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Abstract: Candida species are fungal pathogens known to cause a wide spectrum of diseases, and
Candida albicans and Candida glabrata are the most common associated with invasive infections. A
concerning aspect of invasive candidiasis is the emergence of resistant isolates, especially those
highly resistant to fluconazole, the first choice of treatment for these infections. Fungal sphingolipids
have been considered a potential target for new therapeutic approaches and some inhibitors have
already been tested against pathogenic fungi. The present study therefore aimed to evaluate the
action of two sphingolipid synthesis inhibitors, aureobasidin A and myriocin, against different C.
albicans and C. glabrata strains, including clinical isolates resistant to fluconazole. Susceptibility tests
of aureobasidin A and myriocin were performed using CLSI protocols, and their interaction with
fluconazole was evaluated by a checkerboard protocol. All Candida strains tested were sensitive to
both inhibitors. Regarding the evaluation of drug interaction, both aureobasidin A and myriocin
were synergic with fluconazole, demonstrating that sphingolipid synthesis inhibition could enhance
the effect of fluconazole. Thus, these results suggest that sphingolipid inhibitors in conjunction with
fluconazole could be useful for treating candidiasis cases, especially those caused by fluconazole
resistant isolates.

Keywords: Candida; sphingolipids; myriocin; fungal infections

1. Introduction

Candida species cause a wide spectrum of infections in humans, ranging from su-
perficial mycosis, especially associated to skin and vaginal mucosae, to life-threatening
disseminated candidiasis [1]. Candida albicans and Candida glabrata are the most frequent
species associated to invasive infections, being responsible for about 46% and 24%, respec-
tively [2]. Candidiasis is commonly associated with different pathologies, such as HIV
infection, organ transplantation, cancer and diabetes, which contribute to a mortality rate
of up to 60% [3]. In addition, it has been considered the most frequent fungal disease
associated to healthcare units and the fourth most prevalent nosocomial infection [4].

The current antifungal drugs available to be used against fungal infections are limited
to only four classes: azoles, which block the enzyme lanosterol 14-α demethylase and, thus,
disrupt ergosterol synthesis; polyenes, which directly bind to ergosterol found in the plasma
membrane and cause the release of cytoplasmic content; echinocandins, which inhibit the
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enzyme β(1,3)-glucan synthase and affect cell wall synthesis; and fluoropyrimidine analogs,
which block DNA synthesis [5]. The first choice of drug to treat candidiasis is fluconazole,
an azole antifungal drug, but resistant strains have been emerging over the last decades,
causing a significant impact in public health [6,7]. Multi-resistant strains have been isolated,
which express different types of transporters or display over-expressed azole targets [8].
In addition, alternative therapeutic options are limited due to low diversity of antifungal
classes and high level of toxicity and side effects [9].

For these reasons, there is an urgent need to find alternative therapeutic approaches
to obtain better results in treating patients who carry resistant strains. Different fungal cell
components have been studied as potent new targets for the development of antifungal
drugs. In this context, sphingolipids have been considered interesting candidates. Several
studies have shown that sphingolipids, mainly glucosylceramide, play crucial roles in
fungal growth, cellular signaling and virulence [10–12]. In C. albicans, Cryptococcus neofor-
mans, Penicillium digitatum, and Aspergillus fumigatus, mutants which do not express the
glucosylceramide synthase gene displayed alterations in plasma membrane, growth, and
virulence in infection models [13–17]. In addition, some compounds that inhibit sphin-
golipid biosynthesis, such as aureobasidin A and myriocin, have been shown to present
antifungal activity with low minimum inhibitory concentration (MIC) in a variety of fun-
gal pathogens, including Candida and Aspergillus species [18–22]. More recently, a class of
drugs called acylhydrazones was described which affect the synthesis of glucosylceramides
of C. neoformans, C. albicans, A. fumigatus, and Pneumocystis murina, but not those from
mammalian cells [23].

