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Abstract: Gnathostoma spinigerum is the most common cause of gnathostomiasis in humans. It has a
complex life cycle, which requires two intermediate hosts and a definitive host, and poses a high
risk for zoonosis. Definitive prognosis of gnathostomiasis relies mainly on the isolation of advanced-
stage larvae (aL3), which is very challenging especially if the aL3 is sequestered in difficult-to-reach
organs. There is also a lack of a confirmatory diagnostic test for gnathostomiasis. With the ongoing
advancement of proteomics, a potential diagnostic approach is underway using immunoproteomics
and immunodiagnostics. In addition to this, the employment of mass spectrometry could further
elucidate not only understanding the biology of the parasite but also determining potential targets
of prospective drugs and vaccines. This article reports the past, present, and future application of
proteomics in the study of gnathostomiasis.
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1. Biology and Distribution of Gnathostoma

The genus Gnathostoma belongs to the order Spirurida and is one of the groups of
parasitic nematodes that prevail in the tropical and subtropical regions. Human gnathosto-
miasis is endemic in Southeast Asia (Thailand, Laos, Myanmar, Indonesia, Malaysia, and
the Philippines) and Japan, where people eat raw freshwater fish or shellfish [1]. How-
ever, it is now considered an emerging infectious disease due to increasing occurrence
in non-endemic areas such as Central and South America particularly Mexico [2]. The
definitive hosts of this parasite are wild and domestic cats, dogs, pigs, rats, and weasels.
Currently, a total of 18 species have been described belonging to this genus, but only six
species of these are known to infect humans, namely G. binucleatum, G. doloresi, G. bispidum,
G. malaysiae, G. nipponicum, and G. spinigerum, which are geographically distributed in
Asia, Central and South America, Australia, and East Africa [3,4]. Presently, research is
needed to improve the diagnosis of gnathostomiasis. Among the previously mentioned
human-infecting species of Gnathostoma, G. spinigerum has the most complicated life cycle
and poses a higher risk for zoonotic transmission. Thus, it will be given the emphasis
in this review [5]. G. spinigerum requires two intermediate hosts and one definitive host
to complete its life cycle (Figure 1). In general, the adult worms live in the wall of the
stomach of the definitive host (carnivores like canines and felids) and lay eggs, which are
then released into the environment through the feces. The first-stage larvae (L1) hatch from
the eggs in the freshwater and will be ingested by the first intermediate hosts, copepods
(usually cyclops species), in which they will develop into second-stage larvae (L2) and
early third-stage larvae (eL3). When the second intermediate hosts or paratenic hosts such
as fishes, frogs, and snakes ingest the cyclops spp., the eL3 will migrate into the tissue and
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then encyst and develop into the aL3 (Figure 2A). In the case that other paratenic hosts,
for example, reptiles and birds, ingest the secondary intermediate host containing aL3, the
larvae will not develop further. The life cycle will only be completed when the definitive
hosts (cat or dog) ingest the second intermediate or the paratenic host harboring the aL3.
The aL3 could migrate to the stomach and form the tumor-like mass at the stomach wall to
mature, mate, and lay eggs. It is important to note that humans are accidental hosts, as the
larvae cannot develop in humans and remain as aL3. However, aL3 can migrate to skin or
visceral organs, causing severe clinical manifestations [4].
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Figure 2. Photo indicating the aL3 obtained from the Asian swamp eels (Monopterus albus) (A) and a
cross-sectional picture of a tissue biopsy of a patient with mastitis showing the aL3 causing cutaneous
larva migrants (B). All photos were generated in our laboratory to demonstrate G. spinigenum
aL3 morphology.

