low lands of
semi-arid areas found mainly on the shores of Lake Malawi and in the Rift valley areas
of the Shire valley such as the areas of Salima, Mangochi, Chikwawa, and Nsanje dis-
tricts. EZ1 lies 500–1000 m above sea level and receives an annual rainfall of less than
1000 mm. Ecological Zone 2 (EZ2) covers the highland plains of the Shire highlands, Li-
longwe, Kasungu, and Mzimba, lying 1000–1500 m above sea level and includes Thyolo
and Chiradzulu districts. This zone receives an annual rainfall of 1000–1500 mm. Ecological
Zone 3 (EZ3) covers high altitude areas of the Vipya and Nyika plateaus and the Chitipa
and Karonga districts, lying more than 1500 m above sea level. It has a total annual rainfall
of more than 1500 mm. A high proportion of this zone encompasses forest reserves and
national parks. There are approximately two million smallholder families and 30,000 estates
in Malawi [46]. Most family-operated smallholdings depend on subsistence farming based
on mixed crop and livestock farming [46,47].
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2.3. Study Design and Sampling

Two veterinary stations were identified at each District Agriculture Office (DAO). An
average of 5 livestock (cattle, goats, and sheep) per farm was assumed. Farmers were
selected using a systematic random sampling technique from an updated livestock census
book based on sample size proportionally distributed to the districts. At the herd level,
all livestock were sampled if the herd size was < 7, and a maximum of 15 was sampled if
the herd size was > 7, as previously described [46,48–50]. Assistant veterinary officers and
lead farmers were consulted to identify the livestock owner and herd size after selecting
from the livestock census book. Since individual animals could not be identified within
herds, arbitrary numbers were assigned to individual animals within a herd which was
later used for simple random selection by a raffle drawing. The number of livestock herds
were obtained by counting the number of herds included in the study [51].

2.4. Sample Size Estimate

The sample size was estimated using Cochran’s Formula [52]. The assumption was
that the population was very large and heterogenous among the ecological zones. The
calculated sample size was 384. However, RVF is a less contagious disease among livestock;
thus, in order to increase the precision of study estimates and obtain similar accuracy
to that of simple random sampling for districts, the sample size was recalculated. The
study expected at least five (5) livestock to be available in each sampled veterinary station,
and as such, the average rate of RVF homogeneity (p) was estimated to be 0.156, and
recalculated as:

Nnew = n [1 + p × (m − 1)] (1)

where n = 384, p = 0.156, and m = 5, representing the average number of animals to be
sampled from each veterinary station. The new sample size was 2220 livestock.
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2.5. Sample Collection, Storage, and Transportation

The total sample size was proportionally divided into ecological zones (EZ) and district
zones based on total district livestock population. The livestock population for districts and
total livestock herds were obtained from Malawi national agricultural production estimates
(APES), livestock census for first round conducted in January 2019. The livestock were
selected in the ratio 3:2:1 for cattle, goats, and sheep, respectively [53].

Whole blood was aseptically collected from cattle, goats, and sheep of all eligible age
groups by external jugular or coccygeal venipuncture. One set of whole blood samples
were collected in plain vacutainer tubes for serum, and another set was collected in EDTA
vacutainer tubes (5 mL in each). Serum was separated from whole blood by centrifugation
at 1000× g for 15 min as per World Organization for Animal Health (WOAH) protocol [54]
and later aliquoted into two milliliter Eppendorf tubes. The samples were immediately
stored at −80 ◦C at the African Union Center of Excellence for Tick and Tick-borne Diseases
(AU-CTTBD). Thereafter, the samples were triple-packed and transported by road, in a
frozen state, to the Department of Disease Control laboratories at the Samora Machel School
of Veterinary Medicine at the University of Zambia (UNZA), where they were stored at
−80 ◦C in readiness for processing and analysis.

2.6. Serum Sample Laboratory Analysis
2.6.1. IgG ELISA

All serum samples were tested for the presence of RVFV antibodies. ID Screen® RVF
competition multi-species indirect kit (ID- Vet Innovative, Grabels, France) was used to
investigate the presence of IgG following the manufacturer’s instruction. A suspect or
negative (S/N) ≤ 40% was considered as positive, otherwise negative. All samples were run
in duplicate, and the test was valid if the mean value of the positive control optical density
(ODPC) was less than 30% of the negative control (ODNC), given as ODPC/ODNC < 0.3 and
if the mean value of the negative control optical density (ODNC) was greater than 0.7, given
as ODNC > 0.7. All the runs were valid on both criteria. All doubtful S/p% values were
considered negative. The reported diagnostic sensitivity and specificity for the kit were
98% and 100%, respectively [55,56].

