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Abstract: RNA sequencing (RNA-Seq) and mass-spectrometry-based proteomics data are often
integrated in proteogenomic studies to assist in the prediction of eukaryote genome features, such as
genes, splicing, single-nucleotide (SNVs), and single-amino-acid variants (SAAVs). Most genomes of
parasite nematodes are draft versions that lack transcript- and protein-level information and whose
gene annotations rely only on computational predictions. Angiostrongylus costaricensis is a roundworm
species that causes an intestinal inflammatory disease, known as abdominal angiostrongyliasis (AA).
Currently, there is no drug available that acts directly on this parasite, mostly due to the sparse
understanding of its molecular characteristics. The available genome of A. costaricensis, specific to
the Costa Rica strain, is a draft version that is not supported by transcript- or protein-level evidence.
This study used RNA-Seq and MS/MS data to perform an in-depth annotation of the A. costaricensis
genome. Our prediction improved the reference annotation with (a) novel coding and non-coding
genes; (b) pieces of evidence of alternative splicing generating new proteoforms; and (c) a list of
SNVs between the Brazilian (Crissiumal) and the Costa Rica strain. To the best of our knowledge,
this is the first time that a multi-omics approach has been used to improve the genome annotation
of A. costaricensis. We hope this improved genome annotation can assist in the future development
of drugs, kits, and vaccines to treat, diagnose, and prevent AA caused by either the Brazil strain
(Crissiumal) or the Costa Rica strain.

Keywords: RNA-Seq; mass spectrometry; nematode; genome annotation; ncRNAs

1. Introduction

One of the critical steps after genome sequencing and assembling is annotating the
genomic features [1]. Many computational tools perform ab initio genome annotation using
only genome sequence motifs [2–7]. However, predicting genes and splice variants within
a genome sequence using this approach is particularly challenging for eukaryotic genomes
because genes are usually distant from each other and are interrupted by introns [8]. There-
fore, data from multiple high-throughput technologies such as RNA sequencing (RNA-Seq)
and protein mass spectrometry (MS/MS) are often used to assist in predicting these ge-
nomic features [9]. Usually, RNA-Seq reads are aligned to a reference genome, followed by
gene prediction and the assembly of transcript sequences [10,11]. Transcript sequences are
computationally translated, generating a customized protein-sequence database for protein

Pathogens 2022, 11, 1273. https://doi.org/10.3390/pathogens11111273 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens11111273
https://doi.org/10.3390/pathogens11111273
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0001-9084-938X
https://orcid.org/0000-0001-9495-8399
https://orcid.org/0000-0002-8887-0582
https://orcid.org/0000-0001-9572-3436
https://orcid.org/0000-0002-7863-9512
https://orcid.org/0000-0001-5672-7848
https://doi.org/10.3390/pathogens11111273
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens11111273?type=check_update&version=1


Pathogens 2022, 11, 1273 2 of 16

identification by MS/MS [12,13]. Integrating RNA-Seq and MS/MS data improves genome
annotation because the protein-coding genes’ expression and distinct splice variants can be
confirmed at the transcript and protein levels [14–16].

In addition to gene annotation and alternative splicing prediction, genetic variations,
such as single-nucleotide variants (SNVs) and insertions and deletions (INDELs), can also
be detected during genome annotation using RNA-Seq and MS/MS data [17]. SNVs are
the most prevalent genetic variation in eukaryotes and are generated by point mutations
in the genome sequence of a given species [18]. These SNVs may change a codon in
protein-coding genes and eventually induce a single-amino-acid substitution (SAAV), a
missense mutation [19]. SNVs can be detected by identifying mismatches in the alignment
of RNA-Seq reads onto the genome sequence [20]. SNVs of missense mutations can also be
confirmed at the protein level by recognizing their correspondent SAAVs in the MS/MS
data [21]. Identifying SNVs and SAAVs is particularly important in nematodes because
point mutations have been associated with resistance to anthelmintic drugs [22].

