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Międzobrodzki, J. First Case of

Staphylococci Carrying Linezolid

Resistance Genes from

Laryngological Infections in Poland.

Pathogens 2021, 10, 335. https://

doi.org/10.3390/pathogens10030335

Academic Editor: Rachel McLoughlin

Received: 14 January 2021

Accepted: 10 March 2021

Published: 13 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 MML Medical Centre, Bagno 2, 00-112 Warsaw, Poland; m.michalik@mml.com.pl (M.M.);
dr.alfredsamet@gmail.com (A.S.); adrianna.podbielska@mml.com.pl (A.P.-K.)

2 Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University,
Gronostajowa 7, 30-387 Kraków, Poland; mariola.wolska@doctoral.uj.edu.pl (M.W.);
jacek.miedzobrodzki@uj.edu.pl (J.M.)

* Correspondence: maja.kosecka-strojek@uj.edu.pl

Abstract: Linezolid is currently used to treat infections caused by multidrug-resistant Gram-positive
cocci. Both linezolid-resistant S. aureus (LRSA) and coagulase-negative staphylococci (CoNS) strains
have been collected worldwide. Two isolates carrying linezolid resistance genes were recovered from
laryngological patients and characterized by determining their antimicrobial resistance patterns and
using molecular methods such as spa typing, MLST, SCCmec typing, detection of virulence genes
and ica operon expression, and analysis of antimicrobial resistance determinants. Both isolates were
multidrug resistant, including resistance to methicillin. The S. aureus strain was identified as ST-
398/t4474/SCCmec IVe, harboring adhesin, hemolysin genes, and the ica operon. The S. haemolyticus
strain was identified as ST-42/mecA-positive and harbored hemolysin genes. Linezolid resistance
in S. aureus strain was associated with the mutations in the ribosomal proteins L3 and L4, and in
S. haemolyticus, resistance was associated with the presence of cfr gene. Moreover, S. aureus strain
harbored optrA and poxtA genes. We identified the first case of staphylococci carrying linezolid
resistance genes from patients with chronic sinusitis in Poland. Since both S. aureus and CoNS
are the most common etiological factors in laryngological infections, monitoring of such infections
combined with surveillance and infection prevention programs is important to decrease the number
of linezolid-resistant staphylococcal strains.

Keywords: antibiotic resistance; Staphylococcus aureus; Staphylococcus haemolyticus; chronic sinusitis;
laryngological infections

1. Introduction

Linezolid, the first oxazolidinone antimicrobial approved in clinical practice, is cur-
rently used to treat infections caused by Gram-positive cocci, especially methicillin-resistant
Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci [1]. The first linezolid-
resistant S. aureus (LRSA) strain was detected in 2001 [2]. Since then, linezolid-resistant
S. aureus strains have been collected worldwide, but most of them are related to (i) severe
diseases such as cystic fibrosis [3,4], (ii) ICU patients [5,6] or (iii) chronic infections with
long-term linezolid treatments [7]. Not only have S. aureus linezolid-resistant strains been
reported, but increasing linezolid resistance in coagulase-negative staphylococci (CoNS)
strains has also been observed. The first linezolid-resistant S. haemolyticus (LRSH) strain
was reported by Rodríguez-Aranda et al. in 2009 [8]. Since then, a few strains (namely, 11)
have been reported worldwide [9,10], but most of them were reported from China [11,12]
and from India [13–15], with the last one in 2019 [16].