2.6.2. IgM ELISA

All samples were run in duplicate for IgM investigation, which indicate recent infec-
tion [55,57], using ID Screen® RVF IgM Capture Multi-species direct kit (IDvet Innovative,
Diagnostics, Garbles, France), as per manufacturer’s instruction. The test was valid if the
mean optical density of the positive control (ODpc) was greater than 0.350, given as net
ODpc > 0.350 and the ratio of the mean ODpc to mean optical density for negative control
(ODnc) was greater than three, given as (net ODpc/|net ODnc|) > 3. Samples with suspect
or positive (S/p) ≤ 40% were considered negative, and samples with S/p ≥ 50% were
considered positive and anything <50% is negative.

2.7. Questionnaire Administration

A structured questionnaire was used to capture information on potential risk factors
for individual and herd level seropositivity to RVFV. The questionnaire, firstly, gathered
demographics information of herd owners; secondly, information on livestock species,
herd dynamics (herd size: small < 25, medium 26–50, and large > 51) [58], age groups
(generated according to degree of physiological activities and interactions and livestock
management), source of livestock (within or outside the district), cross-border livestock
interaction (present or absent), grazing system (stall feeding or grazing), type of grazing
land (private grazing grounds or communal grazing grounds), grazing type (mixed species
or single species), and presence of livestock market was collected. The third part gathered
information about herd owners’ knowledge of RVF, its causative agent, clinical signs,
occurrence of abortion, neonatal death, mode of transmission, knowledge of Aedes spp. of
mosquito, and knowledge of zoonotic nature of RVF. Lastly, we gathered information about
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ecological factors, such as occurrence of heavy rainfall, flooding, occurrence of mosquito,
presence of permanent water points, and degree of vegetative cover. Selected herd owners
who did not want to participate in the study were replaced by other herd owners and
corresponding herds within the veterinary stations.

2.8. Data Analysis

All data were entered, cleaned, and validated in a Microsoft Office™ Excel® 2019 spread-
sheet. The RVFV ELISA test result (positive or negative) was the dependent variable in this
study. Descriptive and inferential analyses were performed in IBM SPSS version 20 (IBM
Corp) and Microsoft Office™ Excel® 2019 spreadsheets. One-way ANOVA and Student’s
t-test were used to test mean differences of variables. Bivariate analysis was performed
using the Pearson Chi-Square test of association (and Fisher’s exact test, where appropriate)
at a moderate significance of p ≤ 0.250. Univariable linear regression models with the
expected outcome RVFV ELISA test results, were generated to check multicollinearity.
Thereafter, a multivariable linear regression model was fitted, which included variables
that retained significance (p < 0.05) in the univariable linear regression analysis [20,59]. The
generated multivariable model was tested for goodness of fit and predictability using the
Hosmer–Lemeshow test and Omnibus test, respectively. The potential risk factors had
p–values less than 0.05.

3. Results
3.1. Description of Study Population

The study recruited 361 livestock farmers who gave written consent for question-
naire administration and whole blood sample collection from their livestock. Of the
361 participants, 58.17% (210/361) were male, and 41.83% (151/361) were female. Of the
361 participants, 98.06% (354/361) depend on subsistence farming for their livelihoods,
while 1.94% (7/361) had other income-generating activities. The species composition at
herd level was 62.05% (224/361), 34.07% (123/361), and 3.88% (14/361) for cattle, goat,
and sheep, respectively. In this study, herd size distribution varied, with 84.49% (305/361)
from small herds (≤25 animals), 4.98% (18/361) from medium herds (26–50 animals), and
10.53% (38/361) from large herds (>50 animals). The sampling for sheep flocks was not as
expected because some farmers refused due to fear of livestock death caused by unknowns
in CP, TO, and CZ districts.