The genome sequences of pathogenic helminths are, in many cases, draft versions in
need of annotation improvement [23]. Angiostrongylus costaricensis is a nematode species
that causes an intestinal inflammatory disease known as abdominal angiostrongyliasis
(AA) [24]. AA was first reported in 1952 [25], and the parasite was described in 1971 in
Costa Rica [26]. This disease is a public health problem in Latin America, especially in
Costa Rica and Brazil [27]. Currently, no drugs acting directly on this parasite are available,
primarily due to the sparse understanding of its molecular characteristics [28]. The current
publicly available genome draft of A. costaricensis is specific to the Costa Rica strain, and
its annotation is not supported by transcript- or protein-level evidence. Although the
Brazilian strain (Crissiumal strain, Rio Grande do Sul, Brazil) is well-characterized in terms
of its morphological aspects [29], migratory pathways [30], and vascular pathology [31], a
characterization from a genetic perspective is still needed. Therefore, this study aimed to
improve the genome annotation of A. costaricensis based on RNA-Seq and MS/MS data
with novel coding and non-coding genes and alternative splicing proteoforms. We also
provide a list of SNVs between the Brazilian (Crissiumal) and the Costa Rica strain. To the
best of our knowledge, this is the first time a multi-omics approach has been used to assist
in the genome annotation of A. costaricensis.

2. Materials and Methods
2.1. Source of Animals and Worm Isolation

Sigmodon hispidus (from the family Cricetidae) were bought from Vyrion Systems (USA)
in 1991 and used to establish a colony that has been maintained to present in the Laboratory
of Pathology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil (license IBAMA
34095). Animals were kept in a temperature-controlled room (approximately 21/22 ◦C)
and fed ad libitium. All experimental procedures were performed in accordance with the
ethical recommendations of the Animal Ethics Committee of the Oswaldo Cruz Foundation
(CEUA/Fiocruz) (licenses LW 43/13 and LW 26/15). The calculation of statistical power
was not applicable to this study. Instead, the number of S. hispidus necessary for the
isolation of worms in sufficient quantity to perform the RNA-Seq in triplicate and MS/MS
in quadruplicate was used. Adult A. costaricensis (Crissiumal strain) were recovered
from the mesenteric arteries of twenty-five S. hispidus 30–40 days post-infection. Rodent
euthanasia was performed with an intraperitoneal injection of sodium thiopental at a dose
of 120 mg/kg body weight. The life cycle of the parasites was maintained at the laboratory
through their successive passages in mollusks Biomphalaria glabrata (intermediate hosts) and
rodents S. hispidus (definitive hosts), as previously described [30]. Animal procedures were
approved by the Ethics Committee on the Use of Animals at the Oswaldo Cruz Institute
(CEUA L-039/2017). Worms were washed at least three times in PBS (pH 7.4) to remove
host tissues and were frozen in liquid nitrogen. Frozen worms were ground to a fine
powder using pre-chilled mortar and pestle on dry ice.
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2.2. RNA Sequencing

Pulverized frozen tissue (~100–200 mg) was placed into microtubes containing 1 mL of
TRIzol (Life Technologies, Carlsbad, CA, USA). DNA was degraded using the PureLink™
DNase Set according to the manufacturer’s instruction (Life Technologies). Total RNA
was isolated using the PureLink RNA Mini-Kit (Ambion, Austin, TX, USA) according
to the manufacturer’s instruction (Life Technologies) and quantified with a Nanodrop
ND-1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA, EUA). The RNA
integrity was assessed via agarose gel electrophoresis and via automated electrophoresis
(2100 Bioanalyser Agilent, Santa Clara, CA, USA), wherein only samples with RNA integrity
number (RIN) equal or greater than 8 were selected. All research activities carried out with
the Brazilian genetic heritage (law 13123/15 and Decree 8772/16) were registered in the
National System of Genetic Resource Management and Associated Traditional Knowledge
(SisGen register A26AB0E). Sequencing libraries were prepared from total RNA for all
six samples (three adult female, three adult male) using the Illumina TruSeq Stranded
Total RNA kit [32]. Paired-end sequence data were generated on the Illumina HiSeq
2500 platform targeting 10 gigabases per sample. Analytical processing of data started
using unaligned bam files.

