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Abstract: During tuberculosis, Mycobacterium uses host macrophage cholesterol as a carbon and
energy source. To mimic these conditions, Mycobacterium smegmatis can be cultured in minimal
medium (MM) to induce cholesterol consumption in vitro. During cultivation, M. smegmatis con-
sumes MM cholesterol and changes the accumulation of cell wall compounds, such as PIMs, LM,
and LAM, which plays an important role in its pathogenicity. These changes lead to cell surface
hydrophobicity modifications and H2O2 susceptibility. Furthermore, when M. smegmatis infects
J774A.1 macrophages, it induces granuloma-like structure formation. The present study aims to
assess macrophage molecular disturbances caused by M. smegmatis after cholesterol consumption,
using proteomics analyses. Proteins that showed changes in expression levels were analyzed in silico
using OmicsBox and String analysis to investigate the canonical pathways and functional networks
involved in infection. Our results demonstrate that, after cholesterol consumption, M. smegmatis can
induce deregulation of protein expression in macrophages. Many of these proteins are related to
cytoskeleton remodeling, immune response, the ubiquitination pathway, mRNA processing, and
immunometabolism. The identification of these proteins sheds light on the biochemical pathways
involved in the mechanisms of action of mycobacteria infection, and may suggest novel protein
targets for the development of new and improved treatments.

Keywords: Mycobacterium; proteomics; cholesterol; infection; macrophages

1. Introduction

Tuberculosis (TB) is a communicable disease that is a major cause of ill health world-
wide. A quarter of the global population is infected with the causative agent, Mycobacterium
tuberculosis (M. tuberculosis), and thus at risk of developing TB disease. It is estimated that
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1.2 million people died of TB in 2019 [1]. TB is transmitted by aerosols in droplets contain-
ing the bacteria from an infected individual to a healthy individual. The improvement of
knowledge regarding the host–pathogen interaction is one manner of overcoming obstacles
to control TB.

M. tuberculosis is a successful human pathogen that is able to grow and replicate within
a host and its success as an infectious agent is due, in large, to its ability to persist in the
macrophages [2]. The pathogenesis of tuberculosis is controlled by a complex interaction
between the host immune system and survival strategies developed by M. tuberculosis [2].

Alveolar macrophages are the most important immune cell defense against M. tubercu-
losis and, in addition to inducing the innate immune response, they also play central roles in
TB control. These cells recognize and phagocyte pathogens, such as M. tuberculosis, which
resides in a membrane-bound vacuoles inside the host, the phagosome, which usually
matures into phagolysosomes. Other mechanisms employed to kill M. tuberculosis include
the production of reactive oxygen and nitrogen intermediates, cytokine generation, up
regulation of the expression of antimicrobial peptides, classical killing pathways such as
autophagy and apoptosis, lipid mediator release, and sequestration of cofactors. Disruption
of any of these macrophage functions affects the immune response [3,4].

Although macrophages are thought to be an effective barrier against pathogens,
M. tuberculosis has evolved mechanisms to evade the host immune response, thereby
creating a favorable environment for intracellular replication via the exploitation of cell
wall components such as phosphatidylinositol mannosides (PIMs), lipomannan (LM),
lipoarabinomannan (LAM), trehalose dimycolate (TDM), glycopeptidolipid (GPL), and
mycolic acids. All of these compounds are key modulators of host immune processes and
leads to the inhibition of phagosome-lysosome fusion and phagosome acidification, the
modulation of macrophage membrane properties and the host cell cytoskeleton, as well
as host cell signaling inhibition, programmed death mechanisms, downregulation of host
gene expression, and formation of granuloma [3,5–9].

Many of these processes are modified by M. tuberculosis, which causes inhibition,
activation, recruitment, retention, or accumulation of several proteins as a strategy for
survival in the hostile environment of the host. Some of these proteins are TACO/coronin-1
which is recruited and retained to block phagosome-lysosome fusion, calcineurin that also
contributes to blocking phagosome-lysosome fusion, v-ATPase whose exclusion inhibits
phagosome acidification, and many others [10]. In contrast, non-pathogenic mycobacteria,
such as Mycobacterium smegmatis, reside in phagosomes that are fully mature by fusing with
late endocytic compartments, a process that facilitates the killing of these bacteria [11,12].
An emerging topic in TB pathogenesis is the manipulation of host lipid metabolism by
M. tuberculosis, whereby fatty acids and cholesterol are routed toward intracellular bacilli.
Inside the phagosome, M. tuberculosis requires host lipids and cholesterol to accumulate
lipid droplets and induce foamy macrophages. Host cholesterol has already been shown to
be required for optimal growth and persistence of M. tuberculosis during infection, where
the bacterium uses it as a source of carbon and biosynthetic precursors that are needed to
produce virulence-associated molecules [2,13–15].