The study site comprised three ecological zones (EZ); EZ 1 consisted of four districts,
namely Salima (SA), Mangochi (MH), Chikwawa (CK), and Nsanje (NE); EZ2 had two
districts, Thyolo (TO) and Chiradzulu (CZ); and lastly, EZ3 had two districts, Chitipa (CP)
and Karonga (KA) (Figure 1). A total of 1523 livestock whole blood samples were col-
lected from cattle 56.27% (857/1523), goat 34.01% (518/1523), and sheep 9.72% (148/1523)
(Table S1) (Supplementary Materials). Among these, 90.54% (1379/1523) were female, and
9.46% (144/1523) were male. The proportions of the female cattle, goats, and sheep were
90.90% (779/857), 90.93% (471/518), and 87.84% (130/148), respectively (Figure 2). The
age of cattle was divided into four categories: young < 2 years old was 24.85% (213/857),
sub-adults 2–4 years old was 29.87% (256/857), adults 5–8 years was 40.61% (348/857), and
old-age group for those above 9 years was 4.66% (40/857). Similarly, the ages of goats were
divided into four categories: < 2 years old was 30.50% (158/518), 2–3 years was 40.54%
(210/518), 4–5 years was 26.26% (136/518), and those above 6 years was 2.70% (14/518).
The ages for sheep were also in four age categories: < 2 years old was 31.08% (46/148),
2–3 years was 45.95% (68/148), 4–5 years was 21.62% (32/148), and those above 6 years
was 1.35% (2/148).
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3.2. RVFV Antibodies Results

The study screened 1523 serum samples for antibodies against RVFV and the optical
density readings (OD) used for RVFV seropositivity determination of livestock are pre-
sented in Tables S1 and S2 (Supplementary Materials). The total reactors per species were
higher in cattle than in goats and sheep at 183, 40, and 38, respectively (p = 0.016). The
distribution of reactors was: 169 for EZ1, 37 for EZ2, and 55 for EZ3 (Table S3).

3.3. Seroprevalence by Livestock Species at Individual Animal Level

The overall combined seroprevalence was 17.14% (261/1523, 95% CI = 15.33–19.11),
although this was significantly high (p = 0.047) in sheep (25.68%, 95% CI = 19.31–33.26)
compared with cattle (21.35%, 95% CI = 18.74–24.22) and goats (7.72%, 95% CI = 5.72–10.34).
The IgG overall seroprevalence was 14.18% (216/1523, 95% CI = 12.49–16.06) and 2.95%
(45/1523, 95% CI = 2.19–3.97) for IgM (Table 1).

Table 1. RVFV seroprevalence for the livestock species and prevalence for antibody tests.

Species Antibody Test n Reactors Seroprevalence (%) 95% CI

Cattle IgG 857 160 18.67 16.20–21.41
IgM 857 23 2.68 1.79–3.99

Overall 857 183 21.35 18.68–24.28
Goat IgG 518 32 6.18 4.41–8.59

IgM 518 8 1.54 0.78–3.01
Overall 518 40 7.72 5.64–10.45

Sheep IgG 148 24 16.22 11.14–22.99
IgM 148 14 9.46 5.71–15.25

Overall 148 38 25.68 19.02–33.62
n = Number of livestock; CI = Confidence interval; IgG = Immunoglobin G; IgM = Immunoglobin M; % = Percent.

3.4. Seroprevalence in Ecological Zones and Districts

The seroprevalence varied across ecological zones and districts. EZ1 had the highest
seroprevalence (20.34%, 169/831) compared with EZ3 (14.55%, 55/378) and EZ2 (11.78%,
37/314) (p = 0.022) (Table 2). District seroprevalence ranged from 6.22% to 25.68%. The
highest seroprevalence was observed in the Salima District (23.76%, 95% CI = 18.19–30.35),
with the lowest in Karonga District (6.22%, 95 CI = 3.59–10.55) (Table 2).
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Table 2. RVFV seroprevalence in ecological zones and districts.

Ecological Zones Districts n Seroprevalence 95% CI

EZ 1

Chikwawa 228 10.96 7.54–15.68
Nsanje 179 21.79 16.37–28.39
Salima 202 23.76 18.42–30.09

Mangochi 222 25.68 20.38–31.81
Overall 831 20.34 17.68–23.27

EZ 2
Chiradzulu 151 11.26 7.15–17.29

Thyolo 163 12.27 8.09–18.19
Overall 314 11.78 8.53–15.99

EZ 3
Chitipa 185 23.24 17.74–29.84
Karonga 193 6.22 3.59–10.55
Overall 378 14.55 11.23–18.61

n = Number of herds; 95% CI = Confidence interval; % = Percent; EZ1 = Ecological Zone 1, EZ2 = Ecological
Zone 2, EZ3 = Ecological Zone 3.

3.5. Seroprevalence According to the Sex and Age

The overall seroprevalence appeared to be higher in male livestock than in female
counterparts (Table 3). Similarly, males had higher IgG seroprevalence than female livestock
(p = 0.031). Furthermore, the overall seroprevalence across the age groups was higher in sub-
adults (2–4 and 2–3 age groups) for cattle and goats (p = 0.023 and p = 0.046, respectively),
while old-age (≥6) had higher seroprevalence in sheep (p = 0.029) (Table 4).

