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Abstract: Pogostemon cablin (Lamiaceae) is a component of traditional medicines in Southern China.
The identification of P. cablin pathogens is essential for the production and development of this
industry. During 2019–2020, a leaf spot on P. cablin was observed in Zhanjiang, Guangdong Province.
The pathogen of the leaf spot was isolated and identified using morphological and phylogenetic
methods. Phylogenetic analysis was performed using the internal transcribed spacer (ITS) region,
glyceraldehyde-3-phosphate dehydrogenase (gapdh), RNA polymerase II (rpb2), translation extension
factor 1-alpha (tef1), and Alternaria major allergen 1 (Alt-a1) genes. Based on phylogenetic and
morphological studies, this was confirmed to be a novel species of Alternaria pogostemonis, with
description and illustrations presented. The pathogenicity test of A. pogostemon was verified by
Koch’s postulates as causing leaf spot disease. This is the first report of leaf spot disease in P. cablin
caused by the Alternaria species. This study contributes to the knowledge of P. cablin leaf spot diseases.

Keywords: Alternaria; new host record; pathogenicity; phylogeny

1. Introduction

Pogostemon cablin (Blanco) Benth, family Lamiaceae, originates from Malaysia and
Indonesia. Pogostemon cablin is distributed extensively across south-east Asia, including
China, India, Indonesia, Sri Lanka, the Philippines, and Malaysia [1–3]. Patchouli is well
known for its aromatic properties as an essential oil and perfume [4], and also for its
medicinal properties [5]. Notably, P. cablin is a traditional medicinal plant in China, and is
widely cultivated in Guangdong, Guangxi, Hainan, Fujian, and Taiwan, as well as other
places in China [6]. The stems and leaves can be used for medicinal purposes. Clinically,
it is widely used to treat heat exhaustion, chest distress, abdominal pain, vomiting, and
diarrhea [5,7]. It is an essential raw material in over 30 Chinese patent medicines such as
the “Huoxiang Zhengqi Pill” and “antiviral oral liquid”.

Various pathogens, including bacteria such as Ralstonia solanacearum [8], plant nema-
todes such as Meloidogyne incognita [9,10], and viruses such as P. cablin yellow mosaic virus
(PaYMV) [5] have been reported to infect P. cablin. However, few fungal diseases have been
reported in this host. Chen et al. [11] reported that Corynespora cassiicola caused leaf spots.
Zeng et al. [12] observed a Phomopsis leaf spot caused by Diaporthe arecae in Guangzhou,
China. Dong et al. [13] identified a novel taxon of Stagonosporopsis pogostemonis causing leaf
spots and stem blight on P. cablin.

Alternaria, with Alternaria tenuis as the type species, was introduced by Nees (1817).
There are currently 797 accepted specific epithets for Alternaria in the Index Fungorum
and 702 specific epithets in the species Fungorum (July 2022). Wijayawardene et al. [14]
reported that Alternaria contains 366 accepted and recognizable species. Alternaria black
spot, blight disease, and seed-borne pathogens are major pathogens distributed worldwide
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on cruciferous crops and other economically relevant plants that cause considerable yield
losses [15–17].

The cultivation of P. cablin is simple and primarily relies on wireless cutting propa-
gation. The long-term asexual propagation has resulted in single varieties and a narrow
genetic base of P. cablin, resulting in germplasm degradation and decreased disease resis-
tance. Therefore, identifying pathogens of P. cablin is significant for the cultivation and
development of the P. cablin industry.

To this end, we observed a new leaf disease in the P. cablin fields in Zhanjiang City
of Guangdong Province, China, between 2019–2020. Samples were collected and the
putative pathogen was isolated. We aimed to identify the fungal groups that cause leaf spot
disease in P. cablin by combining morphological characteristics and phylogenetic analysis.
Further, we evaluated whether the pathogenicity of the putative pathogen conforms to
Koch’s hypothesis.

2. Materials and Methods
2.1. Sample Collection and Pathogen Isolation

Diseased P. cablin were collected from the fields in Zhanjiang City, Guangdong
Province, China (E 110◦3′, N 21◦2′) from the spring of 2019 to the summer of 2020. Images
were captured (Nikon D300s, Japan), and the time, location, latitude, longitude, and species
of the sampled plants were recorded.