2.3. Mass Spectrometry

Protein extracts were obtained after mechanical maceration (Sample Grinding kit,
GE Healthcare, Chicago, IL, USA) of males and females (4 mg each) in 100 µL of 0.05 M
Tris-HCl pH 7.6, containing 2% SDS. After maceration, samples were incubated in the
extraction buffer for 10 min at room temperature, boiled in a water bath for 5 min, and
centrifuged. The supernatants were collected, and their protein content was estimated by
the bicinchoninic acid (BCA) method [33], using bovine serum albumin (BSA) as standard
protein. Aliquots of each protein extract were mixed (v/v) with 0.05 M Tris-HCl pH 7.6,
containing 2% SDS and 100 mM DTT, followed by boiling for 5 min and incubation at
room temperature for an additional 15 min. Then, 100 µg of the reduced extracts were sub-
jected to the FASP (Filter Aided Sample Preparation) protocol [34] using Microcon-30kDa
ultrafiltration membranes (Merck-Millipore, Burlington, MA, USA, Cat. No. MRCF0R030).
Following conventional peptide alkylation and washing steps, two enzymes were sequen-
tially used for protein digestion (Lys-C and trypsin, 12–18 h at 37 ◦C each enzyme, E:S
1:100 w/w). For each biological replicate, a single final digest was desalted in POROS
R2 microcolumns and processed for nLC-nESI-MS/MS. All analyses were done in the
Orbitrap QExactive Plus mass spectrometer (Thermo Scientific), hyphenated to the Dionex
Ultimate 3000 nanochromatograph, as previously described [35], unless stated otherwise.
Fractionation was performed on a New Objective PicoFrit column (tip 10 µm, 75 µm
inner diameter × 40 cm length) packed in-house with Reprosil Pur 120 C18-AQ 1.9 µm
resin (Dr. Maisch GmbH, Ammerbuch, Germany). The following mobile phases were used:
(A) 0.1% formic acid in water; (B) 0.1% formic acid in acetonitrile. The column was eluted
with a linear gradient of 2–45%B for 162 min, followed by a gradient between 45–80%B for
4 min, and, finally, isocratic washing with 80%B for 2 min. Each biological replicate (n = 8)
was acquired in technical triplicate.

2.4. Protein Identification and Quantification

Protein identification was based on the peptide–spectral matching (PSM) approach,
using the Comet search algorithm, and implemented in the freely available PatternLab
for Proteomics computational environment (version 5) [36]. A single FASTA file con-
taining non-redundant protein sequences from the WormBase database (9344 entries),
supplemented with in silico translated transcripts identified by the software BRAKER
(12,228 entries) and with protein sequences containing SAAVs predicted by the software
Pilon (16,574 entries), was used by the search engine. The “Generate Search DB” module
generated a target-reverse database enriched with common MS contaminant sequences
(e.g., keratins, albumin, and trypsin). Uninterpreted high-resolution MS/MS spectra were
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searched against this comprehensive database using Comet default parameters. Enzyme
specificity was semi-specific, no proline restriction was specified for trypsin, up to 2 missed
cleavages were allowed, and the initial precursor mass tolerance was set to 40 ppm. The
following modifications were considered (up to 2 variable modifications per peptide):
(1) Carbamidomethyl (C, fixed); (2) Carbamidomethyl (DEHK (including N-terminal),
variable); (3) Deamidation (NQ, variable). PSM results were filtered by the search engine
processor (SEPro) tool implemented in PatternLab V. The final post-processing step was
adjusted to converge to reliable results, showing ≤1% FDR at spectra, peptide, and protein
levels and ≤10 ppm mass error for MS1 and MS2 spectra.

The same identification strategy was applied for proteome quantification, although
using a database containing all the above target sequences, except for those containing the
SAAVs predicted by the software PILON. Protein label-free quantification was performed
according to the normalized ion abundance factor (NIAF) [36]. A minimum of seven
MS1 points were accepted for obtaining the extracted ion-chromatogram (XIC) of unique
peptides only, and at least two unique peptides were required for quantifying each protein.

2.5. Annotation of Novel Gene and Splicing Variants Using RNA-Seq Data

RNA-Seq raw reads were trimmed according to the base call quality (PHRED score > 20)
and the presence of sequence adaptors, using the software Trim Galore version 0.4.0 [37].
Trimmed reads were aligned to the publicly available draft genome sequence of A. costari-
censis (assembly version A_costaricensis_Costa_Rica_0011_upd, WormBase WBPS15), using
the software HISAT2 version 2.1.0 [38]. Reads uniquely aligned to the genome were se-
lected. The alignment file in SAM format was sorted by read names and converted to
its binary format, BAM, using the SAMtools version 1.3.1 package [39]. The BAM files
of each biological replicate were merged and sorted by genome coordinates using the
SAMtools package. The merged BAM file was used as extrinsic evidence for the genome
annotation software, BRAKER version 2.0 [40], generating the final genome annotation file
of protein-coding genes in GTF format (general transfer format). The genome annotation of
A. costaricensis (annotation version 2014-06-50HGPpatch, WormBase version WBPS15) was
improved with the BRAKER annotation. This process also merged gene models with over-
lapped transcripts according to BRAKER and WormBase annotations to reduce artifactual
fragmentation. The transcript sequences and in silico translations of complete ORFs were
obtained using GffRead version 0.12.1 (http://ccb.jhu.edu/software/stringtie/gff.shtml,
accessed on 21 August 2022).