Table 3. Distribution of RVFV seroprevalence by the sex of animals.

Species Sex Category Antibody Reactors n Seroprevalence (%) 95% CI

Male Overall 22 77 28.57 19.13–40.17
Female Overall 161 780 20.64 17.88–23.69
Male IgG 19 77 24.67 15.86–36.05

Cattle Female IgG 141 780 18.08 15.47–20.99
Male IgM 3 77 3.89 1.01–11.73

Female IgM 20 780 2.56 1.61–4.01

Male Overall 4 47 8.51 2.76–21.27
Female Overall 36 471 7.64 5.48–10.52
Male IgG 4 47 8.51 2.76–21.27

Goat Female IgG 28 471 5.94 4.05–8.58
Male IgM 0 47 0.00 0.00–9.41

Female IgM 8 471 1.69 0.79–3.45

Male Overall 7 18 38.89 18.26–63.86
Female Overall 31 130 23.85 17.00–32.27
Male IgG 6 18 33.33 14.35–58.84

Sheep Female IgG 18 130 13.84 8.63–21.26
Male IgM 1 18 5.55 0.29–29.37

Female IgM 13 130 10 5.65–16.81

n = Number of livestock; CI = Confidence interval; IgG = Immunoglobin G; IgM = Immunoglobin M.

3.6. RVFV Seroprevalence at Livestock Herd Level

The study recruited 361 livestock herds of which 62.05% (224/361, 95% CI = 56.80–67.04),
34.07% (123/361, 95% CI = 29.24–39.25) and 3.88% (14/361, 95% CI = 2.21–6.57) were cattle,
goat, and sheep, respectively. Livestock herds were IgG-positive in all sampled districts,
unlike the IgM antibodies which were observed in only five out of eight districts (Table S4).
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Table 4. Distribution of RVFV seroprevalence across age groups.

Species Age Groups (Years) Antibody Reactors n Seroprevalence (%) 95% CI

<2 Overall 11 213 5.16 2.74–9.30
2–4 Overall 97 256 37.89 31.98–44.17
5–8 Overall 64 348 18.39 14.54–22.95
≥9 Overall 11 40 27.50 15.14–44.13
<2 IgG 8 213 3.85 1.75–7.53

Cattle 2–4 IgG 89 256 34.76 29.01–40.98
5–8 IgG 54 348 15.52 11.96–19.85
≥9 IgG 9 40 22.50 11.40–38.85
<2 IgM 3 213 1.41 0.36–4.39
2–4 IgM 8 256 3.12 1.46–6.29
5–8 IgM 10 348 2.87 1.47–5.39
≥9 IgM 2 40 5.00 0.87–18.21

<2 Overall 6 158 3.79 1.55–8.45
2–3 Overall 23 210 10.95 7.21–16.17
4–5 Overall 10 136 7.35 3.78–13.45
≥6 Overall 1 14 7.14 0.37–35.83
<2 IgG 4 158 2.53 0.81–6.76

Goat 2–3 IgG 18 210 8.57 5.30–13.41
4–5 IgG 9 136 6.62 3.26–12.55
≥6 IgG 1 14 7.14 0.37–35.83
<2 IgM 2 158 1.26 0.22–4.97
2–3 IgM 5 210 2.38 0.87–5.77
4–5 IgM 1 136 0.74 0.04–4.64
≥6 IgM 0 14 0.00 0.00–26.76

<2 Overall 3 46 6.52 1.69–18.92
2–3 Overall 24 68 35.29 24.36–47.90
4–5 Overall 10 32 31.25 16.74–50.14
≥6 Overall 1 2 50.00 9.45–90.55
<2 IgG 2 46 4.34 0.75–16.03
2–3 IgG 11 68 16.17 8.75–27.52

Sheep 4–5 IgG 9 32 28.13 14.39–46.97
≥6 IgG 1 2 50.00 9.45–90.55
<2 IgM 1 46 2.17 0.11–12.96
2–3 IgM 13 68 19.11 10.95–30.82
4–5 IgM 1 32 3.12 0.16–17.99
≥6 IgM 0 2 0.00 0.00–80.21

n = Number of livestock; CI = Confidence interval; IgG = Immunoglobin G; IgM = Immunoglobin M.
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The overall herd seroprevalence was 33.24% (120/361, 95% CI = 28.18–38.11). All
(100%) the sheep herds sampled were seropositive, of which 64.29% (9/14) were IgG
seroprevalent and 35.71% (5/14) were IgM seroprevalent. The herd seroprevalence for cattle
was 36.16% (81/224, 95% CI = 29.51–42.41), of which 77.78% (63/81) were seroprevalent for
IgG and 22.22% (18/81) were seroprevalent for IgM. The herd seroprevalence for goats was
20.33% (25/123, 95% CI = 13.82–28.73) of which 68.00% (17/25) were seroprevalent for IgG
and 32.00% (8/25) were seroprevalent for IgM.