In a recent study by our research group, Santos et al. (2019) [16] provided the first
evidence that the culture of non-pathogenic M. smegmatis in minimal medium (MM) to
induce cholesterol consumption leads to several changes in the bacterial cell wall structure.
The authors demonstrated that cholesterol availability in MM doubled the amount of
intracellular cholesterol, only when glycerol is lacking, showing it to be important for
the maintenance of small lipids such as PIMs and phospholipids on the mycobacterial
surface. Moreover, M. smegmatis also grows in MM, independently of the presence of
cholesterol, where it is induced to use mycolic acids to maintain TDM levels, thereby
decreasing cell wall mycolate accumulation. In addition to depleting mycolic acid contents
in the cell wall, M. smegmatis also changes the biosynthesis of LM and LAM, generating
unusual molecules. This report demonstrated the importance of mycolic acids and LM
and LAM for maintaining the integrity of the M. smegmatis cell wall after culturing in
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minimal growth conditions similar to those occurring in macrophage infection, where
bacteria must induce the accumulation of host cholesterol to survive [13,14,17]. In the same
work, in response to the new environment and after mycolic acid reduction, GPLs were
highly present and were necessary to maintain the integrity of the cell wall and ensure cell
survival after culture in MM. All these changes help mycobacteria to modify cell surface
hydrophobicity and become resistant to hydrogen peroxide. It is possible that this new MM
environment can change the physiology of the mycobacteria to allow the bacilli to become
resistant to phagocytosis. In addition, following cell wall modifications, the infection of
J774A.1 macrophages with M. smegmatis, the host changes its cellular reorganization to
form granuloma-like structures. In particular, the high quantities of these structures show
that the use of cholesterol by non-pathogenic M. smegmatis can potentiate the infection by
this mycobacteria [16].

Recently, a number of proteomics researchers have reported the deregulation of
several proteins during host–pathogen interactions induced by M. tuberculosis, indicating
significant changes in biological processes such as apoptosis, blood coagulation, and
oxidative phosphorylation [18]. A variety of studies have investigated cells stimulated by
infection or mycobacterial bioactive lipids [18–22]. One study showed that the infection
of macrophages with mycobacterial cell wall lipids altered the differential expression of
proteins involved in immune response, oxidation and reduction, and vesicle transport, as
well as other cellular processes [19].

Here, for the first time, using a proteomic study, we show that the infection of
macrophages with a fast-growing and non-pathogenic bacterium, M. smegmatis, led to
several changes in the differential expression of numerous proteins after induction of
cholesterol consumption and consequent infection.

2. Materials and Methods
2.1. Mycobacterial Strain and Culture Conditions

Mycobacterium smegmatis (Trevisan) of the Lehmann and Neumann strain (American
Type Culture Collection, ATCC 607; Instituto Nacional de Controle de Qualidade em
Saúde, INCQS 00021) were kindly provided by Fundação Oswaldo Cruz-FIOCRUZ, Rio de
Janeiro, RJ, Brazil. For each experiment, the strain was grown on Middlebrook 7H10 agar
supplemented with 0.5% glycerol, 0.2% glucose, and 14 mM NaCl at 37 ◦C for 3 days. After
this time, cells were cultured until late stationary growth phase in Middlebrook 7H9 broth
(BD Biosciences) supplemented with 0.2% glycerol, 0.2% glucose, 0.05% tyloxapol, and 14
mM NaCl at 37 ◦C for 3 days with agitation at 250 r.p.m [23]. The bacterial culture in the
stationary phase of growth was diluted for new 20 mL culture with OD600 0.05 in fresh
Middlebrook 7H9 broth or in minimal media (MM) containing compounds like ZnSO4
(0.1 mg/L), MgSO4·7H2O (0.5 g/L), Na2HPO4 (2.5 g/L), CaCl2 (0.5 g/L), KH2PO4 (1.0
g/L), NH4Fe(SO4)2·12H2O (50 mg/L), asparagine (0.5 g/L), vitamin B12 (10 mg/mL), 0.2%
tyloxapol, and 0.1% glycerol (in 7H9) or 0.01% cholesterol [14]. The cells were cultured
in three groups: (1) 7H9 + Gly (Middlebrook 7H9 broth supplemented with glycerol);
(2) MM + Chol (minimal medium supplemented with cholesterol); and (3) MM (only
minimal medium). The optical density at 600 nm (A600) was used to analyze the bacterial
growth [16].