Linezolid reversibly binds and blocks the ribosomal peptidyl transferase center (PTC)
and by this mechanism exerts bacteriostatic activity [17]. In staphylococcal clinical isolates,
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the mutation of the V domain of the 23S rRNA, namely, G2576U, is the most common mod-
ification of the ribosome at the PTC [2,9], but other mutations have also been identified [18].
Linezolid resistance has also been associated with mutations in the L3, L4, and L22 riboso-
mal proteins [18–20]. Moreover, the linezolid resistance, a transferable one, may be related
to the cfr gene known since year 2000, and in staphylococci, firstly discovered in a bovine
Staphylococcus sciuri strain and later reported also in other staphylococcal species [21].
The cfr gene is not only responsible for resistance to oxazolidinones but also mediates
cross-resistance to other antibiotics, such as phenicols, lincosamides, pleuromutilins, and
streptogramin A [22]. Recently, the linezolid resistance was also associated with the novel
transferable oxazolidinone resistance gene, namely optrA. First, it was identified, mainly
in enterococci from humans and animals [23,24] but recently, the optrA gene was detected
also in a single porcine S. sciuri strain [25,26] and later confirmed in a few other S. sciuri
strains [27]. In contrast to cfr gene, optrA confers cross-resistance only to oxazolidinones,
including tedizolid and phenicols. In 2018, Antonelli et al. described the novel gene,
named poxtA, responsible also for transferable linezolid resistance in MRSA strains. The
poxtA gene encodes a protein of the ARE ABC-F family (lineage F of the ABC superfamily
proteins associated with antibiotic resistance), one of the ribosomal protection proteins [28].
The poxtA gene is distantly related to optrA and able to cross-mediate susceptibility to
phenicols, oxazolidinones, and tetracyclines. Moreover, it was also observed that poxtA
gene could act synergistically with other oxazolidinone resistance mechanisms to further
increase the level of resistance to this group of antibiotics [28].

Linezolid resistance has also emerged in patients without linezolid exposure, which
is probably due to cross-transmission between patients, horizontal transfer of linezolid
resistance mediated by transferable genes among different CoNS species or co-selection
by treatment with other antibiotics [15,22]. Moreover, linezolid-resistant strains are also
resistant to other groups of antibiotics, especially linezolid resistant strains are often
simultaneously resistant to β lactams, so a proper characterization of broad resistance
mechanisms is required [29].

In Poland, the only study related to linezolid resistant Staphylococcus strains recovered
from ICU patients was published by our group in 2020 [6]. To date, there are no published
reports related to linezolid-resistant strains detected in laryngological infections. Therefore,
the study presented is the first in that field. Considering that staphylococci, including both
S. aureus and CoNS, are the most frequent etiological factors in laryngological infections [30],
their genetic and antimicrobial resistance profiles need to be further evaluated.

In the present study, two Staphylococcus isolates from laryngological infections were
evaluated for their mechanisms of linezolid resistance and genetic profiles, and linked to
patient characteristics.

2. Results
2.1. Patient Characteristics

Two patients hospitalized in the MML Center were evaluated. The first patient, a
male of age 37, was diagnosed with chronic sinusitis. In 2013, the patient underwent nasal
septum correction, correction of lower nasal turbinates by the Celon method, functional
endoscopic surgery of the paranasal sinuses, removal of a foreign body from the left
maxillary sinus, and correction of the soft palate by the Celon method. Then, in 2016,
the patient was admitted to a clinic with purulent runny nose after dental treatment
and diagnosed with chronic maxillary sinusitis. The patient was referred for functional
endoscopic sinus surgery (FESS). The S. haemolyticus (WAW954 isolate) was cultured from
the right sinus.

The second patient, a male aged 57, was admitted to the MML Center in the middle of
2016, diagnosed with chronic sinusitis, and qualified for surgery. The S. aureus (WAW1257
isolate) was cultured from right and left maxillary sinuses. During laryngological proce-
dures, none of the patients were treated with linezolid. However, the first patient was
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treated with amoxycillin, clavic acid, and co-trimoxazole and the second patient with
rifampicin and fusidic acid.

2.2. Characteristics of Isolates and Identification at the Species Level

A set of two isolates WAW1257 and WAW954 from the maxillary sinus collected
from patients treated in the MML Medical Center were investigated. The preliminary
identification with the Vitek® 2 system identified the WAW1257 isolate as S. aureus and
WAW954 as S. haemolyticus. Species identification was confirmed by four Sanger sequencing
methods, namely, 16S rRNA, sodA, tuf, and rpoB genes.