The collected samples were washed with running tap water for several minutes and
subsequently with sterile water. The diseased leaves were cut with a sterile scalpel into
small pieces (approximately 0.5 × 0.5 cm2) between the diseased spots and the healthy
part. The surface was disinfected with 75% alcohol for 10 s and 2.5% NaClO for 15 s. After
disinfection, the plant tissues were washed three times for 30 s with sterile water. Five
pieces were dried on sterile filter paper and then placed on a 9-mm potato dextrose agar
(PDA) plate containing a final concentration of 100 mg/L streptomycin sulfate.

After being incubated in the dark at 28 ◦C for 2–3 days, the individual mycelium tips
were transferred to a PDA plate. Then they were purified thrice by hyphal tip isolations.
Strains and plant samples were deposited in the Culture Collection of Zhongkai University
of Agriculture and Engineering (ZHKUCC).

2.2. DNA Extraction and PCR Amplification

Total genomic DNA was extracted from fungi cultured in PDA for seven days. Fresh
hyphae were collected and DNA was extracted by the modified CTAB method [18]. Molec-
ular amplification of the following regions was performed: internal transcribed spacer
(ITS) regions, glyceraldehyde-3-phosphate dehydrogenase (gapdh), RNA polymerase II
(rpb2), translation extension factor 1-alpha (tef1), and Alternaria major allergen 1 (Alt-a1)
genes (Table 1). The total reaction solution in the PCR amplification instrument was
25 µL, containing 1 µL genomic DNA, 1 µL of each forward/reverse primer (10 µm),
12.5 µL I-5™ 2× Easy Taq PCR Supermix (+dye) (Transgen Biotech, China), and 9.5 µL
deionized distilled water (ddH2O). The thermal cycling conditions used for PCR amplifica-
tion are listed in Table 1. The positive amplified sequences were sequenced by Guangzhou
Tianyi Technology Co., Ltd. (Guangzhou, China).

2.3. Phylogenetic Analysis

Sequence quality was assured by validating chromatograms using BioEdit v5. The re-
sulting sequences were checked against the National Center for Biotechnology Information
(NCBI) search engine GenBank BLASTn (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed
on 12 January 2022). According to the BLAST results, the ITS, gapdh, rpb2, tef1-α, and Alt-a1
sequences obtained in this study were closely related to Alternaria. Relevant sequence
data were downloaded using Genbank. The maximum likelihood (ML) in RAxML [24]
was run for all the Alternaria species. After confirming that the strains from our study
belonged to the A. alternaria species complex (AALSC), phylogenetic analysis was per-
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formed with these strains. The individual sequence dataset was aligned using MAFFT v.7,
http://mafft.cbrc.jp/alignment/server accessed on 1 July 2022), and improved manually
using BioEdit v5 [25] as required. Subsequently, the aligned datasets were concatenated
manually. All sequences obtained in this study are deposited in GenBank (Table S1). Phylo-
genetic analyses were performed by ML in RAxML [24] and Bayesian analyses (BI) in Mr
Bayes v. 3.0b4 [26].

Table 1. Gene regions and respective primer pairs used in the study.

Gene Primer Primer DNA Sequence (5′–3′) Reference

ITS
ITS 4 TCCTCCGCTTATTGATATGC

[19]ITS5 GGAAGTAAAAGTCGTAACAAGG

gapdh gpd1 GCCAAGCAGTGTTGTGC
[20]gpd2 TCCTCCGCTTATTGATATGC

rpb2 fRPB2-5F GAYGAYMGWGATCAYTTYGG
[21]fRPB2-7cR CCCATRGCTTGTYYRCCCAT

tef1-α TEF1-728F CATCGAGAAGTTCGAGAAGG
[22]TEF1-986R TACTTG AAGGAACCCTTACC

Alt-a1
Alt-F ATGCAGTTCACCACCATCGC

[23]Alt-R ACGAGGGTGAYGTAGGCGTC

The maximum likelihood analyses were performed using RAxML-HPC2 on XSEDE
(8.2.8) [27] on the CIPRES Science Gateway platform [28]. The best model of evolution for
each gene was determined by MrModeltest v. 2.2. The GTR + I + G evolutionary model
was employed with 1000 non-parametric bootstrapping iterations. MrModeltest v. 2.3 [29]
was used to identify the evolutionary models for each locus used in Bayesian analysis.
The Markov Chain Monte Carlo sampling (MCMC) analysis was conducted with four
simultaneous Markov chains. These were run for 1,000,000 generations, sampling the trees
at every 100th generation. From the 10,000 trees obtained, the first 2000 representing the
burn-in phase were discarded. The remaining 8000 trees were used to calculate posterior
probabilities in a majority rule consensus tree. The constructed phylogenetic tree was
visualized in FigTree v1.4.2 and edited in Adobe Illustrator CS6.