2.2. Macrophage Culture and Infection with Mycobacterium Smegmatis

The J774A.1 cells (ATCC TIB-67, Cell Bank of Rio de Janeiro–BCRJ, Rio de Janeiro,
RJ, Brazil), a murine macrophage cell line, was cultured in DMEM medium with 10%
fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin. The cells were
maintained at 37 ◦C in a 5% CO2-humidified atmosphere. For infection, macrophages
cells (6.6 × 105/flask) were seeded in cell culture flasks and incubated for 2 days until
reaching 90% confluence. Bacterial cultures at the early stationary phase were pelleted,
washed twice in PBS pH 7.4, bath-sonicated for 15 min to disrupt bacterial clumps, and
resuspended in DMEM medium to a final OD600 0.1. Macrophages were infected with M.
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smegmatis (grown in three different bacterial culture mediums) at a multiplicity of infection
(MOI) of 100:1. In each experiment, after 1 h infection, extracellular bacteria were dead
after addition of 10 µg/mL gentamicin. After 12 h of infection, the cells were washed three
times with cold PBS pH 7.4 [11,16]. Macrophages without infection were used as a control
group as shown in Figure 1.
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Figure 1. Experimental design. The macrophage cell line J774A.1 was cultivated and infected with M. smegmatis grown in
different nutritional conditions. Proteins were extracted and analyzed by Nano-LC-ESI MS/MS. As a control, uninfected
macrophages were used.

2.3. Cell Lysis and Sample Preparation

After 12 h of infection, the cells were washed with cold PBS pH 7.4 (three times) and
harvested by scraping in PBS. Cells were centrifuged at 1500× g for 5 min on ice and
resuspended in 6 M urea, 2 M thiourea, and 10 mM dithiothreitol (DTT) for lysis and
reduction for 2 h at 37 ◦C. After incubation, the samples were diluted 10-folds in 20 mM am-
monium bicarbonate pH 7.5 and sonicated on ice. For alkylation, 200 mM of iodoacetamide
in 20 mM of triethylammonium bicarbonate (to achieve a final concentration of 20 mM
iodoacetamide) was added and incubated for 20 min in the dark at room temperature, to
reduce and alkylate cysteine residues. Protein concentrations were measured using the
Qubit Protein Assay Kit (Invitrogen). The samples were digested with trypsin at 1:50 (w:w;
trypsin:sample) and incubated at 37 ◦C overnight. The digestion process was stopped by
adding 10 µL of 5% trifluoroacetic acid (TFA) [24].

The samples were desalted using a C18 column (SepPack 50 ng Waters), assembling a
vacuum system with manifold (Waters) and vacuum pump (Millipore). The column was
activated with 100% acetonitrile (ACN), equilibrated with 50% ACN on 0.1% formic acid
(FA), and equilibrated again with 1 mL of 0.1% TFA. The sample was previously acidified
with 0.4% TFA, loaded onto C18, and the salt removed from the sample with 0.1% TFA. The
column was equilibrated again with FA. The sample was eluted with 50% ACN on 0.1%
FA, and 80% CAN on 0.1% FA. The samples were concentrated in a SpeedVac evaporator
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at 25 ◦C for 24 h, and resuspended in 20 mM ammonium formate, diluted 10 times, in the
proportion of 75 µL for each 50 ng of protein in the samples [24].

2.4. NanoLC-ESI MS/MS Analysis

Proteomic analysis was performed in a bidimensional nanoUPLC tandem nanoESI-
MS/MS platform and the MS/MS fragmentation spectra were acquired in multiplexed
data-independent mode (MSE) using a 2D-RP/RP Nano Acquity UPLC System (Waters
Corporation, Milford, MA, USA) coupled to a Synapt G2 mass spectrometer (Waters
Corporation, Milford, MA, USA). One-dimension reversed-phase (RP) approach was
used to fractionate the samples. Peptide samples (0.5 µg) were loaded onto an Acquity
UPLC M-Class CSH (C18 packed with changed surface hybrid) Column (100 Å, 1.8 µm,
100 µm × 100 mm; Waters Corporation, Milford, MA, USA) at a flow rate of 2 µL/min. An
acetronitrile gradient from 3% to 40% v/v at flow rate 400 nL/min−1 for 40 min was used
for peptide fractionation directly into a Synapt G2. The mass spectrometer was operated
in the resolution mode with an m/z resolving power of about 20,000 FWHM for every
measurement. MS and MS/MS data were acquired in positive ion mode in the range of
50–1200 m/z. The low-energy MS mode by applying constant collision energy of 4 eV was
used to collected precursor ion information, and the elevated energy scan using a ramped
collision energy (19−45 eV) applied to the collision-induced dissociation cell was used to
the fragment ion information. The lock mass channel was sampled every 30 sec using 0.1 s
scans over the same mass rang. For mass spectrometer calibration was used an MS/MS
spectrum of [Glu1]-Fibrinopeptide B human (785.8426 m/z) solution that was delivered
through the reference sprayer of the NanoLock Spray source [25].