Due to the increasing resistance of Candida species associated with invasive infections
and the potential of targeting sphingolipids, the present study aimed to test two inhibitors
of sphingolipid synthesis, aureobasidin A and myriocin. Both drugs were evaluated
against different Candida clinical isolates, including some that were described as strains that
overexpress transmembrane transporters (ABC and MFS) related to multidrug resistance
phenotype [24,25]. Aureobasidin A and myriocin inhibit inositolphosphorylceramide
(IPC) synthase and glucosylceramide (GlcCer) synthase, respectively, which are two key
enzymes for the synthesis of the most important sphingolipids found in fungi such as IPC
and GlcCer.

2. Results
2.1. Antifungal Effect against Candida Strains

Aureobasidin A and myriocin were initially tested against all Candida strains used
in the study (Table 1). ATCC strains were used as a control because they do not to
express resistance mechanisms. On the other hand, clinical isolates are highly resistant to
fluconazole (MIC > 256 µg/mL) and present different resistance mechanisms as pointed
out in Materials and Methods section.

Table 1. Candida strains used in the study.

Strains Resistance Pattern Reference

C. albicans
(ATCC 10231D-5) No resistance described American Type

Culture Collection *

C. glabrata
(ATCC 2001D-5) No resistance described American Type

Culture Collection *

C. glabrata (109) CDR1 gene overexpressed
(ABC transporter) [24]

C. albicans (1114) MDR1 gene overexpressed
(MFS transporter) [25]

C. albicans (12-99) ERG11, CDR1, CDR2 and MDR1 genes overexpressed
(ABC and MFS transporters) [26]

* https://www.atcc.org/, (accessed on 30 June 2021).

https://www.atcc.org/
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Aureobasidin A inhibits fungal growth at 0.5 µg/mL for ATCC strains (C. albicans
and C. glabrata) and at 0.25 µg/mL for clinical isolates (109, 1114, and 1299) (Table 2).
Myriocin presents antifungal activity at 2.0 and 1.0 µg/mL for ATCC C. albicans and C.
glabrata, respectively, and at 0.5, 1.0, and 0.25 µg/mL for clinical isolates 109, 1114, and
1299, respectively (Table 2).

Table 2. Candida strains susceptibility to Aureobasidin A, Myriocin, and Fluconazole.

* MIC90 (µg/mL)

Aureobasidin A Myriocin Fluconazole

C. albicans
(ATCC 10231D-5) 0.5 2.0 <8

C. glabrata
(ATCC 2001D-5) 0.5 1.0 <8

C. glabrata (109) 0.25 0.5 >256
C. albicans (1114) 0.25 1.0 >256
C. albicans (12-99) 0.25 0.25 >256

* MIC: minimal inhibitory concentration.

Cell viability decreased at MIC values, as evaluated by XTT-reduction assay, indicating
that both inhibitors present fungicidal effect (Figure 1).
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Figure 1. Viability of Candida ATCC (C. albicans ATCC 10231D-5 and C. glabrata ATCC 2001D-5) and clinical strains
(C. albicans 1114 and 12-99, C. glabrata 109) in the presence of aureobasidin A and myriocin. Cells were grown in microplates
containing RPMI at 37 ◦C for 48 h in the absence (0 µg/mL) or in the presence of aureobasidin A and myriocin. After the
incubation time, viability was evaluated using the XTT-reduction assay. Cell viability was quantified using a microplate
reader (Bio-Rad, Hercules, CA, USA) at 490 nm. Percentage of fungal growth was calculated considering the control
(absence of all drugs) as 100%. Errors bars represent standard errors of means of different experiments in different days
(n = 3).
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2.2. Interaction between Aureobasidin A, Myriocin, and Fluconazole

As pointed out previously, fluconazole is the first choice in treating candidiasis and
the emergence of fluconazole-resistant strains is a concern in healthcare settings, because
it is related to high mortality of infected patients. For this reason, a synergic effect of
sphingolipid inhibitors and fluconazole could be useful in order to improve treatment of
patients infected with resistant Candida species.

Both sphingolipid inhibitors display a synergic effect with fluconazole (Table 3), except
aureobasidin A in strain 12-99. Aureobasidin A reduced fluconazole MIC from more than
256 µg/mL (strains 109 and 12-99) or 128 µg/mL (strain 1114) to 32, 16, or 128 µg/mL
for strains 109, 1114, and 12-99, respectively. FICI values were 0.1874, 0.25, and 0.56 for
strains 109, 1114, and 12-99, respectively, indicating that a synergic effect occurs between
aureobasidin A and fluconazole for most of the strains used.