We also compared the herd level seroprevalence across the different ecological zones
(EZ). The herd seroprevalence for EZ2 was higher at 36.36% (52/143, 95% CI = 28.61–44.55),
followed by EZ1 34.12% (29/85, 95% CI = 24.40–45.88), then EZ3 with 29.32% (39/133,
95% CI = 21.92–37.95).

Furthermore, the overall herd seroprevalence (combined IgG and IgM) at district level
had a median of 43.93% (range 14.37–84.25%, (n = 8)) (Table 5). Mangochi and Nsanje
districts had overall herd seroprevalence of more than 75%, while Chiradzulu and Karonga
districts had 16.13% and 14.33%, respectively. The herd seroprevalence varied among the
three species such that sheep had higher seroprevalence of 100% (n = 5) compared with
cattle and goats (Table 5).

Table 5. RVFV herd seroprevalence across districts and species.

Factor District n Seroprevalence (%) 95% CI

Salima 29 44.83 26.95–64.02
Mangochi 19 84.24 59.51–95.83
Chikwawa 20 55.00 32.04–76.17

Districts Nsanje 17 76.50 49.80–92.18
Chiradzulu 80 16.13 9.36–26.55

Thyolo 63 23.78 14.35–36.49
Chitipa 70 42.89 31.28–55.22
Karonga 63 14.33 7.14–25.97

Total 361 33.24 28.18–38.11

Salima 10 7.01 35.37–91.91
Mangochi 12 83.32 50.88–97.06
Chikwawa 10 30.00 8.09–64.63

Nsanje 8 87.51 46.68–99.34
Chiradzulu 39 28.24 15.55–45.10

Cattle Thyolo 32 31.34 16.75–50.14
Karonga 53 11.30 4.69–23.72
Chitipa 60 45.00 32.33–58.31

Salima 16 18.76 4.97–46.31
Mangochi 5 80.00 29.88–98.95
Chikwawa 5 60.00 17.04–92.74

Nsanje 6 50.00 18.76–81.23
Chiradzulu 41 4.92 0.81–17.05

Goat Thyolo 31 16.12 6.09–34.47
Chitipa 10 30.00 8.09–64.63
Karonga 9 22.22 3.95–59.81

Salima 3 100 19.79–1.00
Sheep Mangochi 2 100 19.79–1.00

Chikwawa 5 100 56.55–1.00
Nsanje 3 100 39.58–1.00

Karonga 1 100 5.46–1.00

n = Number of herds; CI = Confidence interval; % = Percent.

3.7. Analysis of Association between Potential Risk Factors and RVFV Seropositivity

Frequencies and proportions of the epidemiological factors varied across the study area
(Tables 6 and 7). It was found that 46.67% (7/15) and 40.00% (6/15) of the variables were sig-
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nificant for individual livestock and herds (p = 0.05), respectively. Thereafter, the variables
were screened for multicollinearity using univariate linear regression (Tables 8 and 9).

Table 6. Frequency and proportions of epidemiological factors at individual livestock level.

Factor Level Frequency Percent (n = 1523)

Gender of farmer Male 1226 80.50
Female 297 19.50

Species Cattle 857 56.27
Goat 518 30.01

Sheep 148 9.72
Sex of livestock Male 143 9.39

Female 1380 90.61
Ecological zones EZ1 831 54.56

EZ2 314 20.62
EZ3 378 24.82

Districts SA 202 13.26
MH 222 14.58
CK 228 14.97
NE 179 11.75
TO 163 10.70
CZ 151 9.91
KA 185 12.15
CP 193 12.67

