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Abstract

:

Goats are key livestock animals and goat raising is an income-generating venture for smallholder farmers, supporting agricultural development in many parts of the world. However, goat production is often limited by various factors, such as tick-borne diseases. Goat piroplasmosis is a disease caused by apicomplexan parasites Babesia spp. and Theileria spp., while anaplasmosis is caused by bacterial Anaplasma spp. In the Philippines, the presence of Babesia, Theileria, and Anaplasma has not been reported in goats. In this study, DNA obtained from goats were molecularly screened for Babesia/Theileria and Anaplasma. Of 396, 77.02% (305/396) and 38.64% (153/396) were positive for piroplasma and Anaplasma using PCR assays targeting the 18S rRNA and 16S rRNA genes, respectively. Similarly, Babesia ovis was detected in six samples (1.52%). Representative Babesia/Theileria sequences shared 89.97–97.74% identity with each other and were most closely related to T. orientalis, T. annulata, and Theileria spp. Meanwhile, Anaplasma 16SrRNA sequences were related to A. odocoilei, A. platys, and A. phagocytophilum. This is the first molecular identification of B. ovis, Theileria spp., and Anaplasma spp. in goats from the Philippines.
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1. Introduction


Babesiosis, theileriosis, and anaplasmosis are caused by tick-borne blood parasites of the genera Babesia, Theileria, and Anaplasma. These tick-borne diseases (TBDs) adversely affect livestock through direct and indirect losses in production. In small ruminants, the impact of TBDs has burdened farmers with losses linked to mortalities, less meat, milk, and wool produce, and increased costs for herd health management [1,2]. However, in endemic countries, TBDs are often overlooked despite being widespread in small ruminants, due to the lack of severe clinical manifestations during infection and strong tolerance through acquired natural immunity of infected hosts [3].



Several Babesia species can infect small ruminants, but the disease that develops varies between goats and sheep. Babesia ovis is fatal in sheep [4], while other species may have milder (B. motasi) [5] or low (B. crassa) [6] virulence. In goats, B. ovis causes subclinical infection [7,8], and B. motasi infects goats more frequently than sheep [5]. Additionally, some newly reported species have been identified in particular locations, namely Babesia sp. Xinjiang and B. motasi-like in China [9,10] and Babesia sp. in Turkey [11]. The clinical manifestations of babesiosis in small ruminants may include fever, anemia, jaundice, depression, and hemoglobinuria. In addition death may occur in severely affected animals [8]. Ticks of the genus Rhipicephalus, Hyalomma, and Haemaphysalis can transmit Babesia to small ruminants [12].



Theileriosis in small ruminants is caused by various species of Theileria, of which pathogenic species include T. lestoquardi, T. luwenshuni (Theileria sp. 1), and T. uilenbergi (Theileria sp. 2) [13]. Other Theileria species that can infect small ruminants are nonpathogenic [14], albeit considerably impact animal production [7]. The clinical disease in small ruminants may be accompanied by fever, lymph node swelling, icterus, hemorrhage, and diarrhea, while anemia, wasting, lack of appetite, and intermittent fever are observed during chronic infection [7]. Similar to babesiosis, infection in goats is less severe [5].



Anaplasma is the causative agent of anaplasmosis and is distributed globally, infecting a broad range of hosts. Small ruminants can get infected with several species, including A. marginale, A. ovis, A. phagocytophilum, and the newly discovered emerging pathogen A. capra [3,15,16]. Infected animals may experience fever, hemolytic anemia, loss of appetite, weight loss, and fatigue, which translate to reduced milk production in dairy small ruminants [3]. Biological vectors of Anaplasma are ixodid ticks, but mechanical vectors are also involved in the transmission, especially in places where the tick vectors are absent or rarely present [17].



Small ruminant production is an essential agro-socioeconomic activity that sustains agricultural development in many parts of the world by providing meat, milk, skin, and wool. Compared to other livestock, goat and sheep raising is attractive in rural households because of the relatively smaller resources and effort required to maintain them [18]. They can subsist on unpalatable low-quality fodder and browse and still be prolific, owing to the early sexual maturity, brief gestation duration, and short birth intervals [19]. In the Philippines, goat raising is a pillar of the mixed (crop–livestock) farming systems and provides supplemental income to smallholder farming families [20]. In 2021, there were 3.2 million heads of goats and the annual national production value was estimated at USD250 million [21]. Despite the huge contribution, goat production is suboptimal, and their full potential is not realized [18,22]. Several factors constrain caprine production in the Philippines, one of which is the high prevalence of parasites from genera Eimeria spp., Fasciola spp., Haemonchus spp., and Trichostrongylus spp. [20]. In contrast, the tick-borne parasites Babesia, Theileria, and Anaplasma have not been molecularly detected [23]. Therefore, in this study, we aimed to detect the molecular presence of these tick-borne pathogens in goats and determine the animal parameters associated with the detection.