Table 3. Interaction of aureobasidin A or myriocin with fluconazole tested in Candida clinical isolates
presenting resistance to fluconazole.

Candida Strains

109 1114 12-99

MIC90 alone (µg/mL)

Fluconazole >256 128 >256
Aureobasidin A 0.25 0.25 0.25

Myriocin 0.5 1.0 0.25

MIC90 combined (µg/mL)

Aureo/Fluco 0.0156/32 0.03125/16 0.015/128
Myr/Fluco 0.0625/64 0.25/32 0.0625/16

FICI

Aureo/Fluco 0.1874 (synergic) 0.25 (synergic) 0.56 (no effect)
Myr/Fluco 0.375 (synergic) 0.5 (synergic) 0.31 (synergic)

Aureo: aureobasidin A; Fluco: fluconazole; Myr: myriocin; MIC: minimal inhibitory concentration; FICI: fractional
inhibitory index.

On the other hand, myriocin decreased fluconazole MIC to 64 (strain 109), 32 (strain
1114) and 16 µg/mL (strain 12-99) (Table 3). Corresponding FICI values were 0.375, 0.5
and 0.31 for strains 109, 1114, and 1299, respectively, confirming a synergic effect between
myriocin and fluconazole.

A graphical representation of synergism data is shown in Figure 2.
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Figure 2. Evaluation of the interaction between aureobasidin A (A,C,E) and myriocin (B,D,F) with
fluconazole. Analysis was performed with the isolates 109 (A,B), 1114 (C,D), and 1299 (E,F) and the
results are shown using the software Sigma Plot 12.0. Cells were grown in microplates containing
RPMI at 37 ◦C for 48 h in the absence (0 µg/mL) or in the presence of different combinations of
aureobasidin A or myriocin with fluconazole. After the incubation time, cell growth was evaluated
using a microplate reader (Bio-Rad, Hercules, CA, USA) at 600 nm. Percentage of fungal growth was
calculated considering the control (absence of all drugs) as 100%.

2.3. Cytotoxicity of Aureobasidin A and Myriocin

In order to test if aureobasidin A and myriocin are toxic to mammalian cells at the same
concentrations found effective in previous experiments, a cytotoxicity assay was performed
on murine macrophages (RAW 264.7). Compared to untreated cells, the control of cells
treated with 1% dimethylsulfoxide (DMSO) presented 80% viability whereas myriocin
treatment led to 60% viability, demonstrating a decrease of approximately 20% compared
to DMSO-treated cells (Figure 3). Regarding aureobasidin A treatment, RAW cell viability
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was not affected up to 2.5 µg/mL, which is more than 10-fold higher than the concentration
presenting synergism with fluconazole.
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The data represent the means of three independent experiments and the error bars represent the standard error. Solid black
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These data suggest that aureobasidin A is not toxic at concentrations used in this work,
whereas myriocin is partially toxic.

2.4. Effect of Aureobasidin A and Myriocin on the Lifespan of Wild Type Caenorhabditis elegans

To check the toxicity of compounds now against living organisms, we did a survival
test using a wild-type of C. elegans worm. The worms were tested in the presence of
0.5 µg/mL of both compounds and in the presence of 0.1% DMSO as a control. After
4 days of analysis regarding the survival of the worms in the presence of the compounds,
it can be observed that only myrocin at 0.5 µg/mL was toxic to the worms since in the
case of aureobasidin A, at the same concentration, the survival was practically the same
(approximately 98%) when compared to the control (Figure 4). These results corroborate
what was observed in the cytotoxicity assay using macrophages (Figure 3), where only
myrocin seemed to be more toxic than aureobasidin A.
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3. Discussion

Infections caused by Candida species represent a significant concern in clinical set-
tings due to their high morbidity and mortality, as well as the emergence of resistant
isolates [27,28]. Thus, the study of new alternatives to treat candidiasis, especially those
caused by resistant strains, is an urgent need.