2. Gnathostomiasis as Public Health and Travel Medicine Problem

Gnathostomiasis is a parasitic disease caused by a nematode of the genus Gnathostoma.
Several reports of the disease have been recorded in Asia and Central America [6]. There
are sporadic cases in non-endemic countries when travelers return home after visiting the
endemic areas, especially Southeast Asia [2,7]. G. spinigerum is the major species causing
human gnathostomiasis in Southeast Asia, particularly in Thailand. Subcutaneous or
cutaneous intermittent migratory swelling with peripheral eosinophils are the clinical
manifestations frequently observed during parasitic infection. However, severe cases
can potentially occur when the parasite migrates to visceral organs such as the brain,
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spinal cord, and eyes [8–10]. Clinical signs and symptoms, in addition to a history of
ingestion of raw or improperly cooked second intermediate hosts or paratenic hosts of
Gnathostoma in the endemic areas, are useful information for proper diagnosis [11]. Alterna-
tively, immunodiagnosis has been developed and used as a supportive diagnostic method
for gnathostomiasis [12].

3. Clinical Manifestations of Gnathostoma Larva Migration

The clinical manifestations of gnathostomiasis can be categorized into cutaneous and
visceral forms. Cutaneous gnathostomiasis is the most common manifestation. Intermittent
migratory swellings usually affect the trunk or upper limbs, with non-pitting edematous
type that varies in size and can be pruritic, painful, or erythematous (Figure 2B). The
symptoms can show within 3 to 4 weeks after ingestion of the larvae [13,14]. The swellings
are due to both mechanical damages caused by the larvae and the host’s immunological
response to the parasite and its secretions. Regrading larval migration, subcutaneous
hemorrhage may be observed along its track specific to gnathostomiasis. It can help
differentiate it from other causes of larva migrants such as sparganosis, hookworm infection,
or strongyloidiasis [1].

In comparison to the cutaneous type, the visceral form is more harmful. This occurs
when the larvae penetrate deep into the internal organs. The severity and symptoms of
the disease vary according to the invaded target organs. If the larvae invade the lung,
the symptoms are pleuritic chest pain, hemoptysis, lobar consolidation, collapse, pleural
effusions, and pneumo- or hydropneumothorax [15–17]. On the other hand, when the
larvae invade the eye, uveitis intraocular hemorrhages, glaucoma, retinal scarring, and
detachment may be observed [18]. In the most severe case, when the brain and spinal cord
are breached, it may cause limb weakness, paralysis, unconsciousness, and death [10,19].

4. Treatment, Prevention, and Diagnosis of Gnathostomiasis

The recommended treatments rely on surgical removal or treatment with albendazole
or ivermectin. Although the best treatment for gnathostomiasis is the surgical removal
of the larva, this is only effective when worms are located in an accessible location. For
surgery, medications such as albendazole and ivermectin have also been noted for their
efficacy in eliminating the parasite [20]. Administration of albendazole at 400 mg/day for
21 days is recommended, with cure rates between 93.9% and 94.1%. Unfortunately, this
regimen elicits adverse side effects such as gastrointestinal distress, headache, dizziness,
increasing and reversible levels of hepatic enzymes, and transient reduction of the total
leukocyte count [21]. On the other hand, treatment with a single dose (150–200 µg/kg) of
ivermectin showed a high curability of cutaneous larva migrants (creeping eruption) at a
100% cure rate without significant adverse effects [22]. However, a previous clinical trial
suggested that a single dose of ivermectin (200 µg/kg) was less effective than albendazole
(400 mg/day for 21 days) for treatment of cutaneous gnathostomiasis [23].

Avoiding the consumption of raw or undercooked meat is essential in the prevention
of gnathostomiasis. However, changing the eating habits of people in endemic areas is
difficult. In endemic areas such as Southeast Asia, there are traditional dishes that use raw
or undercooked fish such as koipla in Thailand, goi ca song in Vietnam, and sashimi and
sushi in Japan [24]. Health education regarding these traditional eating behaviors needs
to be emphasized. The most important methods of their food preparation in order to kill
the larvae without greatly altering the taste of traditional dishes should be practiced. For
instance, meat should be marinated in vinegar for 6 h or in soy sauce for 12 h to kill the
larvae successfully. In areas with reliable electricity, meat can be frozen at −20 ◦C for 3 to
5 days to achieve the same results of getting rid of the larvae [25].