2.3. Genetic Profiling and Clonality Analysis

Multilocus sequence typing (MLST) analysis revealed that S. aureus WAW1257 was
ST398 and S. haemolyticus WAW954 was ST42. The S. aureus strain was assigned as spa type
t4474. The SCCmec typing methods allowed for the identification of the SCCmec type IV
subtype E for the WAW1257 strain and the presence of only the mecA gene in WAW954.
The arginine catabolic mobile element (ACME) typing showed that WAW1257 contained
ACME type II (arc+, opp3−) and WAW954 ACME type III (arc−, opp3+) (Table 1).

Table 1. Genetic profiles of S. aureus and S. haemolyticus strains isolated from laryngological patients.

MLST spa Type
SCCmec
Cassette

Type
ACME Type

Virulence
and Biofilm
Formation

Genes

S. aureus
WAW1257

ST 398
(arcC allel 3;
aroE allel 35;
glpF allel 19;
gmk allel 2;
pta allel 20;
tpi allel 26;

yqiL allel 39)

t4474 IVE II

clfB, clfA,
fnbB, fib, hlg,
hla, hld, hlb,
icaABDC
operon

S.
haemolyticus

WAW954

ST42
(arcC allel 1;
cfxE allel 1;

hemH allel 1;
leuB allel 1;
RiboseABC

allel 4;
SH1200 allel

1; SH1431
allel 5)

not
applicable mecA only III fib, hla, hlb

2.4. Virulence and Biofilm Formation Genes

The S. aureus (WAW1257) strain was positive for the clfB, clfA, fnbB, fib, hlg, hla, hld,
and hlb genes, and S. haemolyticus WAW954 was positive for the fib, hla, and hlb genes.
Additionally, the S. aureus strain harbored the icaABDC operon (Table 1).

2.5. Antimicrobial Susceptibility and Resistance Determinants

Based on the European Committee on antimicrobial susceptibility testing (EUCAST)
breakpoints tables, the S. haemolyticus isolate was susceptible to only four antibiotics,
tested in this study. Both isolates exhibited susceptibility to daptomycin and amikacin.
Moreover, the S. aureus isolate was susceptible to fosfomycin, tigecycline, gentamicin, and
S. haemolyticus to vancomycin and trimethoprim-sulfamethoxazole (Table 2). The linezolid
resistance was tested with the E-test method and resulted in MIC = 3 µg/mL for S. aureus
and MIC = 6 µg/mL for S. haemolyticus (Table 2). Therefore, S. aureus was assigned as
linezolid susceptible and S. haemolyticus as resistant.
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Table 2. Antimicrobial susceptibility profiles and antibiotic resistance genes of S. aureus and S. haemolyticus strains.

Strain No. WAW1257
(S. aureus)

Strain No. WAW954
(S. haemolyticus)

Antibiotic MIC
(µg/mL)

Interpretation
(S/R)

Antibiotic
Restistance

Genes

MIC
(µg/mL)

Interpretation
(S/R)

Antibiotic
Restistance

Genes

Linezolid 3 S

optrA, poxtA,
T314C and

G362A
mutations in

rplC (L3), C575T
mutation in

rplD (L4)

6 R cfr

Cefoxitin 48 R mecA 64 R mecA
Vancomycin 3 R - 4 S -
Teicoplanin 3 R - 6 R -
Daptomycin 1 S - 0.75 S -
Fosfomycin 3 S - 256 R -

Ciprofloxacin 32 R norA 32 R -
Tetracycline 256 R - 96 R -
Tigecycline 0.50 S - 1.5 R -

Chloramphenicol 48 R - 256 R fexA

Gentamicin 0.75 S - 24 R aac(6′)-Ie-
aph(2”)

Clindamycin 256 R - 256 R -
Amikacin 3 S - 6 S -

Erythromycin 256 R - 256 R -
Trimethoprim-

Sulfamethoxazole 32 R - 2 S -

Levofloxacin 8 R norA 32 R -
Nitrofurantoin 96 R - 128 R -
Benzylpenicillin 24 R - 256 R -

MICs were determined by the E-test method. R: Resistance; S: Susceptibility.