2.6. Functional Annotation

Blast2GO version 5.2.5 [41] and InterProScan from the package OmicsBox version
1.3.11 [42] were applied to predict the functional annotations of complete ORFs from the
improved WBPS15 annotation file. Parameters used were in silico translated sequences of
complete ORFs (21,584 entries) as queries and Metazoa sequences from nr v5 database as
the reference sequence for Blastp search. The subsequent functional annotation steps were
performed using Blast2GO default parameters.

2.7. Annotation of Single-Nucleotide Variants (SNVs)

The publicly available draft genome of A. costaricensis (WormBase version WBPS15)
is from the Costa Rica strain. However, the RNA-Seq dataset generated in this work is
from the Brazil strain (Crissiumal). Therefore, a genome sequence with SNVs identified in
the Brazil strain (Crissiumal) and not mandatorily in the Costa Rica strain was built using
the alignments of the RNA-Seq reads to the reference genome and the Pilon version 1.24
software [43] with default parameters. The ANNOVAR software (version 2020-06-07) [44]
was used to identify whether the identified SNVs would cause amino acid substitutions. A
Perl script was used to verify whether the substitutions were between amino acids with
similar physico-chemical characteristics (conservative) or not (non-conservative). Complete
ORFs in the genome sequence with Brazilian SNVs were translated in silico using the
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improved WBPS15 GTF file and the GffRead software [45] to build the protein-sequence
database used in protein identification.

2.8. Annotation of Non-Coding RNA Genes

The non-coding RNA (ncRNAs) genes were predicted using structure strategy and
sequence-similarity search. For the former, we used the following software: (i) INFERNAL
version 1.1.4 (9 December 2020) [46] with cmsearch software, parameter-cut_ga (to decrease
the false-positive results) and based on covariance models from Rfam database version 14.7
(December 2021, 4069 families) [47]. For the latter, we used BLASTN [48] against RNAcen-
tral release 19 [49] with parameters dust, e-value 0.00001, and filtering by identity and query
coverage with at least 95% as the threshold. We built custom Python scripts for filtering
and merging results. When the prediction from both approaches overlapped, the one with
the minor e-value score was chosen. Finally, we compared our prediction to the WormBase,
and those ncRNAs that did not coincide with any WormBase ncRNA were selected as the
set of novel ncRNAs.

2.9. Annotation of Single-Amino-Acid Variants (SAAVs)

The identified peptides containing SAAVs were compared to the protein sequences
using the aligner blastp (version 2.9.0) [48]. For the sake of confidence, beyond the pre-
viously described FDR threshold of 1%, the analysis considered only peptides identified
with primary scores ≥ 2.5 (for charge states +2) or ≥3.0 (for charge states ≥ +3). The
alignment results were used to determine the correct coordinates of each peptide within its
protein sequence. Using an in-house Perl script, the exact amino acid substitution within
the identified peptide was obtained using the ANNOVAR output file, with the coordinate
of each amino acid substitution within each protein sequence.

2.10. Transcript Quantification

Counting information of read fragments per transcript was obtained using the HTSeq-
count software (version 3.3.2) [50]. The DESeq2 package (version 1.32.0) [51] from the R
Bioconductor toolset imported the counting information to a data frame. The GenomicFea-
tures package (version 1.44.2) [52] from the R Bioconductor toolset was used to import
genomic features from the genome annotation file (GTF file) and to normalize the counting
data using the Fragments Per Kilobase Million (FPKM) method.

2.11. Analysis of Transcriptome and Proteome Abundance Levels

FPKM and NIAF values were used to infer the abundance of the transcripts and
proteins, respectively. These estimates were used to check the correspondence between
transcriptome and proteome abundances. To make FPKM and NIAF values comparable,
they were log10 transformed, and z-scores were calculated using the scale native function of
the R program language. For a visual comprehension of expression patterns, transcripts and
proteins with similar abundances were clustered using the k-means clustering algorithm
(k = 15) and plotted as a heatmap using the R package ComplexHeatmap (version 3.13) [53].