Definite diagnosis for gnathostomiasis is challenging. Firstly, clinical manifestations
and history of eating raw foods are used to measure for suspected gnathostomiasis; how-
ever, these are still indistinguishable from the signs and symptoms of angiostrongyliasis,
trichinellosis, and hookworm cutaneous larva migrants [1]. Secondly, eosinophilia in the
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cerebrospinal fluid (CSF) is distinct evidence for the diagnosis of gnathostomiasis. The
observed level of eosinophil is found at 5 to 94% with a high total CSF white cell count
up to an average of 500 cells/mm3 (20–1420 cells mm3) [26]. However, this eosinophilia
is still a non-specific issue as it has also been found to occur when infected with several
other parasites such as Angiostrongylus cantonensis, Toxocara canis, Strongyloides stercoralis,
Ascaris lumbricoides, Paragonimus westermani, Fasciola hepatica, Trichinella spiralis, schisto-
somes, and other infections such as coccidiodomycosis and Aspergillus infection [1,10].
Alternatively, immunodiagnosis has been developed over the years and is promising a
high sensitivity and specificity that may be advantageous in the differential diagnosis
of gnathostomiasis [27].

5. Immunodiagnosis Is Appropriate Method for Diagnosis of Gnathostomiasis

Antigen-based diagnosis by capturing circulating antigen in serum is an ideal method
for human gnathostomiasis. However, low sensitivity was reported according to the lack of
an adequate amount of antigen presented in a clinical specimen. Antigen-capture sandwich
enzyme-linked immunosorbent assay (ELISA) of CSF from 11 suspected patients found that
only three of them gave positive results and only one case was positive with parasitological
confirmation [3]. Afterward, antibody-based diagnoses for detection of gnathostomiasis
was developed and showed higher power in terms of sensitivity over antigen test. ELISA
based on the detection of human IgG class antibody (total IgG) to Gnathostoma antigen
was widely used in the past few decades [28–31]. Recently, Western blot analysis to detect
specific total IgG against 24 kDa protein in G. spinigerum third-stage larva (L3) extract has
been used as a standard diagnosis [32]. Not only total IgG but also detection of specific IgG
subclasses against 24 kDa antigen was performed. The result showed that IgG4 gave the
best sensitivity and specificity at 91.6% and 87.8%, respectively, comparing among other
subclasses [33]. Although detection of specific IgG against crude worm antigen (CWA)
elicits high sensitivity and specificity, the whole process of antigen preparation is quite
complicated, time-consumable and laborious, and non-quality batch-to-batch. Furthermore,
the collection of G. spinigerum L3 from natural sources is limited depending on season
and environmental conditions. To improve antigen preparation, recombinant protein
technology has been applied to produce mimic antigens for further development of reliable
diagnosis. However, the sensitivity and specificity of recombinant protein compared to a
crude antigen is still doubtful and needs to be validated further [12,34,35].

The mRNA encoding the 24 kDa protein was first identified as matrix metalloprotease
(GsMMP) by immunoscreening with the monoclonal antibody (mAb GN6) [36]. Recombi-
nant GsMMP (rGsMMP) expressed by prokaryotic expression systems could effectively
diagnose neurognathostomiasis with high sensitivity (100%) and specificity (100%) [37].
However, validation of rGsMMP with several other related diseases still needs to con-
firm the accomplishment. Cathepsin L (GsCL1) was identified from the λZAP cDNA
library of G. spinigerum aL3, and the recombinant protein (rGsCatL) was produced and
successfully elicited enzymatic activity [38]. In our previous study, rGsCatL expressed
by the prokaryotic system exhibited high cross-reaction with other heterologous infected
sera (unpublished personal data). However, eukaryotic expression systems such as yeast,
mammalian cell, or insect cell may be adapted for correct conformation or modification
of the rGsCatL. [38,39]. Cyclophilin (CyP) has been identified from G. spinigerum aL3
and recognized by human gnathostomiasis sera using two-dimensional electrophoresis
(2-DE) and liquid chromatography in conjunction with tandem mass spectrometry (LC-
MS/MS) [40]. Recombinant GsCyP (rGsCyP) used for immunoblotting solely reacted
with human gnathostomiasis sera but not with healthy control or other parasite-infected
sera [12]. However, a sufficient number of sera with various diseases are still required to
ensure diagnostic efficacy. Until now, only a few antigens have been employed as candi-
dates for recombinant protein-based immunodiagnosis. Therefore, new immunodiagnosis
candidates must be investigated further. Proteomics is a powerful discovery tool to identify
candidate immunodiagnostic antigens in several pathogens, including G. spinigerum.
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6. Proteomics for Identifying Immunodiagnostic Candidates and Drug Targets of
G. spinigerum