2.5. Data Processing and Database Searches

For identification and quantification of proteins, were used dedicated algorithms
and searching against the UniProt Proteomic Database of Mus musculus, version 2019/06
(55.197 proteins) [24,26]. To assess the false-positive identification rate, the databases used
were reversed “on the fly” during database queries by the software. We used the Progen-
esis QI for Proteomics software package with Apex3D, Peptide 3D, and Ion Accounting
informatics (Waters Corporation) for correct spectral processing and database searching
conditions. This software loads the LC-MS data, followed by alignment and peak detection,
which creates a list of relevant peptide ions that are analyzed within Peptide Ion Stats by
multivariate statistical methods. The processing parameters used were 500 counts for the
low-energy threshold and 50.0 counts for the elevated energy threshold. For the processing,
all runs in the experiment were automatically aligned and assessed for suitability. For
peak picking, eight was used as the maximum ion charge and the sensitivity value was
selected as four. In addition, some parameters were considered in the identification of
proteins/peptides: (1) digestion by trypsin with at most two missed cleavages; (2) variable
modification by oxidation and fixed modification by carbamidomethyl; and (3) a false
discovery rate (FDR) of less than 1%. For ion matching, the following were required: two
or more ion fragments per peptide, five or more fragments per protein, and one or more
peptides per protein. Data were analyzed by one-way analysis of variance (ANOVA) with
treatment factor p-value < 0.05 compared to the vehicle group, and identifications that were
outside these criteria were rejected. The label free protein quantitation was performed
using the Hi-N (N = 3) method because the experimental design was defined in 3 groups
(1–3 groups). Ratios between the mean values of protein abundances from treated groups,
over the mean values of protein abundances from the control group, were calculated for
each protein. Proteins which had expression 1.0-fold (log2 fold) increased or decreased in
treated groups in comparison to the control group were considered up- or down-regulated.

2.6. Functional Correlation Analysis

For interpretation of the functional significance of identified and quantified proteins,
gene ontology annotations were performed using Blast2GO Annotation using OmicsBox
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software. STRING v.11 was used to determine potential interactions between proteins from
experimental groups and also between these proteins and other proteins from the STRING
database. The Venn diagram was drawn using Draw Venn Diagram Online.

3. Results and Discussion
3.1. Proteomics Revealed Different Expression Profiles When Macrophages Are Infected with
M. smegmatis after Cholesterol Consumption

To study the effects of different nutritional sources provided to M. smegmatis when
infecting macrophages, proteome proteins were analyzed by Nano-LC-ESI MS/MS. For
this, mycobacteria were cultivated under three different conditions and used for infection
experiments: (1) M. smegmatis cultivated in complete medium Middlebrook 7H9 broth,
which is normally supplemented with glycerol (7H9 + Gly); (2) culture in MM with
cholesterol supplementation (MM + Chol); and (3) culture in MM without supplementation
(MM). Macrophage proteins were extracted at 12 h after infection with the mycobacterial
groups. Macrophages without infection were used as a control group (Figure 1). As a result,
a total of 1265 proteins were identified in three independent experiments, among them,
614 were distinct proteins. The mass spectrometry proteomics data were deposited in the
ProteomeXchange Consortium via the PRIDE partner repository, with the dataset identifier
PXD025783 [27–29]. Data demonstrated 90, 58, and 91 exclusive proteins in 7H9 + Gly,
MM + Chol, and MM, respectively. The three groups had 276 proteins in common, as
shown in the Venn diagram, Figure 2.
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numbers of protein identifications between macrophages infected with M. smegmatis after their
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All bacterial groups cultured under the different conditions studied (7H9 + Gly,
MM + Chol, and MM) modified the proteome of the infected macrophages J774A.1, when
compared with uninfected macrophages. In total, 44 proteins were significantly up or
down-regulated in macrophages during infection with M. smegmatis grown under different
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nutritional conditions, as shown in Table 1. Specifically, 5 proteins were up-regulated and
2 proteins were down-regulated during infection with M. smegmatis grown in 7H9 + Gly. In
contrast, 7 proteins were up-regulated and 26 proteins were down-regulated during infec-
tion by M. smegmatis grown in MM + Chol and 4 proteins were up-regulated and no proteins
were down-regulated during infection by M. smegmatis grown in MM (Table 1). Thus, af-
ter cholesterol consumption, mycobacteria significantly influenced the host macrophage
proteome, altering the abundance of 33 proteins, which was significantly more than the
alterations induced by the 7H9 + Gly and MM groups. The finding that 26 proteins were
down-regulated shows that, after cholesterol consumption, mycobacteria can affect several
biological processes and molecular functions in the host cell.

Table 1. Quantification of identified, quantified, exclusive, and differentially regulated proteins in
proteomic analysis.

Experimental
Groups

Identified
Proteins

Quantified
Proteins

Exclusive
Proteins Regulated Proteins

Up- Down-

7H9 + Gly 439 119 90 5 2
MM + Chol 391 139 58 7 26

MM 435 90 91 4 0

Total 1265 44

The identified proteins were cataloged into biological processes (Figure 3A), molecular
functions (Figure 3B), and cellular components (Figure 3C). According to go annotations
from the OmicsBox software, ontology reveals that all proteins altered by the three experi-
mental groups were mainly associated with a cellular process, metabolic process, biological
regulation, response to stimuli, and others, as shown in Figure 3A. The ontology also
showed that these same proteins are mostly associated with transcription regulator activity,
transporter activity, molecular function regulators, structural molecule activity, protein
binding, and catalytic activity as the chief molecular function, as shown in Figure 3B.
All of these biological processes, molecular function, and cellular components have been
previously associated with mycobacteria infection [7,21]. This result suggests a complex
interaction between the mycobacteria and the host.