2. Results


2.1. Sample Composition and Background Information


In this study, samples were collected from 396 randomly selected goats across six provinces in the Philippines (Figure 1), namely, Cavite (n = 42), Quezon (n = 20), Bohol (n = 35), Cebu (n = 74), Leyte (n = 26), and Davao del Sur (n = 199) (Table 1). The goat population was comprised of the following: 60% adult (n = 237) and 40% young (n = 159); 87% female (n = 344) and 13% male (n = 52); 56% purebred (n = 222), 22% crossbred (n = 87), 15.4% Philippine native (n = 61), and unknown breed 6.6% (n = 26). The goats were raised in backyards by smallholder farmers, except those from Cebu and Bohol, which were domesticated in semicommercial and stock farms, respectively. The backyard goats were tethered and/or freely grazed, while goats from semicommercial farms were reared in semi-intensive and intensive systems.




2.2. Detection of Pathogens and Its Association with Host Parameters


Using the nested PCR assay targeting the 18S rRNA V4 hypervariable region of Babesia/Theileria, piroplasma DNA was detected in 305 (77.02%) samples (Table 1). The highest detection rates were recorded from one year or older adult (191/237; 80.59%), female (273/344; 79.36%), and purebred (179/222; 80.63) goats. Notably, piroplasma were most frequently detected in samples from Davao del Sur (183/199; 91.96%). Statistical analysis indicated that sex (p = 0.007), breed (p = 0.027), and location (p < 0.001) were associated with testing positive for piroplasma (Table 1). On the other hand, 153/396 (38.64%) samples were positive for Anaplasma spp. (A. phagocytophilum). Anaplasma detection rates were higher in young (77/159; 48.43%), male (25/52; 48.08%), and purebred (101/222; 45.50%) goats, with those from Quezon (16/20; 80.00%) showing the highest positivity rate (Table 1). Significant factors associated with Anaplasma positivity were age-group (p = 0.001), location (p < 0.001), and breed (p = 0.026). In addition, six (6/396; 1.52%) samples from Leyte (n = 3) and Cavite (n = 3) showed amplicons corresponding to the target of the B. ovis PCR assay.




2.3. Sequencing and Phylogenetic Analysis of Representative Sequences


We sequenced representative samples that showed strong bands for piroplasma (n = 7), Anaplasma sp. (n = 14), and B. ovis (n = 1) to determine their sequence identities and to analyze their phylogenetic relationships with previously published sequences in the GenBank sequence database. The seven sequences (MW786647–MW786653) were confirmed as Theileria species and exhibited intersequence identities of 89.97–97.74%. As shown in Figure 2, three isolates (MW786649; MW786651; MW786653) were located in a subclade with other T. orientalis isolates from China, Pakistan, India, Bangladesh, and Malaysia. One Theileria sp. (MW786653) was most closely related to Theileria sp. Thung Song isolate from Thailand (99.30% identity) and formed a sister clade with the Chinese T. sinensis isolates, while MW786648 shared 99.53% identity with T. annulata isolates from India and Thailand (Figure 2). MW786650 was similar to cattle isolate of T. orientalis from Pakistan, whereas MW786652 was located in a branch solitarily (Figure 2). The Anaplasma sp. sequences (OP351259–OP351272) obtained in this study shared the following identities with each other: 99.68% (OP351261 and OP351271); 98.81–99.89% (OP351262, OP351263, OP351265–OP351270); 98.38% (OP351260 and OP351264), 98.48% (OP351259 and OP351267); 97.84% (OP351271 and OP351272). Based on the Anaplasma 16S rRNA phylogenetic tree, OP351260 and OP351264 clustered with A. phagocytophilum in Rhipicephalus microplus from Taiwan, Anaplasma sp. in cattle from Ethiopia, and Candidatus A. boleense in mosquitoes from China, while OP351262, OP351263, and OP351265–OP351270 grouped together and were related to A. odocoilei from the US (Figure 3). In addition, OP351261, OP351271, and OP351272 were phylogenetically related to various A. platys isolates. The B. ovis isolate from the current study (OP003548) was closely related and had 99.82% identity with sheep, goat, and horse B. ovis isolates from Turkey, Iran, Spain, and Portugal (Figure 4).