3. Results
3.1. Improving the A. costaricensis Genome Annotation

Our approach used RNA-Seq data to search for novel genes and transcripts, including
protein-coding and non-coding genes and alternative transcripts. The resulting annotation
files (GFF3) are available at https://github.com/Matheusdras/Acostaricensis-genome-
reannotation.

3.1.1. Novel Protein-Coding Genes and Transcript Variants

On average, 71% of the RNA-Seq-trimmed reads were uniquely mapped onto the A.
costaricensis genome sequence, and 52% were assigned to genes using the current WormBase
reference genome annotation (Supplementary Table S1). The RNA-Seq read alignments
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were used as extrinsic evidence for gene prediction using the BRAKER software [40]. The
reference annotation was then improved with the genome annotation derived from RNA-
Seq read alignments (BRAKER). Gene models with overlapped transcripts according to
BRAKER and WormBase annotations were merged on the final improved annotation to
reduce artifactual fragmentation (example in Supplementary Figure S1). After combining
gene models, the number of genes from BRAKER annotation decreased from 13,136 to
11,531, and WormBase gene annotations were reduced from 13,417 to 12,229.

The improved annotation encompasses 14,588 genes, 27,788 mRNAs, and 21,584 com-
plete ORFs (Table 1), including the prediction of 2359 novel genes, 2553 novel transcripts,
and 10,194 novel transcript variants (Figure 1 and examples in Supplementary Figure S2a,b).
On average, each novel gene had one transcript (Supplementary Figure S3a, yellow) with
five exons (Supplementary Figure S3b, yellow), while novel transcript variants had twelve
exons (Supplementary Figure S3b, light green). The mean length of the novel transcripts
was 552 base pairs (bp) (Supplementary Figure S3c, yellow) and of the novel transcript
variants was 1427 bp (Supplementary Figure S3c, orange). The mean length of exons
from the novel transcripts was 98 bp (Supplementary Figure S3d, yellow) and from novel
transcript variants was 115 bp (Supplementary Figure S3d, orange). The length of each
transcript and its category can be found in Supplementary Data S1.

Table 1. The number of genes, mRNAs, and complete ORFs of WormBase, BRAKER, and WormBase
improved annotations.

Annotation Source Genes mRNAs Complete ORFs

WormBase 13,417 13,411 12,154
BRAKER 13,136 15,630 13,914

WormBase improved
with BRAKER’s

annotation
14,588 27,788 21,584

Figure 1. Distribution of different gene and transcript categories in the improved genome annotation.
Left bar plots show the number of genes (grey) and transcripts predicted by the WormBase (green) or
the BRAKER (blue) annotations. The schematic representations of different categories of genes and
transcripts are shown on the right part of the figure. Rectangles represent exons, lines indicate introns,
and arrows show the orientation of the genes/transcripts. Red arrows represent transcription start
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sites. WormBase: reference genes and transcripts which were only annotated by the WormBase; Split
genes merged by BRAKER: fragmented genes in the WormBase which were merged by BRAKER
prediction and their respective transcripts; Shared Genes: genes predicted both by WormBase and
BRAKER genome annotations and their respective transcripts; BRAKER: novel hypothetical genes
and transcripts predicted only by BRAKER genome annotation (Supplementary Data S2–S5).

3.1.2. Novel Non-Coding Genes

The subsequent analysis was focused on genomic regions with no non-coding gene
annotations with support of RNA-Seq reads. A set of 426 non-coding RNAs (ncRNAs)
from different classes were computationally annotated, including transfer RNA (tRNA),
Piwi-interacting RNA (piRNA), ribosomal RNA (rRNA), small RNA (sRNA), and small
nucleolar RNAs (snoRNA). Among the novel ncRNAs annotated, 30 had the support of
RNA-Seq reads with FPKM values > 1 (Figure 2, Supplementary Data S6).

Figure 2. Distribution of ncRNAs abundance levels in A. costaricensis RNASeq dataset. Dots represent
ncRNAs clustered by class along the x-axis. The normalized abundance value (FPKM) of each ncRNA
is represented on the log10 scale on the y-axis.