None 19 1.25
Night shelter Communal 862 56.60

Private 642 42.15
Herd composition Single species 109 7.16

Mixed species 1414 92.84
Grazing site Communal 1214 79.71

Stall feeding 309 20.29
Permanent water Swamps 634 41.53

Swamps and rivers 889 58.47
Vegetative cover Trees 632 41.50

Trees and green grass 513 33.68
Forest 378 24.82

Education level None 69 4.53
Primary 1010 66.32

Secondary 412 27.05
Tertiary 32 2.10

Routine management No 385 25.28
Yes 1138 74.72

Average rainfall <1000 mm 393 25.80
1001–1500 mm 660 43.34

>1600 mm 470 30.86
Herd size <25 864 56.72

26–50 196 12.87
≥ 51 463 30.40

RVF awareness Yes 54 3.55
No 1469 96.45

n = Number of livestock; EZ1 = Ecological Zone 1, EZ2 = Ecological Zone 2, EZ3 = Ecological Zone 3; District names:
SA = Salima, MH = Mangochi, CK = Chikwawa, NE = Nsanje, TO = Thyolo, CZ = Chiradzulu, CP = Chitipa, and
KA = Karonga; IgG = Immunoglobin G; IgM = Immunoglobin M.
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Table 7. Frequency and proportions of epidemiological factors at herd level.

Factor Level Frequency Percent (n = 361)

Gender of farmer Male 210 58.17
Female 151 41.83

Goat 123 34.07
Species Cattle 224 62.05

Sheep 14 3.88
District SA 29 8.03

MH 19 5.26
CK 20 5.54
NE 17 4.71
TO 63 17.45
CZ 80 22.16
KA 70 19.39
CP 63 17.45

Ecological zone EZ1 85 23.55
EZ2 143 39.61
EZ3 133 36.84

Night shelter None 7 1.94
Communal 179 49.58

Private 175 48.48
Herd composition Single species 69 19.11

Mixed species 292 80.89
Grazing site Communal 219 60.66

Stall feeding 142 39.34
Permanent water Swamps 56 15.51

Swamps and rivers 305 84.49
Vegetative cover Trees 199 55.12

Trees and green grass 29 8.03
Forest 133 36.84
None 15 4.16

Education level Primary 248 68.70
Secondary 81 22.44

Tertiary 17 4.71
Routine management No 90 24.93

Yes 271 75.07
Average rainfall <1000 mm 28 7.76

1001–1500 mm 258 71.47
>1600 mm 75 20.78

Herd size less 25 305 84.49
26–50 18 4.99

more than 51 38 10.53
1–4 236 65.37

Years in farming 5–8 114 31.58
≥ 9 11 3.05

RVF awareness No 349 96.68
Yes 12 3.32

n = Number of herds; EZ1 = Ecological Zone 1, EZ2 = Ecological Zone 2, EZ3 = Ecological Zone 3; District names:
SA = Salima, MH = Mangochi, CK = Chikwawa, NE = Nsanje, TO = Thyolo, CZ = Chiradzulu, CP = Chitipa, and
KA = Karonga; IgG = Immunoglobin G; IgM = Immunoglobin M.
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Table 8. Summary of univariate regression analysis of potential risk factors and RVFV seropositivity at individual livestock level.

Potential Risk Factors Number Tested (n = 1523) Reactors (n = 261) Seropositivity (%) OR 95% CI p-Value

Species (n = 1523)
Cattle 857 183 21.35 Ref
Goat 518 40 7.72 0.30 0.21–0.44 0.001 ***

Sheep 148 38 25.68 1.27 0.85–1.90 0.242 *
Sex (n = 1523)

Male 142 33 23.24 Ref
Female 1381 228 16.51 0.65 0.43–0.98 0.044 ***

Education level (n = 1523)
None 69 69 100.00 Ref

Primary 1010 111 10.99 4.55 1.41–14.64 0.011 ***
Secondary 412 72 17.47 4.96 1.51–16.20 0.008 ***

Tertiary 32 9 28.12 8.60 2.14–34.56 0.002 ***
Rainfall (n = 1523)

< 1000 mm 393 75 19.08 Ref
1001–1500 mm 660 78 11.82 0.587 0.41–0.83 0.003 ***

>1600 mm 470 110 23.40 1.33 2.96–9.81 0.044 ***
RVF awareness (n = 1523)

No 1469 245 16.68 Ref
Yes 54 16 29.63 2.10 1.15–3.83 0.015 ***

Herd composition
(n = 1523)
Single spp. 109 29 26.61 Ref
Mixed spp. 1414 232 16.41 0.513 0.037–0.70 0.001 ***

Ecological zones (n = 1523)
EZ3 378 55 14.86 Ref
EZ1 831 169 20.34 1.499 1.07–2.09 0.017 ***
EZ2 314 37 11.78 0.784 0.50–1.22 0.287

n = Number of participants; CI = Confidence interval, Significant level < 0.05; OR = Odds ratio; *** = Significant at 0.05, considered for multivariate analysis; * = considered for multivariate analysis (cut-off p ≤ 0.250);
Ref = reference category.
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Table 9. Summary of test of association analysis between potential risk factors and RVFV seropositiv-
ity at herd level.