3. Discussion


Herein, we present the first molecular identification of Babesia, Theileria, and Anaplasma in goats from the Philippines. A high detection rate of piroplasma DNA was recorded in goats (77.02%), which was higher than caprine Babesia and Theileria rates recorded in Pakistan (5–40.80%) [25,26], Turkey (21.40%) [27], Italy (11.70%) [3], China (11.90–34.70%) [28,29], Ethiopia (1.90%) [30], and Tunisia (4.70%) [31], while comparable to that from Malawi (72.70%) [32]. The detection rate (38.64%) of Anaplasma spp. in the current study was higher than what was observed in goats from Bangladesh (15.75%) [33], Thailand (13.50%) [34], Pakistan (7.80%) [35], and South Korea (7.62%) [36], but lower than in goats from China (58.50%) [37]. The relatively high detection rates may be due to several factors related to the climate, environment, host susceptibility, vector population density, and management production systems [3,27,38]. In addition, B. ovis was detected in 1.52% of the goat samples and was present in two provinces (Leyte and Cavite). The current non-detection of B. ovis in Cebu goats agrees with the results of a previous molecular investigation where Babesia was not detected in caprine blood samples [23].



Significant association between host parameters, including sex, age-group, breed, and location, and pathogen detection was noted in the present study. Piroplasma positivity in female goats was significantly higher than in male ones, while studies on small ruminants in Ethiopia [30], Turkey [39], and Tunisia [40] found goat sex to be negligible. On the other hand, Anaplasma spp. detection in young goats was significantly higher than in adults, which is parallel to the findings in Pakistan goats [35]. Moreover, detection of Anaplasma spp. and Babesia/Theileria were significantly associated with goat breed, wherein a higher number of purebred or exotic goats tested positive compared to upgraded and native goats. Earlier surveys observed a similar trend, where the indigenous goat breeds were described to have higher resistance to piroplasma [40,41] and Anaplasma [42]. Information available on goat breed resistance to TBDs is scarce, but one possible explanation may be the greater susceptibility of exotic goat breeds to tick bites compared to local breeds [43]. Piroplasma and Anaplasma detection rates significantly differed among the location of the goats. The same was observed in goat herds from China [29], Tunisia [40], and Oman [44]. Location-specific factors in this study, such as management practices and macroclimatic conditions that affect tick proliferation, may be attributed to the different sampling sites characterized by diverse topography, terrain, microclimate, and fauna.



Sequencing and phylogenetic analysis confirmed that the representative Theileria sp. sequences obtained in this study were most closely related to T. orientalis, T. annulata, and Theileria sp. Thung Song isolate. Four Theileria isolates in the present study (MW786649; MW786651; MW786653) were similar to T. orientalis isolates from other locations. Members of the T. orientalis complex have been reported in cattle from the Philippines in previous studies [45,46,47]. More notably, we obtained an isolate highly similar to T. annulata. T. annulata is a species that can infect goats and causes a potentially fatal disease in cattle [48]. However, it should be confirmed whether the infected goats can be inapparent carriers of various T. orientalis genotypes and T. annulata and if they are able to spread the pathogens to bovids, as in sheep [48,49,50]. Theileria sp. Thung Song is an isolate from dairy cattle in Thailand and was genotypically divergent from other benign T. orientalis types (T. buffeli and T. sergenti) [51,52]. Its detection in goats in the current study may indicate host shifting of this parasite. We also obtained an isolate phylogenetically distinct from other analyzed sequences (MW786652; 98.75% identity with Theileria sequences in GenBank), which may be a new Theileria sp., although more studies are needed to verify this claim. On the other hand, T. luwenshuni, which is a common species in goats reported from nearby Southeast Asian countries, namely, Thailand [34,53,54,55], Myanmar [56], and Vietnam [50,57,58], was not confirmed in the obtained sequences.