Sphingolipids are a potential new target for drug development. They are considered a
good candidate because fungal sphingolipids are structurally different from the human
counterparts and due to their crucial roles in fungal growth, cellular signaling and patho-
genesis also. Several studies demonstrated that different compounds are able to block
different steps of sphingolipid biosynthesis and therefore present antifungal activity. These
compounds—such as myriocin, fumonisin B1, aureobasidin A, and D-threo-1-phenyl-2-
decanoylamino-3-morpholino-1-propanol (D-threo-PDMP)—act by blocking serine palmi-
toyltransferase, ceramide synthases, IPC synthase, and GlcCer synthase, respectively [12].

The present study aimed to use two of these compounds, aureobasidin A and myriocin,
in order to evaluate their activity against Candida species. C. albicans ATCC (10231D-5) and
C. glabrata ATCC (2001D-5) were used, as well as three clinical isolates highly resistant to
fluconazole, C. glabrata strain 109 (over-expression of the CDR1 gene), C. albicans strain
1114 (over-expression of the MDR1 gene) and C. albicans strain 12-99 (over-expression of
the genes ERG11, CDR1, CDR2, MDR1) (Table 1).

Aureobasidin A displayed MICs of 0.5 µg/mL for ATCC strains and 0.25 µg/mL for
clinical isolates, whereas myriocin presented MICs ranging from 0.25 µg/mL to 2.0 µg/mL
(Table 2, Figure 1). These data are in accordance with the literature, since it has also been
demonstrated that aureobasidin A at concentrations of 2.0–3.5 µg/mL inhibited ATCC
strains of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, and C. krusei [29]. Clinical
isolates were also evaluated by Tan and Tay [21], who showed MICs for aureobasidin A of
4 µg/mL for C. albicans and 1 µg/mL for non-albicans isolates. This inhibitory effect has
already been described to occur due to ceramide intoxication and deprivation of essential
IPCs [19]. In addition, aureobasidin A has already been demonstrated to inhibit IPC
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synthase activity even at nanomolar levels, suggesting that its antifungal action might be
a result of alterations on the biosynthesis of sphingolipids [29]. Kumar and colleagues
have also shown that in vitro treatment of Candida auris with aureobasidin A leads to a
deregulation of many intermediates of sphingolipid biosynthetic pathway [30].

Regarding myriocin, it presented MICs ranging from 0.25 µg/mL to 2.0 µg/mL
(Table 2, Figure 1). De Melo and colleagues reported a similar MIC value of 0.12 µg/mL
for C. albicans SC5314 [31]. Recently, myriocin was tested against some Candida strains,
including isolates resistant to voriconazole, and MICs were found varying between 0.125–
4.0 µg/mL [32]. Aureobasidin A and myriocin also affect Candida biofilms, and it was due to
modification in lipid composition and to the alteration in lipid raft organization and plasma
membrane [20,32]. The effect of myriocin on Candida cells has been recently evaluated by
Yang and colleagues, who demonstrated that a disruption of plasma membrane is observed
when different species are treated with myriocin [32]. Similar data have also been shown in
other pathogenic fungi, such as Scedosporium boydii, in which myriocin led to alterations on
plasma membrane resulting in higher susceptibility to membrane stressors such as SDS [33].
In Aspergillus fumigatus, myriocin treatment led to a decrease in phytoceramide content,
suggesting that this inhibitor also alter the regulation of sphingolipid production [22]. Thus,
the effect of myriocin and aureobasidin A against different pathogenic fungi suggests that
the disruption of sphingolipid biosynthesis seems to display a conserved antifungal activity,
although more studies are needed using other samples and compounds [18,20,22,34,35].