3.2. Common Effects—Immune System and Cytoskeleton

Phagocytosis involves cell surface recognition receptors that transmit signals to vari-
ous cytoskeletal pathways, to initiate the processes of endocytosis, phagocytosis, vesicular
trafficking, and autophagy. In this study, proteins associated with the cytoskeleton, immune
response, phagocytosis, autophagy, endocytosis, and vesicular transport were altered in all
host proteomes (Supplementary Tables). Among the proteins identified after infection of
macrophages with M. smegmatis grown in 7H9 + Gly, CORO1C and TUBA1C are down-
regulated, and NCOR1, PHLDB2, SQSTM1, and IFITM3 are up-regulated (Supplementary
Table S1). Only one host protein, IFITM3, was up-regulated by the 7H9 + Gly and MM
groups, but not by MM + Chol. Only one cytoskeleton protein, CLASP1, was up-regulated
in macrophages infected by M. smegmatis grown in MM (Supplementary Table S3). In the
MM + Chol group, cytoskeleton and immune proteins such as V-ATPase, PARD3, WDR1,
MYH7, PFN1, CFL1, and SEPT2 were down-regulated, and KIF15, VIM, and ANXA3 were
up-regulated (Supplementary Table S2).
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3.2.1. Cytoskeleton

The cytoskeleton is essential for phagocytosis in immune cells. Infection of macrophages
with M. smegmatis grown in 7H9 + Gly down-regulated TUBA1C and CORO1C. These
proteins are important for cytoskeleton remodeling, protrusion formation, phagocytosis,
and the formation of endocytic vesicles [30,31]. Interference in any of these systems leads
to multiple defects in vesicular traffic, formation of vesicles, and endosome fission [32]. In
fibroblasts, the absence of coronin-1C affects not only actin filaments, but also microtubules
and intermediate vimentin filaments, generating deficiency in cell proliferation and migra-
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tion [33]. Diaz et al., 2016, also identified CORO1C in exosomes of M. tuberculosis-infected
cells [21].

In mammals, a function of coronin proteins was initially discovered by studying im-
mune evasion mechanisms used by M. tuberculosis. During infection, an important coronin
family member, known as TACO or Coronin-1A (CORO-1A), is retained on phagosome
macrophages by live mycobacteria to block phagolysosome fusion and thereby prevents
the subsequent destruction of the mycobacteria [34,35]. CORO-1A has also been shown
to be important for the activation of calcium signaling following mycobacterial entry
into macrophages.

The cytoskeleton is involved in all main functions of immune cells related to the
response to infection. The architecture of the actin cytoskeleton network is maintained by
the coordination of a large number of proteins that regulate the assembly and disassembly
of filaments and the contractile force driven by the myosin motor protein. The myosin
motor protein can also promote the disassembly of filaments [36]. In the macrophages
infected by the MM + Chol group, MYH7, PFN1, CFL1, and WDR1 were all down-regulated.
CFL1 and WDR1 are cytoskeleton binding proteins that can work together by inducing
the disassembly of actin filaments; their depletion perturbs the actin cytoskeleton [37]. In
addition, PFN1 also binds to actin and affects the cytoskeleton structure.

Other cytoskeleton proteins that were up-regulated in macrophages by the MM + Chol
M. smegmatis group are KIF15, a motor protein of microtubules, ANXA3, and VIM (Vi-
mentine). These last two interact directly and are related to differentiation, migration,
phagocytosis, and production of reactive oxygen species [38,39]. VIM is expressed in
activated macrophages and responds to pro-inflammatory stimuli [40]. Mahesh et al.,
2016, demonstrated that vimentin is up-regulated in macrophages infected with heat-killed
M. tuberculosis H37Rv and live H37Ra [41]. VIM was also shown to be up-regulated in
exosomes of macrophages infected with M. tuberculosis [21] and by ManLAM interaction
with macrophages [20]. The positive regulation of ANXA3 highlights its role not only as
a cytoskeletal protein, but also in blocking the inflammatory process that is inhibited by
this protein during infection. ANXA3 blocks phospholipase A2 and consequently prevents
the release of arachidonic acid and its modification into prostaglandins and leukotrienes,
which are categorized as anti-inflammatory and inflammatory mediators that are important
during infection.