Proteomics is the large-scale study of proteins in complex biological samples. A work-
flow basically consists of protein digestion, liquid chromatography (LC) separation, mass
spectrometry (MS), and data interpretation [41]. Proteomic approaches can be used for pro-
teome profiling, comparative quantification, localization, posttranslational modifications,
and protein–protein interactions. Recently, proteomics has been applied to investigate
parasite proteomes, which are essential to understand disease pathobiology and design
novel interventions [42]. Although applying this technology to other helminth parasites
has been reported [43], only a few publications were done on Gnathostoma. Immunopro-
teomics and secretome are currently the only two types of proteomics that have been done
on Gnathostoma.

Parasitic helminths producing excretory–secretory proteins (ESPs) are required for
food intake, tissue penetration, and host–parasite interactions [44]. Moreover, studies on
ESPs could be useful for diagnostic biomarker discovery, as these proteins are released
from the parasites and circulate in the host cell environment [45]. The ESPs represent a
complex mixture of molecules that have been transported via secretory pathways and
sloughed off the tegument. ESPs suppress the host immune system and aid parasite
survival [46]. Therefore, the secretome data could be useful for therapeutic target identi-
fication, diagnostic tools, and pathogen control. MS-based proteomics coupled with the
in-house cDNA-transcribed library were used to reveal G. spinigerum aL3 secretome [40].
This research identified 29 G. spinigerum ESPs. Many proteins are involved in signaling
transduction, transcriptional control, transportation, and programmed cell death. A metal-
loendopeptidase and a serine carboxypeptidase were discovered as predominant proteases
in the G. spinigerum secreted product. Metalloproteases released by G. binucleatum aL3 were
found to degrade gelatin, fibronectin, and antibodies in a prior study, suggesting that they
may play a role in Gnathostoma tissue invasion, migration, and immune evasion [47]. For
that reason, metalloprotease inhibitors may reduce collateral tissue damage of gnathosto-
miasis. Interestingly, doxycycline is clinically approved for therapy of severe gum infection
on account of the inhibition of collagenases rather than antibacterial effects [48]. Thus,
the use of antibiotics as a metalloprotease inhibition might be a complementary therapeu-
tic for parasitic infection. Serpin was also identified in G. spinigerum ESPs. Serpins are
mostly inhibitors of serine proteases. Non-inhibitory actions of serpins including molecular
chaperone activity, hormone transfer, and tumor suppression have been reported. The
parasites are protected from the host proteolysis by the secretion of serpins, which also aids
the worms in invading the host-defensive barriers and evading the host immunological
response [49]. Vaccination of mice with T. spiralis serpin exhibited 62.2% and 57.25% reduc-
tion in intestinal adult worm and muscle larvae, respectively [50]. The G. spinigerum serpin
might also be a potential vaccine and drug target against gnathostomiasis. The functions
of other 19 G. spinigerum ESPs are still unknown, and more characterizations are required
for understanding their roles and functions.