3.1.3. Functional Annotation

Next, we used computational predictions to provide a function annotation to our im-
proved version of the A. costaricensis genome. Overall, 72% of the 21,584 complete ORF se-
quences from the BRAKER-improved version of the Wormbase genome could be annotated
by Blast2GO [41] (Table 2). Among the annotated protein sequences, 7273 were derived from
WormBase and 7672 from BRAKER. Most of the annotated protein sequences are related to
metabolic processes and nucleic acid binding and are assigned as integral membrane com-
ponents (Supplementary Figure S4 and Supplementary Data S7 and S8). Most of the pro-
tein sequences were inferred from electronic annotation (IEA) (Supplementary Figure S5a)
based on the species Angiostrongylus cantonensis (Supplementary Figure S5b). Most of the
enzymes annotated are hydrolyzes (Supplementary Figure S5c). The protein domain that
was more abundant in the annotation was protein kinase (Supplementary Figure S5d).

3.2. Protein Identification Using a Customized Protein-Sequence Database

In addition to identifying novel genes and transcript variants, RNA-Seq reads were
used to call SNVs based on the identification of homozygous or heterozygous genomic
positions using the PILON software [43]. The resulting variant calling file (VCF) is avail-
able at https://github.com/Matheusdras/Acostaricensis-genome-reannotation. In to-
tal, 554,066 SNVs were computationally predicted, including 552,181 homozygous (al-
lele frequency 100%) and 18,855 heterozygous (median allele frequency 98%). A set

https://github.com/Matheusdras/Acostaricensis-genome-reannotation
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of 410,270 SNVs occurred in protein-coding genes, resulting in 262,441 synonymous,
147,025 missenses, 612 stop codon gains, and 192 stop codon losses (Supplementary Data S9).

Table 2. Distribution of functional annotation of complete ORFs.

Functional Annotation Status Number of Sequences Fraction of Sequences

Blast hits 20,945 97%
Interpro hits 18,036 84%

Blast hits and mapped GO terms 17,343 80%
Complete Blast2GO annotation 15,612 72%

Interpro hits and mapped GO terms 10,847 50%
No InterPro hits 3548 16%

No blast hits 639 3%

A customized non-redundant protein-sequence database containing the WormBase
database improved with in silico translated transcripts by the BRAKER software and protein
sequences with SAAVs predicted by the PILON software was built. This customized protein-
sequence database was used to assess the impact of the predicted proteins/proteoforms
and missense polymorphisms in the proteome using MS/MS data. When confirmed on the
proteome data (Figure 3a,b), such SNVs were appointed as SAAVs.

Figure 3. Polymorphism identified in gene product MSTRG.10219.1. (a) IGV screenshot showing
G190T SNV from MSTRG.10219.1 transcript; (b) annotated tandem mass spectrum of a unique
peptide from protein MSTRG.10219.1 showing G64C SAAV, which corresponds to G190T SNV.

As depicted in Figure 4a, the identification of novel protein-coding genes and proteo-
forms (BRAKER software) allowed for the identification of a higher number of peptides in
the MS/MS data, followed by the WormBase database and the strategy to identify SAAVs
(PILON software). These peptides were mapped to 4296 protein sequences determined
using the PILON software, 4085 sequences obtained using the BRAKER strategy, and
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2587 protein sequences belonging to the original WormBase database. Protein sequences in
the improved database used in the MS/MS spectra search were not redundant. Therefore,
protein sequences that originated from the different approaches did not show intersections
(Figure 4b). The BRAKER software allowed for the identification of a higher number of
unique peptides as compared to the WormBase database or the PILON software (Figure 4c).
Regarding the number of unique proteins identified, the BRAKER software showed a better
performance (51% of all unique identifications), followed by the PILON software (33%) and
the WormBase database (16%) (Figure 4d).

Figure 4. Comparison of the number of peptide and protein identifications observed by employing
different strategies to determine the fasta sequences that make up the protein database. (a) Venn
diagram showing the relationship among the identified peptides (total) using WormBase, BRAKER,
and PILON; pie charts showing the number of total proteins inferred (b), unique peptides identified
(c), and proteins inferred with unique peptides (d) using each strategy.

Figure 5a shows the mean number of SNVs observed for each transcript and the
impact on the amino acid translation prediction. The majority of SNVs resulted in syn-
onymous amino acid substitutions. The conservation of amino acid substitutions was
assessed based on the physico-chemical properties of the residues. Those cases with
missense polymorphisms were computationally translated, generating 70,674 conserved
and 76,351 non-conserved potential SAAVs. On average, 1.64 SAAVs were identified per
peptide in the case of conservative substitutions, whereas 1.75 SAAVs were detected for
non-conservative ones (Figure 5b). In total, 1419 peptides with conserved SAAVs and
1488 peptides with non-conserved SAAVs were identified (Supplementary Data S10).