In this study, Anaplasma isolates (OP351259–OP351272) closely related to A. odocoilei, A. phagocytophilum, and A. platys were confirmed in goats from the Philippines. A. odocoilei is a species causing chronic Anaplasma infection in white-tailed deer discovered in the US [59]. A. odocoilei does not cause severe clinical disease in experimentally infected white-tailed deer, and natural infections have only been detected from North America and South America [60,61,62]. Additionally, we obtained isolates (OP351261 and OP351271) highly similar to A. platys (99.10% and 99.46% identity with other A. platys isolates, respectively) and OP351272, a potential novel A. platys-like isolate (97.30% highest identity with GenBank A. platys isolates). A novel A. platys-like species that can be vertically transmitted to the goat’s offspring has been identified in China recently [63]. Furthermore, a previous study indicated that a couple of novel A. phagocytophilum-like and A. ovis-like variants are circulating in Philippine horses [64]. Thus, the isolates obtained from the current study warrant further probing on their genetic characteristics and clinical impact of the infections they inflict on goats.



Despite the high rate of positivity, clinical signs associated with TBDs were not observed. This may indicate the endemicity of these pathogens in goats in the Philippines. Likewise, this may correspond to persistent infections, a characteristic of natural infections in places where the disease is presumed endemic [7]. While B. ovis causes acute and severe disease in sheep, natural infection with B. ovis in goats is rarely clinical [8]. This was evident in the positive goats in the current study. In the case of Theileria- and Anaplasma-positive goats, the impact of subclinical infections should not be ignored because the pathogenicity of different species and genotypes vary depending on the host [15,65].



Some aspects were outside the scope of this study. For instance, few samples were subjected to sequencing analysis and species confirmation was performed by partial amplification of one fragment from one gene. Therefore, additional studies based on species-specific detection should be conducted to elucidate the species diversity of Babesia, Theileria, and Anaplasma in goats from the Philippines. In this study, the tick vectors were not determined. Since tethering and freely grazing systems are the more common production system in the Philippines [20], there are more opportunities for the ticks to feed on the host as goats are exposed to vegetation where questing ticks are abundant. The most likely vector of piroplasmas and Anaplasma is the ubiquitous R. microplus ticks, which was found infesting goats in Bulacan province [66]. The tick species R. microplus and Haemaphysalis bispinosa infesting goats from neighboring countries Thailand [34,67] and Malaysia [68] were also confirmed to be carrying T. luwenshuni. Similarly, R. sanguineus sensu lato (s.l.) ticks, the vector of canine A. platys in the Philippines [69,70], may also be implicated as the vector of A. platys-like variants detected in the present study. The three-host tick R. sanguineus s.l. commonly infests dogs, its main host, but humans and other animals may also be incidentally infested [71]. A majority of goats in this study were raised in backyards and regularly interacted with companion animals (dog and cats), which may have possibly exposed goats to the former’s tick vectors. Moreover, the possibility of other transmission means, particularly, the role of mechanical transmission by insect vectors other than ticks, such as blood-sucking arthropods Tabanus, Stomoxys, and mosquitoes [17], should be further investigated.




4. Materials and Methods


4.1. Ethics Statements


Field sampling and animal handling protocols were conducted in accordance with the Philippine Animal Welfare Act (Republic Act 10631) and the guidelines set by the Institutional Animal Care and Use Committee of the University of the Philippines Cebu and Cavite State University. Experimental procedures and methodologies related to this study were permitted by Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan (permits 20–128 and 1723–4). The farmers and owners of the animals were oriented regarding the purpose of the study and provided verbal consent prior to the start of the sample collection.




4.2. Sample Collection and Sampling Sites


In this study, 396 whole-blood samples from randomly chosen goats were collected. The goats were randomly chosen irrespective of sex, age, and breed from March 2017 to March 2020. Sampling was done in backyards and farms selected by convenience in the provinces of Cavite (n = 42), Quezon (n = 20), Bohol (n = 35), Cebu (n = 74), Leyte (n = 26), and Davao del Sur (n = 199), Philippines. The specific sampling sites and their GPS coordinates are shown in Figure 1. Approximately 2 mL of blood was collected via venipuncture of the jugular vein of the goats into sterile EDTA tubes and kept cool until processing in the laboratory.




4.3. Genomic DNA Isolation


Genomic DNA was extracted using the QIAamp® DNA Blood Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. About 200 μL of whole blood was used for the DNA extraction using the column-based blood kit. The DNA samples were transported to the National Research Center for Protozoan Diseases, Obihiro, Hokkaido, Japan and stored at −30 °C until use. Quality and the estimated concentration of the extracted DNA samples were checked using the NanoDrop™ 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) prior to screening the samples.