Potential Risk
Factors

Number Tested
(n = 361) Reactors (n = 120) Seropositivity (%) OR 95% CI p-Value

Species (n = 361)
Cattle 224 81 36.16 Ref
Goat 123 25 20.32 2.22 1.32–3.72 0.002 ***

Sheep 14 14 100.00 0.001 0.00–0.00 0.998
Education level

(n = 361)
None 15 3 20.00 Ref

Primary 248 82 33.06 0.232 0.06–0.79 0.019 ***
Secondary 81 34 42.0 0.163 0.04–0.58 0.005 ***

Tertiary 17 1 5.88 0.23 0.01–0.37 0.014 ***
Rainfall (n = 361)

< 1000 mm 28 8 28.57 Ref
1001–1500 mm 238 73 30.37 4.925 1.44–23.35 0.024 ***

>1600 mm 75 39 52.00 9.023 1.37–17.97 0.037 ***
RVF awareness

(n = 361)
No 349 118 33.81 Ref
Yes 12 2 16.67 2.587 0.55–11.99 0.225 *

Herd composition (n
= 361)

Mixed spp. 292 99 33.90 Ref
Single spp. 69 21 30.43 0.353 0.02–0.80 0.022 ***

Ecological zones (n =
361)
EZ3 133 39 29.32 Ref
EZ1 85 53 62.35 6.802 3.72–12.42 0.001 ***
EZ2 143 28 19.58 1.704 0.97–2.97 0.061 *

n = Number of participants; CI = Confidence interval, Significant level < 0.05; OR = Odds ratio; *** = Signifi-
cant at 0.05, considered for multivariate analysis; * = considered for multivariate analysis (cut-off p ≤ 0.250);
Ref = reference category.

3.8. Determining Potential Risk Factors

The study found that the risk factors for RVFV seropositivity at individual live-
stock was sex of livestock. Female livestock were (OR: 1.74, 95% CI = 1.08–12.82) times
more likely to be seropositive to RVFV than male livestock (p = 0.016), while areas re-
ceiving approximately 1001–1500 mm of rainfall and herd composition were risk factors
at the herd level. Livestock herds in areas with rainfall amount >1600 mm were (OR:
2.239, 95% CI = 1.07–8.82) times more likely to be seropositive to RVFV than those in areas
of rainfall amount of < 1000 mm at (p = 0.023). Further, livestock herds in areas of rainfall
amount of 1001–1500 mm, were (OR: 2.470, 95% CI = 1.14–5.37) times more likely to be
seropositive to RVFV than those in areas of rainfall amount of <1000 mm at (p = 0.022).
Livestock herds that belonged to mixed species were (OR: 10.410, 95% CI = 3.04–35.59)
times more likely to be seropositive to RVFV than livestock herds managed under single
species (p = 0.001) (Tables 10 and 11).

Table 10. Summary of maximum likelihood estimates for risk factors associated with RVFV seroposi-
tivity for individual livestock.

Variable Level OR 95% CI p-Value

Sex (n = 1523) Male Ref
Female 1.740 1.08–12.82 0.016 ***

*** Statistically significant at p < 0.05; Ref = Reference category; OR = Odds Ratio, 95% CI = Confidence interval.
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Table 11. Summary of maximum likelihood estimates for risk factors associated with RVFV seroposi-
tivity at livestock herd level.

Variable Level OR 95% CI p-Value

Rainfall (n = 361) <1000 mm Ref
1001–1500 mm 2.475 1.14–5.37 0.022 ***

>1600 mm 2.239 1.07–8.83 0.023 ***
Herd composition (n = 361) Single spp. Ref

Mixed spp. 10.410 3.04–35.59 0.001 ***

*** = Significant at 0.05; OR = Odds ratio; CI = Confidence interval; Significant level < 0.05; Ref = Reference category.