2.4. Morphological Description

The strain was cultured on PDA, oatmeal agar (OA), and malt extract agar (MEA) me-
dia. The macroscopic morphological characteristics were evaluated. The culture characters
and morphology of the colonies cultured with PDA were observed in the dark at 28 ◦C.
Pycnidia were cut by a freezing sliding microtome (Bio-Key science and technology Co.,
Ltd., LEICA CM1860, Weztlar, Germany) for imaging and subsequent measurements. Coni-
diomata were visualized using SteREO Discovery.V20 (Zeiss, Germany). Digital images of
the microstructure (shape, size, and color) were captured using a Nikon Eclipse 80i micro-
scope (Nikon, Tokyo, Japan). The conidia length and width of 30 spores were measured by
NIS-element BR3.2. The mean value and standard deviation (SD) were calculated using
Microsoft Excel (Microsoft, Redmond, WA, USA).

2.5. Pathogenicity Tests

Pathogenicity tests using P. cablin seedlings were conducted in the greenhouse using
the mycelial plug method and suspension inoculation. Inoculated plants were kept in the
greenhouse (25 ◦C) with artificial lighting (14 h period of supplementary lighting/10 h
dark). Six P. cablin leaves from six plants were picked for each method. The surfaces of
the leaves were first wiped clean with wet sterile cotton and disinfected with 75% alcohol.
The leaves were then wiped three times with sterile wet cotton. Some of the leaves were
punctured with a sterilized No. 3 insect needle. The fungi plate was beaten into fungus
blocks with a 5 mm diameter. The fungus blocks were placed on the injured leaves and
covered with a film. A 5-mm PDA plate was used as a control. The mycelium was put into a
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150 mL PD medium and shaken for five to seven days to prepare the mycelium suspension.
The 10% mycelial suspension (10 mg/100 mL [volume]) was crushed using a juice extractor
as per Dong et al. [15] and sprayed on the leaves and stems with sterile cotton. The leaves
and stems were then covered with wet cotton and sealed with Parafilm or bagged for
moisturizing for 24–48 h. The P. cablin leaves and seedlings were observed every day. After
the onset of the disease, the pathogen was isolated to confirm Koch’s postulates.

3. Results
3.1. Field Symptoms

The disease incidence was approximately 15–30% at high temperatures above 30 ◦C,
and high humidity in the summer. Yellow-brown round spots initially appeared on the
leaves and were round or irregularly round and brown in the middle stage. In the later
stage, several spots connected, which led to the scorched shedding of the spots. Some
leaves perforated from the center of the disease spot, and eventually the whole leaf became
perforated and worthless (Figure 1).
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Figure 1. Symptoms of leaf spots caused by isolates in Pogostemon cablin. (a) Symptom in the field;
(b) Infected plants; (c) The positive surface of an infected leaf; (d) The opposite side of an infected
leaf; (e,f) A local area of an infected leaf.

3.2. Morphological and Molecular Characterization

Three isolates were obtained in this study. These were confirmed to be morpho-
logically similar to species of Alternaria. In addition, BLASTn analysis of the ITS region
indicated their highest sequence identity to fungi of the genus Alternaria. The combined
sequence data set comprised three Alternaria isolates from this study and 63 reference
sequences. The resulting tree was rooted with A. alternantherae (CBS 124392). The tree
topology of the ML analysis was similar to the PPs (Figure 2). The best scoring RAxML
tree with a final likelihood value of −15189.796179 is presented in Figure 2. The matrix
had 885 distinct alignment patterns, with 7.75% of undetermined characters or gaps. Es-
timated base frequencies were as follows: A = 0.240574, C = 0.282504, G = 0.244359, T =
0.232563; substitution rates AC = 1.169297, AG = 3.484578, AT = 1.120356, CG = 0.748282,
CT = 6.861660, GT = 1.000000; gamma distribution shape parameter α = 0.313383. Isolates
obtained in this study developed a clade together with A. burnsii and A. tomato with 100%
ML and 0.90 PPs. Therefore, we compared the morphology and pairwise nucleotide differ-
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ences among strains isolated in this study with A. burnsii and A. tomato. Based on molecular
and morphological evidence, isolates obtained in this study (ZHKUCC 22-0146, ZHKUCC
22-0147, and ZHKUCC 22-0148) were identified as a novel species. The species description
is as follows:

Alternaria pogostemonis M. Luo, M.P. Zhao, and Z.Y. Dong, sp. nov.;
Index Fungorum number: IF554928 (Figure 3).
Etymology: In reference to the host genus name Pogostemon;
Holotype: ZHKUCC 22-0146;
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Figure 3. Morphological characteristics of Alternaria pogostemonis (ZHKUCC 22-0146). (a,b) Front and
reverse view on PDA after 5 days at 28 ◦C; (c,d) Front and reverse view on MEA after 7 days at 28 ◦C;
(e,f) Front and reverse view on OA after 7 days at 28 ◦C; (g,h) Sporulation pattern; (i–o) Conidia
morphology bars: (g–o) = 10 µm.

Pathogenic on Pogostemon cablin leaves. Sexual morphology: Not observed. Asexual
morphology: Hyphae surface covered with dense hyphae, subhyaline, branched, smooth,
warty, septum, 1–3 µm wide. Conidiophores solitary or branched, brown, many septate, and
terminal meristematic locus simple. Conidia 17–77 × 9–22 µm (x = 33 × 14 µm, n = 50),
scattered, 20 or more single or branch chains of conidium, elliptic or ovate, light brown
to brown, brown conidium to transparent, no branch is an inverted stick, inverted pear-
shaped, ovoid, or oblong, conical or cylindrical short beak, brown to brown, shape, size
differed, usually with 2–7 transverse septa and 0–5 longitudinal septa.

Culture characteristics: Colonies on PDA and OA media reach 85 mm diameter after
7 days at 25 ◦C. The colony on PDA was circular, entire-edged, flat, floccose to woolly, first
cotton-like, then generally gray-brown from the center outward from gray to expand the
edge of white. Brown on the back.

Material examined: Zhanjiang, Guangdong Province, China, isolated from diseased
leaves of Pogostemon cablin, April 2020, by Y. Huang and Y. Shu (dried cultures ZHKU
22-0082, holotype, ex-type culture ZHKUCC 22-0146 and ex-paratype ZHKUCC 21-0147
and ZHKUCC 21-0148).

Notes: The three strains (ZHKUCC 22-0146–0148) obtained in this study constituted
a monophyletic clade with A. burnsii and A. tomato with a 100% maximum likelihood
bootstrap and Bayesian posterior probability value of 0.90. When compared, the genes
between A. pogostemonis and A. burnsii exhibited 1.25% differences (240 nucleotides) in
tef1, 0.35% differences (576 nucleotides) in gapdh and 0.2% differences (471 nucleotides)
in Alt-a1. Comparison between A. pogostemonis and A. tomato revealed 1.7% differences
(240 nucleotides) in tef1, 0.35% differences (576 nucleotides) in gapdh, 0.64% differences
(471 nucleotides) in Alt-a1, and 0.40% differences (753 nucleotides) in rpb2. Alternaria
pogostemonis in our study developed gray to gray-brown pigment on PDA. In contrast,
other studies suggest that A. burnsii [15,30,31] and A. tomato [31] have no pigment in PDA.
Furthermore, A. pogostemonis developed much larger spores (Table 2). Thus, based on the
phylogeny and morphology, we introduce this species as a new Alternaria species causing
disease in P. cablin.
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Table 2. Comparison of conidial morphological characteristics between Alternaria pogostemonis sp.
nov. and its phylogenetically related species.