Another proteomics study on Gnathostoma was the profiling of Gnathostoma antigens
using immunoproteomics. The immunoproteomics is a technique that combines protein
separation, immunological detection, and MS analysis to reveal antigens that induce host
immune responses. In this method, 2-DE is used to separate proteins from cells or tissues.
Each gel is electro-transferred onto a nitrocellulose membrane, and immunoblotting is
performed with the infected host serum. The infected serum contains antibodies that
can recognize parasite antigenic proteins. The antigen–antibody reaction is visualized
by enzyme-labeled secondary antibodies. Afterward, the antigenic spots are excised
and analyzed using LC-MS/MS. The immunoproteomics workflow is demonstrated in
Figure 3 [51]. This technique facilitates the search for candidate antigens leading to di-
agnostics and vaccine development, as well as providing a better understanding of the
host–parasite interaction. G. binucleatum is the causative parasite of human gnathostomiasis
in the Americas. G. binucleatum immunodominant antigens generated from somatic anti-
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gens and excretory–secretory antigens have been studied by two-dimensional immunoblot
analysis. Sera were collected from 16 patients with gnathostomiasis, which were diag-
nosed either by recovery of larva or by a positive ELISA result. The metazoa subset of
the NCBInr database was used for protein identification. Two spots of CWA (32 kDa;
pI 6.3 and 6.5) were identified as type 1 galectins by mass spectrometric analysis [52].
According to G. spinigerum, two studies focused on CWA, and one study focused on ESPs.
Immunoproteomics was used to identify the reactive spots of G. spinigerum aL3 CWA. Six
parasitologically confirmed cases of human gnathostomiasis served as positive control
sera. While a negative control serum was created by pooling the sera of 30 healthy Thai
individuals with no history of infection and migrating cutaneous swellings and who were
free of parasite infections in the intestine. Proteins with a molecular weight of 23 to 24 kDa
and a pI of 8.1 to 9.3 were recognized by human gnathostomiasis serum. The nr.fasta
database was used to identify proteins in these two gel plugs. Cyclophilin, hypothetical
protein, actin, matrix metalloproteinase-like protein, and intermediate filament protein B
were identified as candidates for gnathostomiasis diagnosis [53]. A more recent study on
immunoproteomic analysis of CWA of G. spinigerum aL3 was reported. Pooled positive
serum was gathered from thirteen confirmed cases of adult human gnathostomiasis. At the
same time, thirty healthy adult volunteers provided pooled negative reference serum. The
93 antigenic spots were excised, and protein identification was accomplished by searching
against the NCBI protein database (all entries). Twenty-seven proteins could be identified
by LC-MS/MS [54]. The immunoproteomics analysis was applied not only to G. spinigerum
aL3 somatic proteins but also to aL3Gs-ESPs. Protein identification was performed against
an in-house transcriptome database, and 15 proteins could be identified [40]. Summary
of important Gnathostoma antigens identified by immunoproteomics studies is presented
in Table 1. Immunoproteomics successfully explored Gnathostoma immunogen datasets.
However, the candidates need to be further validated as diagnostic and vaccine candidates.
The sensitivity and specificity data are required for gnathostomiasis diagnosis. The estima-
tion of vaccines’ protective efficacy is necessary for further development. Moreover, the
large-scale protein production and evaluation of the capacity of those proteins should be
investigated further.
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Table 1. Summary of important Gnathostoma antigens identified by immunoproteomics studies.

Antigen Separation- Database for Protein
Identification Protein Identification Ref.

G. binucleatum CWA pH 5–8, 12% gel Metazoa of NCBInr Galectins [52]

G. binucleatum ESP pH 5–8, 12% gel Metazoa of NCBInr - [52]

G. spinigerum CWA pH 3–11, 12% gel nr.fasta database

Cyclophilin
Hypothetical protein

Actin
Matrix metalloproteinase-like

Intermediate filament protein B

[53]
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Table 1. Cont.

Antigen Separation- Database for Protein
Identification Protein Identification Ref.