Synergistic effect of two different drugs is a promising alternative to enhance efficacy of
the current antifungals. This approach uses two known drugs combined, which are already
approved to be used in clinical settings, and their toxicity was already determined. This is
a great advantage when compared to the costly and time-consuming development of new
drugs [36]. The best-known example of synergism is the combination of fluorocytosine and
amphotericin B, which is the gold standard treatment for cryptococcosis [36,37]. However,
very few studies describe synergistic effects of sphingolipid inhibitors and the current
antifungal drugs. De Melo and colleagues demonstrated that myriocin is synergistic to
amphotericin B but not to fluconazole [31]. However, only one susceptible strain and
no fluconazole-resistant isolate was used, so more studies are needed in this field. Since
fluconazole is the first choice to treat Candida invasive infections with high mortality and
resistant strains have been emerging in recent years, it is crucial to develop treatment
alternatives. Our data showed that both aureobasidin A and myriocin present synergistic
effects with fluconazole on almost all clinical isolates tested in this work (Table 3, Figure 2).
As mentioned, the clinical isolates used are highly resistant to fluconazole, which suggests
that synergy is a promising option to be used in patients carrying fluconazole-resistant
yeast strains. Myriocin also presents synergism with fluconazole in Scedosporium boydii,
a pathogenic filamentous fungus, suggesting that this effect could be conserved among
other pathogens [33], suggesting that targeting fungal sphingolipids in combination with
azoles is promising in order to treat fungal infections, especially in cases where resistance
to azoles lead to a failure in treatment success.

A key point and concern of using sphingolipid inhibitors to treat fungal infections
is their cytotoxic effect in humans. For instance, fumonisin B is a mycotoxin produced
by Fusarium species that also display toxicity to mammalian cells [38,39]. In the present
study, cytotoxic assays showed that myriocin is partially toxic in RAW cells, whereas
aureobasidin A is not toxic (Figure 3), and the same profile of toxicity was observed when
both compounds were tested against live C. elegans (Figure 4), suggesting that both drugs
(specially aureobasidin A) could be considered in addition to fluconazole. Considering
that fluconazole resistance in Candida isolates is a serious problem in clinical healthcare
settings, sphingolipid inhibitors were shown to be potential therapeutic options and more
studies are needed to explore their use as an alternative approach when administered in
combination with fluconazole.
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4. Conclusions

The present work showed the two sphingolipid inhibitors, myriocin and aureobasidin
A, display antifungal activity against C. albicans and C. glabrata, not only against ATCC
strains but also clinical isolates, suggesting that these compounds are active against strains
presenting resistance mechanisms to the current antifungal drugs used in clinical settings.
Myriocin and aureobasidin A also presented synergistic interaction with fluconazole,
indicating that they could be a promising approach as a combined therapy especially to
treat infections caused by resistant strains.

Toxicity analyses revealed that both drugs do not display significant toxic effect,
especially in the C. elegans model, which reinforces their potential as an alternative therapy
when combined with fluconazole. Further studies are needed to evaluate in vivo activity
of this approach and to clarify the promising use of sphingolipid inhibitors as alternatives
to treat Candida infections.

5. Materials and Methods
5.1. Cell Lineages and Reagents

A total of five strains were used in this study (Table 1). C. albicans ATCC 10231D-5
and C. glabrata ATCC 2001D-5 were used as standard. Three clinical isolates displaying
resistance patterns to fluconazole were also evaluated, C. glabrata 109 strain (which displays
overexpression of CDR1 gene that encode a ABC transporter), C. albicans 1114 strain (which
displays overexpression of MDR1 gene that encode a MFS transporter) and C. albicans 12-99
strain (which displays ERG11, that confers resistance by mutation or overexpression of
14-α demethylase involved in ergosterol synthesis; CDR1, CDR2 and MDR1 genes that
encode ABC and MFS transporters), kindly provided by Theodore White from University
of Missouri, USA. For all experiments, the strains were grown on Yeast Extract Peptone
Dextrose (YPD) agar and transferred to YPD broth and incubated at 37 ◦C for 18 h under
agitation.

Cytotoxicity assays were carried out using the murine macrophage-derived cell lines
RAW 264.7.

Aureobasidin A (Sigma–Aldrich, St. Louis, MO, USA), myriocin (Sigma–Aldrich,
St. Louis, MO, USA) and fluconazole (University pharmacy, UFJF, Juiz de Fora-MG, Brazil)
were used in susceptibility and synergism tests.