3.2.2. Immune System

We analyzed the direct relationship between cytoskeleton proteins, the immune re-
sponse, and inflammation-related proteins during infection. Previous studies also showed
the overexpression of SQSTM1 and IFITM3 in macrophages infected with M. tuberculo-
sis [7,20,42]. SQSTM1, up-regulated in the macrophages infected by the 7H9 + Gly group,
is one of the best-known substrates for autophagy and participates in selective autophagy;
its up-regulation indicates failure in the autophagic process [43,44]. It has been previously
shown that phagocytosis is enhanced in autophagy-deficient macrophages, increasing
uptake of mycobacteria [43]. IFITM3 was up-regulated in the macrophage infected by the
7H9 + Gly and MM groups; this protein plays a critical role in the structural stability and
function of vacuolar ATPase (V-ATPase), a phagosome membrane protein responsible for
phagosome acidification and degradation of mycobacteria. IFITM3 restricts mycobacterial
growth by mediating endosomal maturation; it acts through interaction with V-ATPase and
potentially stabilizes its association with endosomal membranes, increasing the endosomal
acidification of cells infected with M. tuberculosis [45,46].

In contrast, the MM + Chol M. smegmatis group induced different responses in
macrophages. After cholesterol consumption, M. smegmatis induced down-regulation
of V-ATPase, indicating a possible destabilization of this phagosome membrane protein.
Previous studies have shown that V-ATPase plays important roles during M. tuberculosis
infection [6,47,48]. In macrophages, M. tuberculosis infection inhibits phagosome acidifica-
tion by the exclusion of V-ATPase and it is critical for M. tuberculosis persistence in host
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macrophages [6]. Shui et al., 2011 showed that v-ATPase was down-regulated by ManLAM
(Mtb) interaction with macrophages [20]. Thus, the negative regulation of V-ATPase in this
experimental group represents an important finding of our study because this is a key pro-
tein in phagosome acidification. These results provide further evidence that M. smegmatis
induced to cholesterol consumption is able to make changes in the host immune response
and contributes to phagosome maturation arrest.

All nutritional conditions offered to M. smegmatis affect proteins related to cytoskele-
ton, immune response, and vesicular traffic of the host during infection. Macrophages
infected by M. smegmatis grown in MM + Chol demonstrated a greater number of affected
proteins than those infected by M. smegmatis grown in 7H9 + Gly or MM, indicating that,
after cholesterol consumption, mycobacteria can modify the response of the host cell and
possibly cause failure in the cytoskeleton, which is important for eliminating mycobacteria.
Intracellular pathogens subvert the host cytoskeleton to promote their survival, replication,
and dissemination. Actin is a common target of bacterial pathogens, but recent studies
have also highlighted the targeting of microtubules, cytoskeletal motors, intermediate
filaments, and septins. The study of the cytoskeleton during host–pathogen interactions
shed light on key cellular processes such as phagocytosis, autophagy, membrane trafficking,
motility, and signal transduction [8], while a recent study showed that M. tuberculosis lipids
modulate macrophage the actin cytoskeleton [9].

3.3. Exclusive Events—Specific Differences in Host Protein Regulation Induced by
M. smegmatis Infection
3.3.1. Infection of Macrophages by M. Smegmatis Grown in 7H9 + Gly up-Regulates
CABIN1, a Negative Regulator of Calcineurin

Calcium (Ca2+) is an important factor in the host–pathogen interaction; it plays a
significant role in phagocytosis and is involved in cell division, motility, stress response,
signaling, amongst other mechanisms. Previous studies suggest that actin filament and
cytoskeleton arrangement alterations require several Ca2+-binding proteins/substrates for
effective phagocytosis. In the biology of tuberculosis infection, it has been noted that M.
tuberculosis is able to arrest phagosomal maturation by interfering in Ca2+ signaling [49,50].

When macrophages were infected by the 7H9 + Gly group, we identified an exclusive
protein that was up-regulated at fold-change 5571 (Supplementary Table S1), known as
calcineurin binding protein 1 (CABIN1). CABIN1 inhibits calcineurin, which is a Ca2+- and
calmodulin-dependent ser/thr phosphatase. In the presence of calcium influx, calcineurin
inhibits the phagosome-lysosome fusion and also acts an actin-binding protein that ad-
heres to the phagosome membrane and prevents the maturation of phagosome-containing
bacilli [49,50]. The up-regulation of CABIN1 may favor the host during 7H9 + Gly M. smeg-
matis infection of macrophages by blocking calcineurin and permiting lysosomal delivery
of mycobacteria and phagosome-lysosome fusion.

The STRING analysis showed that CABIN1 interacts with other proteins related to cell
growth, survival, and apoptosis, DNA repair, replication, transcription, and chromosome
segregation (Figure 4A).

3.3.2. Infection of Macrophages with M. Smegmatis Grown in MM Induces up-Regulation
of CLASP 1, a Cytoskeleton Protein

The microtubule network in mammalian cells is used by a variety of intracellular
pathogens to facilitate their uptake and for the formation, stabilization, and maintenance
of their intracellular vacuoles. Macrophage infection with M. smegmatis grown only in MM
medium differentially regulated a protein at fold-change 5096, known CLIP-associating
protein 1 (CLASP1), a microtubule plus-end tracking protein that promotes the stabilization
of dynamic microtubules. This protein is involved in cellular adhesion, microtubule
organization, immune response and promotes the stabilization of dynamic microtubules via
their interaction with actin [51]. Zhao et al. (2013) [51] showed that the silencing of CLASP1
in fibroblasts infected with Trypanosoma cruzi reduces internalization of the protozoan and
delays fusion of CLASP1-depleted vacuoles with the host lysosomes. Here, for the first
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time, CLASP1 was related to mycobacterial infection, in the MM group. The up-regulation
of CLASP1 may facilitate the internalization of M. smegmatis and the phagosome-lysosome
fusion in macrophages. These results indicate that M. smegmatis cultured in 7H9 + Gly and
only in MM may not be able to subvert the immune response of macrophages, which can
eliminate the mycobacteria by the positive regulation of two proteins that are related to
lysosomal delivery and phagosome-lysosome fusion.