G. spinigerum CWA pH 3–11, 12% gel All entries of NCBI
protein database

As37
Actin 2

Heat shock protein 90
Heat shock protein 70

Chaperonine protein HSP60
Chaperone protein DnaK

Phosphoenolpyruvate Carboxykinase
domain-containing Protein

Carboxyl transferase domain protein
Enolase

Glyceraldehyde-3-phosphate dehydrogenase
Peptidyl-prolylcis-trans isomerase

Cyclophilin
Cytoplasmic intermediate filament protein

Peroxiredoxin
Matrix metalloproteinase-like protein

Fructose-bisphosphate aldolase
53 kDa Excretory/secretory protein

Glu/Leu/Phe/Val dehydrogenase, dimerization
domain protein

Galectin
methylmalonyl

4-Hydroxybutyrate coenzyme a transferase
Phosphoglycerate mutase

Eukaryotic translation elongation factor 1A
Phosphoglycerate kinase

Proteasome subunit alpha type 7-1
Myosin heavy chain

Cytoplasmic Cu/Zn-superoxide dismutase
CBN-MCE-1 protein

ATPase and cell division protein 48 and Vps4
oligomer ization

Kinesin-2

[54]

G. spinigerum ESP pH 3–10, 12% gel In-house
transcriptome

Serine_rich_NEDD9
Catalase heme-binding enzyme

Pyrroline-5-carboxylate reductase
Phospho-2-dehydro-3-deoxyheptonate aldolase

Serpin
AJAP1/PANP C-terminus

[40]

7. Future Perspectives of Proteomics in Improving Diagnosis and Treatment
of Gnathostomiasis

Immunoproteomics is successfully applied for G. spinigerum immunogen identifica-
tion. However, antigen profiles of G. spinigerum proteins, which could be recognized by
other host immune systems such as dog, cat, and cattle remain unknown. This information
is also useful for the prevention and control of gnathostomiasis since there is also a lack of
diagnosis and vaccine in different hosts. Moreover, other types of proteomic studies are
limited to Gnathostoma. To perform a proteomic analysis, an adequate amount of biological
sample is required. Gnathostoma nematodes require two intermediate hosts and one defini-
tive host to complete their life cycle. Freshwater copepods are the first intermediate host,
while fish or tadpoles are the second intermediate host. A dog or a cat is the definitive
host. The life cycle of G. spinigerum is difficult to sustain in the laboratory since the parasite
hosts are not common laboratory animals. As a result, a sufficient volume of material
must be prepared from natural infection. To obtain the aL3Gs, livers of naturally infected
eels are extracted using an acid-pepsin digestion process. This procedure is dependent
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on the presence of eels, and only one stage can be collected [54,55]. As the G. spinigerum
develops through numerous stages, the profiles of protein expression change dramatically.
An ideal novel anthelminthic drug should target a protein present in all life-cycle stages
of the G. spinigerum to have the greatest treatment efficiency. Gaining the information of
stage-specific pathways is important for underlining the essential proteins involved in par-
asite adaptation to its human host. Inhibition of parasite stage development process is one
approach for antiparasitic drug design. However, the complete set of proteins expressed
in all G. spinigerum stages are unavailable. Another obstacle of global proteomic analysis
is the lack of a genome database for G. spinigerum. This limitation will result in incom-
plete proteomics identification. According to our unpublished results, using our in-house
G. spinigerum transcriptome database will yield substantially more protein identification
than using the public database. Therefore, it is also critical to investigate the entire genome
of G. spinigerum. The proteomic analysis could also be used to study post-translation
modifications (PTMS), for example, glycosylation and phosphorylation. Glycosylation
on the surface proteins and ESPs of parasites play essential roles in the ability of adap-
tation and survival in different hosts and environments. Since the glycan of parasites
could modulate host immune responses, these molecules are important for diagnostics and
vaccinology [56]. Protein phosphorylation is eukaryotic cells’ major regulatory mechanism
for controlling cellular functions. Understanding the relationship between protein kinases,
phospho-signaling cascades, and protein substrates is critical for understanding the mech-
anisms that regulate cellular activity as well as identifying potential therapeutic targets.
Identification of G. spinigerum PTMs might become increasingly relevant candidates for the
diagnosis, vaccine, and drug development of gnathostomiasis [57–60].
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