Species

Conidia

Pigment in PDA References
Size (um) Shape

Septa

Transverse Longitudinal

A. burnsii 16~60 (90) × 6.5~14 (~16)
Long ellipsoid,

obclavate or
ovoid

2~6 (11) 0~2 (~4) None [15]

A. burnsii 25.5~105 × 8.4~20 Obovate 4~9 0~4 No report [30]
A. burnsii 30~50 × 9~13 Ovoid to ellipsoid 5~8 1~5 None [31]
A. tomato 30~50 × 10~13 Narrow-ovoid 6~9 1 (~2) None [31]

A. pogostemonis 17–77 × 9–22 µm
(x = 3 3 × 14 µm, n = 50)

Long ellipsoid,
obclavate or

ovoid
2~7 0~5 grey to grey

brown This study

3.3. Disease Symptoms and Pathogenicity Tests

Both the mycelial plug and suspension methods were employed. On days 3 and 4
after inoculation, leaf plaques appeared on the injured young leaves. Symptoms appeared
on the old or uninjured leaves 5–7 days after inoculation. Initial symptoms were minor;
however, leaf tissue eventually turned necrotic, expanding from the initial round plaque to
the periphery. Some even perforated from the center. Subsequently, the part of mycelium
in contact with the leaf began to dry and fall. The symptoms usually develop at the tip or
margin (Figure 4b–f,h–l). Under high humidity conditions, some diseased spots appeared
on the leaves on the fifth day, and the severely diseased leaves withered and fell off after
seven days. After seven days of incubation, the stems first browned on the surface, and
then became dry and shriveled (Figure 4n–r). No disease symptoms developed on any of
the controls (Figure 4a,g). Finally, fungal isolates were isolated from the infected leaves,
and the phenotype and phylogeny were compared to verify Koch’s hypothesis.
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Figure 4. Pathogenicity study of Alternaria pogostemonis. (a,g) The front and back side of leaf inoc-
ulated of the control leave; (b,h) Front and back of leaf at the beginning of needling experiment;
(c,i) Front and back of leaf in the middle of needling experiment; (d,j) Front and back of leaf in late
needling experiment; (e,k) Front and back of leaves in the early stage of mycelium suspension experi-
ment; (f,l) Front and back of leaves at late stage of mycelium suspension experiment; (m) Control
plant; (n–r) Early, middle, late stage of mycelium suspension experiment.
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4. Discussion

A novel leaf spot disease was isolated from P. cablin in Zhanjiang city, Guangdong
Province, in May 2020, and the pathogen was identified as A. pogostemonis. The disease
is initially characterized by yellowish-brown round spots on the leaves and by round
or irregular round and brown spots in the middle stage. In the later stage, the disease
spots expand and the leaves wither and fall. During the isolation, we also isolated other
fungi together such as Colletotrichum, Diaporthe, Epicoccum, Nigrospora, and Stagonosporopsis
pogostemonis [13]. Both S. pogostemonis [13] and A. pogostemonis were verified as pathogens
during the pathogenicity tests. Whether there are other strains or they cause a compound
infection requires further investigation.

Alternaria, consisting of hundreds of species, is considered one of the most critical
phytopathogens affecting plant tissues, including leaves, cereal grains, fruits, and vegeta-
bles [32–35]. It has been recorded as a critical fungal pathogen because of its worldwide
occurrence on various hosts [32–35].

Distinguishing the A. burnsii–A. tomato species complex based on the evolutionary tree
alone is difficult [36,37]. These two species have few differences in their gene loci [36,37].
On the evolutionary tree, the strains in our study constituted a monophyletic clade with
A. burnsii and A. tomato. The identified strain had more sequence similarity with A. burnsii
and was significantly different from A. tomato. Further, the morphological characteristics of
the colonies are varied; Alternaria pogostemonis developed much larger spores. More strains
and genes must be analyzed to confirm the relationship among the A. burnsii–A. tomato–
A. pogostemonis species complex.

Alternaria has strong adaptability to different environments and hosts. They can be
plant pathogens [36,37], saprobes [37], and endophytes [38]. They have also been isolated
from soil, atmosphere, and indoor environments [37,39]. The pathogenicity tests revealed
that the strain in our study could induce spot symptoms on both wounded and unwounded
leaves. However, the wounded leaves developed disease spots much more rapidly, with
severe symptoms.

To our knowledge, this is the first report of the genus Alternaria causing leaf spots
in P. cablin. This study represents the first detailed investigation of the morphology,
phylogeny, and pathogenicity of Alternaria species causing P. cablin leaf spots in China.
Species identification and confirmation of pathogenicity are critical to developing effective
control measures [40]. Therefore, further studies on their biological characteristics, suitable
fungicides, and their impact on P. cablin cultivation are warranted.
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