The two differentially-expressed proteins in phagocytes infected with M. smegmatis
grown in 7H9 + Gly (CABIN1) and MM (CLASP1) were analyzed using STRING-11, with
a medium confidence score threshold of 0.4. An interactome network was built for this
set of proteins to identify protein-protein interactions and predict functional associations
(Figure 4). The STRING analysis of CLASP1 demonstrates its interaction with microtubule
cytoskeleton proteins (Figure 4B).
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3.3.3. Infection of Macrophages with M. smegmatis Grown in MM + Chol Induces
Differential Expression of Proteins of the Immune System and Immunometabolism

In this group, macrophages infected with M. smegmatis after cholesterol consump-
tion demonstrated the greatest number of differentially expressed proteins (total of 33).
These proteins engage in diverse cellular processes, such as endocytosis and vesicle trans-
port, cytoskeleton rearrangement, ubiquitination pathways, mRNA processing, and im-
munometabolism. All of these proteins interact with each other, as shown in Figure 5, which
suggests a complex interaction between the host and the mycobacteria after cholesterol
consumption. Among these proteins, 7 were up-regulated and 26 were down-regulated.

Among the down-regulated proteins, VDAC2 and HSP90 have been reported in other
studies of macrophage activation and infection with M. tuberculosis [20,52,53]. Patel et al.
(2009) showed that HSP90 has a role in the stabilization of the microtubule cytoskeleton
during macrophage activation [52]. Other researchers have reported different functions
of host Hsp(s) in controlling bacterial infections. During tuberculosis infection, Hsp(s)
exhibit different functions, including toll-like receptor (TLR) activation and immune re-
sponse induction; they also act as a diagnostic tools and may represent potent vaccine
candidates [53].
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Interestingly, recent studies have shown that the immune response and metabolic
remodeling are interconnected [54]. In response to infection, activation of macrophages
makes changes in the bioenergetic pathway from oxidative phosphorylation to glycolysis,
and M. tuberculosis infection perturbs this pathway to facilitate its survival and persis-
tence [54–58]. Cumming et al. (2018) [58] demonstrated that M. tuberculosis induces a
quiescent energy phenotype in human monocyte-derived macrophages and decelerated
flux through glycolysis and the TCA cycle. Furthermore, M. tuberculosis reduced mitochon-
drial dependency on glucose and increased mitochondrial dependency on fatty acids. A
proteomic analysis by Li et al. (2017) [7] demonstrated that, during M. tuberculosis infection
of THP-1, the most modulated proteins were mainly implicated in metabolic processes
important in TB pathogenesis and transmission.

This experimental group demonstrated interference in proteins associated with host
metabolism. A total of 11 proteins were differentially regulated; among them, aldo-keto
reductase (AKR1A1), aldehyde dehydrogenase (ALDH16A1), aldose reductase (AKR1B8),
phosphoglycerate mutase 1 (PGAM1), and transketolase (TKT) were down-regulated and
other mitochondrial proteins such dihydrolipoyllysine-residue succinyltransferase (DLST)
and fumarate hydratase (FH) were up-regulated. Multiple studies have shown that the
perturbation of key metabolic enzymes can affect the immune functions of macrophages [4].
Some metabolic enzymes such as PGAM1, TKT, and ALDH16A1 have also been reported
to be associate with the cytoskeleton [52,59].
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Microorganisms can modulate the metabolic status of macrophages using virulence
factors such as cell wall constituents. Our findings indicate that, after cholesterol con-
sumption, M. smegmatis may induce similar responses to M. tuberculosis in host proteins,
down-regulating glycolytic and redox enzymes, and upregulating mitochondrial enzymes.
Among the 33 proteins differentially regulated in macrophages by M. smegmatis cultured
in MM + Chol, 20 proteins interacted with each other, as shown in Figure 5. ANXA3,
a member of the calcium-dependent phospholipid-binding protein family that inhibits
the function of phospholipase A2, interacted with VIM which integrates the cytoskele-
ton. ANXA3 also interacts with WDR1, an actin-binding protein that interacts with other
cytoskeleton proteins such as PFN1 and CFL1, demonstrating the direct relationship be-
tween the cytoskeleton and the immune response. Other proteins, for instance HSP90,
TPT1, SKP1A, PSMD1, PSMD2, and PPIA, are related to protein folding, stabilization,
and degradation. PRPF19, HNRNPL, and SYNCRIP are related to mRNA processing.
Six proteins, DLST, FH1, PGAM1, TKT, AKR1A1, and AKR1B8, which are involved in
immunometabolism, show interactions with each other.