4.4. PCR Assays for Pathogen Detection


The PCR conditions performed in this study are referred to in Table 2. The samples were processed using a nested PCR assay targeting the hypervariable V4 region of the 18S rRNA gene of piroplasma [72,73] and 16S rRNA of Anaplasma spp. (A. phagocytophilum) [74]. In addition, a single specific primer set amplifying the B. ovis 18S rRNA gene was also used [75]. For the nested PCR assays, both first and final reactions were run to a final volume of 10 µL consisting of 1× ThermoPol® buffer (New England Biolabs, Ipswich, MA, USA), 2 mM of dNTP mix (New England Biolabs) 2 µM of forward and reverse primers, 0.25 U of Taq DNA polymerase (New England Biolabs), and 2 µL of genomic DNA sample for the first assay or 1 µL of the PCR product for the nested assay. For the screening of B. ovis, the conventional assay was performed similarly to the aforementioned setup, except for the final concentration of primers (5 µM). The company-provided thermocycling conditions were followed, with the annealing temperature for each assay listed in Table 2. Positive (DNA samples confirmed positive for Theileria sp., B. ovis, and Anaplasma sp. [76]) and negative controls (UltraPure™ DNase/RNase-Free distilled water; Invitrogen, Waltham, MA, USA) were run alongside the samples in each assay. Visualization of amplicons after exposure to UV light was done after electrophoresis of PCR products in 1.5% agarose gel and staining with ethidium bromide solution.




4.5. Sequencing and Phylogenetic Analysis


Amplicons were purified using NucleoSpin® Gel and PCR Clean-up kit (Macherey Nagel, Düren, Germany). Then, the purified amplicons were cloned by ligation into pGEM®-T Easy Vector (Promega Corporation, Madison, WI, USA) and transformation in Escherichia coli DH5α strain calcium-competent cells. After overnight incubation of positive transformants, high-density bacterial cultures were lysed and plasmids were purified using NucleoSpin Plasmid QuickPure Kit (Macherey Nagel). Purified plasmids were sequenced by the Sanger sequencing method using BigDye™ Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and ABI Prism 3100 Genetic Analyzer (Applied Biosystems).



Forward and reverse reads were manually trimmed and overlapped to assemble the sequences. Shared identities between presently obtained and previously deposited sequences were determined by NCBI BLASTn search, while the identity matrix generated from EMBL Clustal Omega multiple sequence alignment [77] determined the intersequence percentage identities. After nucleotide alignment by Clustal W and determination of the best DNA model, the maximum likelihood trees were constructed by phylogeny testing using the bootstrap method with 1000 replications. All analyses related to phylogeny were conducted using the Molecular Evolutionary Genetics Analysis (MEGA) X software [78]. The sequences obtained from this study were banked in the NCBI GenBank with accession numbers MW786647–MW786653 for Theileria sp. 18S rRNA (372–426 bp), OP003548 for B. ovis 18S rRNA (552 bp), and OP351259–OP351272 for Anaplasma sp. 16S rRNA (923–925 bp).




4.6. Statistical Analyses


Association between Babesia/Theileria sp. and Anaplasma sp. positivity (dependent variable) and animal parameters (categorical independent variables), namely, sex, age group, breed, and location, was evaluated. Background data of animal samples were available for all except for the breeds of goats from Leyte; thus, we excluded them in the analysis for the breed variable. Fisher’s exact test was used to calculate the exact p values, whereas if not applicable, Pearson’s chi-square test was employed to calculate the approximate p values. A p value of <0.05 was considered significant. All statistical analyses were performed using GraphPad Prism 8 (GraphPad software, San Diego, CA, USA).
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Figure 1. The Philippine map showing the six provinces (colored) where samples were collected from, with pinned sampling sites and GPS coordinates. The map was generated using the QGIS software [24]. 
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Figure 2. Phylogenetic analysis of piroplasma sequences obtained in this study (MW786647–MW786653) based on the 18S rRNA gene. The maximum likelihood tree was constructed using the Tamura-3 model plus discrete gamma distribution (+G, parameter = 0.3348). The phylogeny test was performed using the bootstrap analysis with 1000 iterations. The sequences obtained from the current study are shown in bold. Theileria parva was designated the outgroup. 
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Figure 3. Phylogenetic analysis of Anaplasma spp. sequences obtained in this study (OP351259–OP351272) based on the 16S rRNA gene. The maximum likelihood tree was constructed using the Hasegawa-Kishino-Yano model plus discrete gamma distribution (+G, parameter = 0.3915). The phylogeny test was performed using the bootstrap analysis with 1000 iterations. The sequences obtained from the current study are shown in bold. Rickettsia monacensis was designated the outgroup. 
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Figure 4. Phylogenetic analysis of the B. ovis sequence obtained in this study (OP003548) based on the ssu rRNA gene. The maximum likelihood tree was constructed using the Jukes–Cantor model with uniform rates among sites. The phylogeny test was performed using the bootstrap analysis with 1000 iterations. The sequence obtained from the current study is shown in bold. Babesia ovata was designated the outgroup. 
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Table 1. Molecular detection of Babesia/Theileria spp. and Anaplasma spp. based on sex, age-group, location, and breed of goats.
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Variable