3.3. Transcriptome and Proteome Quantification

A total of 27,788 mRNAs were quantified across six biological replicates, with a
56.66 FPKM average normalized abundance level (Supplementary Figure S6a and Supple-
mentary Data S11). Using the identification results from the Wormbase + BRAKER database,
2600 proteins were quantified across 8 biological replicates, with a mean NIAF value of
7 × 10−4 (Supplementary Figure S6b and Supplementary Data S12). When comparing
mRNA and protein abundances, 1612 pairs were grouped in 15 clusters according to their
normalized abundance levels, revealing concordant and discordant clusters (Figure 6 and
Supplementary Data S13).
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Figure 5. Distribution of SNV and SAAVs in A. costaricensis RNASeq and proteomic datasets. (a) The
bar plot shows the mean number of SNVs per transcript from non-synonymous, stop codon gain,
stop codon loss, and synonymous polymorphisms; (b) the bar plot shows the mean number of SAAVs
per identified peptide from conservative and non-conservative amino acid (AA) substitutions.
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Figure 6. Heatmap showing 15 clusters of mRNAs and proteins. Clusters are based on the z-score
of mRNAs and proteins normalized abundance levels (FPKM and NIAF). Blue rectangles represent
mRNAs and proteins with low FPKM and NIAF values, respectively. Red rectangles represent
mRNAs and proteins with high FPKM and NIAF values, respectively. Clusters with clear concordant
abundance levels (clusters 1 and 15) and discordant abundance levels (clusters 5, 9, and 10) are
highlighted by braces and proper description.

4. Discussion

Multi-omics data have been largely applied to assist the annotation of human [54,55]
and mouse [56] genomes, and RNA-Seq data has also been used for that purpose in previous
nematode studies [57,58]. Recently, Logan and colleagues (2020) used RNA-Seq and MSMS
data to improve the genome annotation of Necator americanus, being the first multi-omics
analysis of a parasitic nematode [9]. In our analysis, we have identified novel genes and
exons, with support of RNA-Seq read alignments, that are not found in the reference
genome annotation available in the WormBase database [23]. These results motivated
us to propose an improved version of this genome annotation built on RNA-Seq and
MS/MS data.

Our prediction using the software BRAKER revealed 2359 novel hypothetical genes
and 10,194 novel hypothetical transcript variants, most of them (99%) supported by tran-
scriptome evidence and 80% with FPKM values > 1. The MS/MS data analysis using the
customized protein-sequence database confirmed the transcriptome findings at the protein
level, revealing that most identified peptides are exclusive to the novel predicted proteins.

Interestingly, the WormBase database’s entries allowed the identification of only 16%
of the unique proteins described in this study. The remaining 84% of the proteins identified
with proteotypic peptides were distributed as follows: (a) A total of 51% were identified as
a result of our BRAKER-based strategy to find novel protein-coding genes and proteoforms;
and (b) 33% were identified based on protein sequences containing high-confidence SAAVs.
The functional annotation of the complete ORFs was also incorporated in the improved
version of the genome annotation. In addition to revealing novel genes and gene products,
this approach also provided expression evidence from mRNA and protein levels for known
genes. It is important to draw attention to the fact that we assessed the transcriptome and
proteome of adult worms, and the gene expression of other life-cycle stages should be
further evaluated in future studies.

Geographic separation leads to genetic diversity between populations due to muta-
tions accumulated within nematode genomes over a long period of time [59]. This study
used RNA-Seq and MS/MS data to better elucidate DNA sequence polymorphisms be-
tween the Brazilian (Crissiumal) and the Costa Rica strains, revealing SNVs and SAAVs at
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both transcript and protein levels, respectively. These results corroborate a previous study
in which sequences from the mitochondrial cox1 gene were analyzed, revealing significant
nucleotide differences in A. costaricensis between the Brazil and Costa Rica isolates [60].
Additionally, other similar results were found between the mitochondrial genomes of these
two strains [61]. Thus, strains from different geographical locations might represent cryptic
or separate species and should be studied further [62]. We believe that these results can
be used in future studies to investigate the evolutive history of the Costa Rica and Brazil
strains and ultimately unveil new possibilities for treating the disease in both countries.
We expect our results to encourage other groups to use a similar strategy when studying
distinct strains.