4. Conclusions

The alterations of different biological processes in macrophages after infection with
M. smegmatis grown in different nutritional conditions helps us to understand that, when
bacilli use the carbon source available in the environment, this modifies their metabolism
and induces different macrophage responses. In particular, cholesterol consumption by
M. smegmatis grown in MM causes several changes in cell wall bioactive components.
We hypothesized that cholesterol-modified bioactive molecules may be interacting with
macrophages to down-regulate many proteins involved in key biological processes within
the cell. Thus, M. smegmatis could be modulating the immune response to remain viable
within the host.

During macrophage infection with M. smegmatis cultured in 7H9 + Gly complete
medium, only 7 proteins related to the cytoskeleton, vesicular traffic, and immune response
were differentially regulated. In this group, most proteins presented up-regulation (e.g.,
SQSTM1, IFITM3, NCOR1, PHLDB2, and CABIN1), indicating enhancement of phago-
cytosis, stabilization of the V-ATPase phagosome protein, endosomal acidification, and
favoring of phagosome-lysosome fusion. Similarly, macrophages infected with M. smegma-
tis grown in MM without any supplementation induced only up-regulation of proteins such
as IFITM3 and CLASP1, indicating that macrophages are able to eliminate mycobacteria
by the positive regulation of proteins related to the stabilization of the phagosome and
dynamic microtubules, allowing lysosomal delivery and phagosome-lysosome fusion.

In contrast, the most interesting results in our study were observed for macrophages
infected with M. smegmatis that were cultured in MM + Chol. Here, mycobacterial infection
induced greater differential expression of proteins. Of the 33 differentially expressed pro-
teins, 26 were down-regulated, including V-ATPase, VDAC2, HSP90, TPT1, PPIA, PARD3,
MYH7, PFN1, WDR1, CFL1, SEPT2, METAP2, APRT, LARS, TKT, PGAM1, AKR1A1,
ALDH16A1, and AKR1B8. These proteins are related to several biological processes such
as cytoskeleton remodeling, the ubiquitination pathway, immune response, mRNA pro-
cessing, and immunometabolism. Our data reveal that, after cholesterol consumption, the
mycobacteria interact with macrophages in a more complex way, down-regulating diverse
proteins that are important for cytoskeleton remodeling, an essential biological process
for phagocytosis and endocytosis. In addition, negative regulation of V-ATPase indicates
interference in phagosome acidification, as occurs during M. tuberculosis infection. Another
important finding of this study was the down-regulation of immunometabolism proteins
that have recently been found to be important for the host–pathogen interaction. Recent
studies have reported that M. tuberculosis causes metabolic remodeling of immune cells
to facilitate its survival and to persist in the host [55]. Here, the saprophytic M. smegmatis,
following cholesterol consumption, is able to perturb macrophage proteins involved in
metabolism, similarly to M. tuberculosis. Santos et al., 2019, showed that M. smegmatis,
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grown in MM medium with cholesterol supplementation, demonstrates changes in its
bioactive cell wall components, cell surface hydrophobicity, acquires H2O2 resistance, and
presents granuloma like-structure formation [16]. Thus, these results indicate that the
modification of bioactive cell wall molecules of M. smegmatis by cholesterol consumption
may modulate the immune response of macrophages through down-regulation of key
proteins related to the biological processes of the immune response, immunometabolism
and cytoskeleton remodeling. As such, these bacterial may be able to subvert the defense
mechanisms of macrophages to facilitate their survival inside the host.

In conclusion, our study provides the first proteomic analysis that compares a large
number of cellular proteins that are differentially regulated in macrophages by M. smegmatis,
after inducing cholesterol consumption or not. The dynamic responses to infection caused
by these mycobacteria are also characterized. This information will be important for
understanding how mycobacteria use the carbon source available in the environment to
manipulate the metabolism and defense mechanisms of the host macrophage. A more
comprehensive understanding of host–pathogen interaction, cellular metabolism, and
signaling networks may provide a novel avenue to improve disease therapeutics, vaccines,
and biomarkers for M. tuberculosis infection. Furthermore, understanding how microbial
metabolism interacts with macrophage metabolism and how this influences the control or
progression of infection may shape future investigations.
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10.3390/pathogens10060662/s1, Table S1: List of differentially regulated proteins from the group
of macrophages infected with M. smegmatis grown in complete 7H9 medium supplemented with
glycerol (7H9 + Glycerol); Table S2: List of differentially regulated proteins from the group of
macrophages infected with M. smegmatis grown in minimal medium supplemented with cholesterol
(MM + Cholesterol); Table S3: List of differentially regulated proteins from the group of macrophages
infected with M. smegmatis grown in minimal medium without supplementation (MM).
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