	
N

	
Babesia/Theileria spp.

	
Anaplasma spp.




	
No. of Positives (%)

	
p Value

	
No. of Positives (%)

	
p Value






	
Age-group

	

	

	

	

	




	
Young (<1 year)

	
159

	
114 (71.70)

	
0.051

	
77 (48.43)

	
0.001 **




	
Adult (≥1 year)

	
237

	
191 (80.59)

	
76 (32.07)




	
Sex

	

	

	

	

	




	
Male

	
52

	
32 (61.54)

	
0.007 **

	
25 (48.08)

	
0.169




	
Female

	
344

	
273 (79.36)

	
128 (37.21)




	
Location

	

	

	

	

	




	
Davao del Sur

	
199

	
183 (91.96)

	
<0.001 ***

	
82 (41.21)

	
<0.001 ***




	
Cebu

	
74

	
35 (47.30)

	
37 (50.00)




	
Bohol

	
35

	
16 (45.71)

	
10 (28.57)




	
Quezon

	
20

	
8 (40.00)

	
16 (80.00)




	
Leyte

	
26

	
24 (92.31)

	
2 (7.69)




	
Cavite

	
42

	
39 (92.86

	
6 (14.29)




	
Breed #

	

	

	

	

	




	
Purebred (Anglo-Nubian or Boer)

	
222

	
179 (80.63)

	
0.027 *

	
101 (45.50)

	
0.026 *




	
Crossbred or upgrades

	
87

	
58 (66.67)

	
25 (28.74)

	




	
Philippine native

	
61

	
44 (72.13)

	
25 (40.98)

	




	
Total

	
396

	
305 (77.02)

	

	
153 (38.64)

	








Asterisks indicate significant differences: * <0.05; ** <0.01; *** <0.001. # Goats of unknown breeds (n = 26) were excluded from the analysis.
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Table 2. List of PCR primers and conditions used in the study.






Table 2. List of PCR primers and conditions used in the study.





	
Pathogen

	
Target Gene

	
Primer Sequence

	
Annealing Temperature (°C)

	
Target Length (bp)

	
Reference






	
Piroplasma (Babesia/Theileria)

	
18S rRNA (V4 hypervariable region)

	
F1: 5’—GAGGTAGTGACAAGAAATAACAATA—3’

	
50

	
~460–520

	
[72]




	
R1: 5’—TCTTCGATCCCCTAACTTTC—3’




	
F2: 5’—GACACAGGGAGGTAGTGACAAG—3’

	
60

	
~390–420

	
[73]




	
R2: 5’—CTAAGAATTTCACCTCTGACAGT—3’




	
Babesia ovis

	
Small subunit 18S rRNA

	
F: 5’—TGGGCAGGACCTTGGTTCTTCT—3’

	
62

	
~549

	
[75]




	
R: 5’—CCGCGTAGCGCCGGCTAAATA—3’




	
Anaplasma spp.

(A. phagocytophilum)

	
16S rRNA

	
F1: 5’—TCCTGGCTCAGAACGAACGCTGGCGGC—3’

	
50

	
~1433

	
[74]




	
R1: 5’—AGTCACTGACCCAACCTTAAATGGCTG—3’




	
F2: 5’—GTCGAACGGATTATTCTTTATAGCTTGC—3’

	
50

	
~925




	
R2: 5’—CCCTTCCGTTAAGAAGGATCTAATCTCC—3’
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