4. Discussion

This sero-epidemiological investigation reports the detection of RVFV antibodies (IgG
and IgM) in apparently healthy domestic ruminants and also evaluates the risk of exposure
to the virus in livestock in three ecological zones of Malawi. The current study reports RVFV
seroprevalence of 21.35% in cattle, 25.68% in sheep, and 7.72% in goats, with the overall
seroprevalence of 17.14%, which is comparable to the previously reported 18.13% RVFV
seroprevalence in cattle from Zomba district in Malawi in 1992 [44]. The detection of IgG
and IgM in this study in livestock that had no clinical signs supports the notion that RVF is
endemic in sub-Saharan African countries in general, including Malawi. More importantly,
these results support evidence of IEP maintenance of RVFV in domestic ruminants

The high seroprevalence in sheep (25.68%) compared with cattle (21.35%) and goats
(7.72%) was likely due to the increased susceptibility of sheep to RVFV infection [60,61].
These findings are in tandem with reports from the Democratic Republic of Congo, Tanzania,
and Chad where seroprevalence in sheep was higher than in cattle and goats [18,21,61,62].
The seroprevalence in sheep herds could indicate possible circulation of RVFV that caused
the death of sheep in the rainy season (January–March) without clinical signs, which
corroborated with prevailing fear among sheep farmers, as previously reported [43].

In addition, RVFV seropositivity was detected across all age groups of ruminant
species tested, with higher prevalence in sub-adults and old-age groups compared with
young animals (Table 4). The high seroprevalence in sub-adults could be due to increased
activity of the group members and their high proportions in the population. Higher
seroprevalence in old-age groups could be attributed to lower numbers of these age groups
in the population because most adult livestock were selected for slaughter, except for the
breeding stock, as previously reported [20]. Nevertheless, differences in seroprevalence
between ruminant species were previously reported in other parts of the region, such as
the Republic of South Africa [20,63] and Mozambique [22,33,39].

The overall difference in prevalence based on sex was reported in Chad [62] and Mada-
gascar [11], where the higher seroprevalence in males was attributed to their roles as draft
and breeding animals. Similarly, the current study observed higher seroprevalence in male
than female cattle, possibly due to poor participation of male compared with female live-
stock. It was learned that the overall prevailing breeding management strategy preserved
more cows for reproduction purposes than bulls, in a breeding ratio of approximately 1 bull
to 15 or more cows. In areas dominated by indigenous cattle, they cull unwanted bulls,
while in dairy production districts, artificial insemination is the predominant means of
breeding [64].

The detection of IgM antibodies suggested recent virus infections in the study area,
as IgM antibodies to RVFV can be detected up to two months after infection [55,57]. The
circulation of RVFV during the inter-epidemic period leaves open the possibility that
clinical RVF cases may have occurred undetected or may have been mistaken for other
diseases, as such were not reported due to lack of public awareness [43]. The detection of
IgG in other districts could be explained by increased permanent water bodies as previously
reported in Tanzania and Madagascar [65,66]. Furthermore, cross-border movement could
also contribute since some of the districts share boundaries with Tanzania, Mozambique,
and Zambia where RVF was reported by Tshilenge et al. [6].
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The significant risk factor for individual livestock was sex. Female livestock were
at greater risk of RVFV infection than male livestock possibly due to higher proportions
in the community, as previously reported by Nyakarahuka et al. [67]. At herd level,
risk factors suggested that livestock herds living in areas with higher rainfall amounts
(>1000 mm) were at greater risk of RVFV infection than livestock herds living in areas with
low rainfall amount (<1000 mm), possibly due to increased favorable mosquito breeding
habitats such as wetlands/dambos, as previously observed in Nigeria, Kenya, and Southern
Africa [68–70]. In addition, livestock herds that belonged to mixed species were at greater
risk of RVFV infection compared with livestock herds that belonged to single species. This
could be due to increased exposure to RVFV predisposing factors such as contact with
remains of neonatal death, after-birth materials, aborted/stillbirth materials (including
fluids), and mosquito bites in communal grounds [43].

This study highlights the inter-epizootic maintenance of the RVFV in domestic rumi-
nants in Malawi. The seroprevalence data from this study are vital in designing effective
prevention and control strategies at national and regional levels. However, it is imper-
ative that the role of mosquitoes, humans, and wildlife in the epidemiology of RVF in
Malawi is clarified.

5. Conclusions

The current study updates the RVFV status in Malawi by confirming its widespread
seropositivity and evidence of possible unreported active/recent infections. Animal sex,
rainfall intensity, and mixed species herds are determining factors for the spread of RVFV.
As RVFV is a zoonotic infection, it is necessary to conduct community sensitization and set
up early warning, surveillance, and control strategies based on the identified risk factors.
However, due to financial constraints, the study was not conducted in the wet and dry
seasons to establish seasonal influence on RVFV circulation. The study also was unable to
demonstrate the genome and the circulating strain because it failed to time the effective
period of viremia state of the animals for the isolation of the virus.
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