5.2. Susceptibility Tests with Aureobasidin A and Myriocin and Interaction with Fluconazole

The susceptibility assay was performed to determine the minimal inhibitory concen-
tration (MIC) of aureobasidin A and myriocin, according to Clinical Laboratory Standards
Institute (CLSI) M60 protocol. Both compounds were used in a concentration range of
0.031–4.0 µg/mL and MIC90 was determined when fungal growth presented 90% of inhibi-
tion compared to a positive control of untreated cells. Briefly, yeasts were inoculated in
sterile 96-well plates in 200 µL of RPMI medium (Roswell Park Memorial Institute), so that
they reached the concentration of 5 × 103 cells/mL in the presence of 1:2 dilutions of each
compound. The 96-well plates were incubated at 37 ◦C for 48 h with shaking (100 rpm).
Cell growth was evaluated using a microplate reader (iMark, Bio-Rad, Hercules, CA, USA)
at 600 nm.

Candida cell viability was evaluated after MIC determination by using the XTT-
reduction technique, according to Rollin-Pinheiro and colleagues [33]. Briefly, after fungal
growth as mentioned above, a 0.5 mg/mL XTT solution in PBS was added to the 96-well
plates and cells were incubated at 37 ◦C for 2 h protected from light. Further, optical density
was measured using a spectrophotometer (SpectraMax® i3x, Molecular Devices®, San José,
CA, EUA) at 490 nm to evaluate cell viability.

Interaction analysis of aureobasidin A and myriocin with fluconazole was performed
using the checkerboard method according to Reis de Sá and colleagues [40]. Aureobasidin A
and myriocin concentrations ranged from 0.0078–2.0 µg/mL and fluconazole concentration
from 16–256 µg/mL. After 48 h of growth at 37 ◦C under agitation, the fractional inhibitory
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index (FICI) was calculated according to the formula (MIC combined/MIC drug A alone)
+ (MIC combined/MIC drug B alone), where A is aureobasidin A or myriocin and drug
B is fluconazole. Interaction was classified according to the following parameter: ≤0.5,
synergistic interaction; >0.5 to ≤4, no interaction; >4, antagonistic effect [41].

5.3. Cytotoxicity Assay

Cytotoxicity was analyzed by neutral red (NR) assay with modifications [42]. RAW
264.7 cell monolayer was harvested with a cell scraper and viable cells were counted
using the Trypan blue exclusion method. 2 × 105 macrophages per well were seeded in
96-well plates containing Dulbecco’s modified Eagle medium (DMEM) with 10% FBS and
incubated in a controlled atmosphere of 5% CO2 at 37 ◦C for adhesion. Compounds were
serial diluted in DMEM and cells were incubated at concentrations of 0.313, 0.625, 1.25,
2.50, 5, and 10 µg/mL at 37 ◦C, 5% CO2 for 48h. Cells without compounds were used as
control. Absorbance was determined in a spectrophotometer at 595 nm (SpectraMax® i3x,
Molecular Devices®, San José, CA, EUA). Each test was performed in triplicate.

5.4. Caenorhabditis elegans Lifespan Assay

C. elegans strain N2 (wild isolate) was obtained from the Caenorhabditis Genetics
Center at University of Minnesota (USA) and handled according to standard method [43].
Worms were maintained at 15 ◦C on nematode growth medium (NGM) and routinely
maintained on Escherichia coli OP50 strain used as a normal diet for nematodes. Lifespan
worm assay was performed as previously described [44,45] with small modifications.
Briefly, synchronization of worms was achieved by preparing eggs from gravid adults
using a solution containing NaOCl 6% and NaOH 5M; released eggs were washed with
M9 buffer and allowed to hatch overnight in NGM agar plates. Synchronized young
worms were collected by washing with M9 buffer. Approximately 20 worms were added
to each well of 96-well plates containing 100 mL MB medium in the absence or presence of
0.5 µg/mL aureobasidin or 0.5 µg/mL myriocin. Then, the plates were incubated at 25 ◦C
during 4 days without shaking and scored as live and dead-on daily basis. The survival
ratio was calculated from the percentage of living worms out of total number of worms
including living and dead animals. This experiment was independently conducted in two
different days with a twofold analysis in each one.

5.5. Statistical Analyses

All experiments were performed in triplicate, in three independent experimental
sets. Statistical analyses were performed using GraphPad Prism version 5.00 for Windows
(GraphPad Software, San Diego, CA, USA). One-way analysis of variance using a Kruskal–
Wallis nonparametric test was used to compare the differences between groups, and
individual comparisons of groups were performed using a Bonferroni posttest. The 90–95%
confidence interval was determined in all experiments.
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