The annotation of non-coding RNA genes is often incipient or unavailable in nema-
todes with sequenced genomes, such as A. costaricensis, except for the model organism
Caenorhabditis elegans. Therefore, we also performed a computational prediction of ncRNAs
to complement the annotation of the genome of A. costaricensis, predicting 426 ncRNA genes
that were not included in the current WormBase genome annotation. Although mRNAs
were enriched during the RNA-Seq library construction through poly(A)+ selection, some
non-coding RNAs were still detected in our data, especially rRNAs. This is expected be-
cause rRNAs usually represent more than 80% of a given transcriptome [63], and poly(A)+
selection protocols are not 100% efficient [64]. Thus, even though the annotation of ncRNA
genes was not the primary aim of this study, we could benefit from the small fraction
of contaminant ncRNAs present in our data to provide experimental evidence for the
prediction of ncRNAs.

We used clustering analysis applied to RNA-Seq and MS/MS data as an attempt to
study the transcriptome/proteome regulation. As a result, two clusters with proportional
mRNA and protein levels and three clusters with inversely proportional mRNA and
protein levels were detected. These results indicate that some mRNAs may be subjected to
regulatory elements preventing their translation, and others may have higher translation
rates, as reviewed by Kumar and colleagues [65]. However, these results should be carefully
interpreted because the correlation between transcript and protein levels can be affected
by technical limitations [55], and the actual correspondence between transcriptomes and
proteomes is still a topic of debate in the literature [66]. However, we believe that our
results provide some insights into the mechanisms of the post-transcriptional and post-
translational regulations of A. costaricensis.

As reported by other studies, the use of multi-omics data as source of genetic informa-
tion is an efficient approach for genome annotation [67–69]. Here, we propose a pipeline
for the genome annotation of helminthics: (1) Align RNA-Seq reads onto the reference
genome sequence (Hisat2 software); (2) use RNA-Seq read alignment as extrinsic evidence
for gene/transcript prediction (BRAKER software); (3) use RNA-Seq read alignment as ex-
trinsic evidence for SNV calling (Pilon software); (4) select transcripts with SNVs that cause
putative amino acid substitutions; (5) perform a computational translation of the complete
ORFs to build a customized protein-sequence database containing putative SAAVs (GffRead
software); (6) perform a protein database search on MS proteomic data using the customized
protein-sequence database (PatternLab for proteomics software); (7) analyze the identified
peptides and proteins to confirm at proteome level those genes and SNVs predicted at the
transcriptome level. All codes and command-line parameters used in our analysis are pub-
licly available at https://github.com/Matheusdras/Acostaricensis-genome-reannotation.

5. Conclusions

In summary, we applied RNA-Seq and MS/MS data to refine the genome annotation
of A. costaricensis. This improved genome annotation encompasses novel protein-coding
and non-coding genes, transcript variants/proteoforms, and a list of SNVs and SAAVs.
We hope these results can advance the knowledge of A. costaricensis protein-coding and
non-coding genes and motivate future researchers to drive new hypotheses regarding this
parasite, mainly focusing on abdominal angiostrongyliasis treatment. Additionally, in

https://github.com/Matheusdras/Acostaricensis-genome-reannotation
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many cases, multi-omics data are publicly available and can be reused and integrated [70].
Therefore, we believe that the use of integrative omics of nematodes causing neglected
diseases is a promising strategy to unveil potential targets for anti-helminthic drugs, vaccine
development, and diagnoses.
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//www.mdpi.com/article/10.3390/pathogens11111273/s1, Figure S1: Example of a WormBase split
gene merged by BRAKER annotation; Figure S2: Visual representation of gene/transcript models
and RNA-Seq alignments; Figure S3: Distribution of the different features of the improved genome
annotation; Figure S4: Distribution of top 10 Gene Ontology (GO) terms; Figure S5: Blast2GO
annotation; Figure S6: mRNA and protein abundance levels following A. costaricensis transcriptomic
and proteomic analyses; Table S1: Distribution of RNA-Seq reads mapping onto A. costaricensis
WormBase reference genome sequence and assigned to a gene; Table S2: Comparison of the number
of ncRNA genes from A. costaricensis, C. elegans and H. contortus; Data S1: WormBase; Data S2: Split
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