In our study, both S. aureus and S. haemolyticus strains exhibited intermediate levels of
resistance to vancomycin, MIC = 3 µg/mL for S. aureus and MIC = 4 µg/mL for S. haemolyti-
cus. Therefore, both isolates were reported as vancomycin intermediate S. aureus (VISA)
or vancomycin intermediate Staphylococcus sp. (VISS). Both S. aureus and S. haemolyticus
strains were resistant to teicoplanin (Table 2). The S. haemolyticus isolate was also resistant
to chloramphenicol and clindamycin, consistent with the presence of the cfr and fexA
genes. The occurrence of cfr gene mediates in rendering the so-called PhLOPSA phenotype.
S. haemolyticus was resistant to gentamicin, as confirmed by the presence of the aac(6′)-Ie-
aph(2”) gene. The S. aureus strain was resistant to ciprofloxacin and levofloxacin, and had
the norA gene (Table 2). Additionally, the S. aureus strain demonstrated T314C and G362A
changes in their deduced amino acid sequences of the L3 protein and C575T changes in
their deduced amino acid sequences of the L4 protein. For S. aureus and S. haemolyticus
strains, no changes occurred in the analyzed part of the 23S rRNA genes or in the L22 pro-
tein genes. For the S. haemolyticus strain, no changes occurred in the L3 or L4 protein genes.
Moreover, the S. aureus strain harbored the optrA and poxtA genes (Table 2). Altogether,
the strains were resistant to six various classes of antimicrobials, i.e., they were multidrug
resistant.

3. Discussion

In the era of multidrug-resistant strains, linezolid is still an effective treatment agent
for Gram-positive coccus infections [31]. Nevertheless, the increase in linezolid-resistant
S. aureus, S. haemolyticus, and other CoNS is worrisome. Mostly, the number of linezolid-
resistant strains occurs after increased administration of an antibiotic but not always [3,4,29].
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What is important, the linezolid resistance can emerge in CoNS after only a few days of
treatment and in S. aureus strains, it usually occurs after a long time after the treatment [18].

In our study, to our knowledge, the patients were not exposed to linezolid prior to
the isolation of the resistant strains. This acquisition of linezolid resistance may relate
to the highly plastic nature of the CoNS genome, which is driven largely by insertion
sequences and other mobile genetic elements [32]. Patients may have acquired the strains
carrying the linezolid resistance genes from their environment, during their other hospital
stay or could have also undergone the linezolid treatment due to infections other than
sinusitis. Here, we describe the first cases of S. aureus and S. haemolyticus strains carrying
linezolid resistance genes collected from patients with chronic sinusitis. In recent years,
sinus infections have developed into chronic maxillary sinusitis over time in approximately
15% of patients [33]. The occurrence of multidrug-resistant strains in such patients is a
next step in spreading antibiotic resistance, including the one for so-called last chance
antibiotics such as vancomycin. In case of our strains, the divergent results of vancomycin
resistance testing were most probably due to hetero-resistance [34]. Based on previous
research, the precise cut-off values for both VISA and VISS phenotypes change with time
and are different depending on the country [35]. Due to KORDL recommendations [36],
we believe that our MIC values, which are slightly over breakpoint, can be considered as
vancomycin-intermediate.

Unlike prior studies, where ST5 and ST188 were predominant among linezolid-
resistant strains (data for S. aureus) [3,37], in our study, the S. aureus strain belonged
to ST398, one of the most frequent lineages of LA-MRSA in Europe [38,39]. It was observed
that the occurrence of LA-MRSA in human is strongly associated with the increased contact
with livestock [40]. Furthermore, it is known that ST398 often shows extensive resistance,
which is selected by the widespread use of antibiotics in livestock farming [41,42]. In the
present case, the patient affirmed that he was engaged in animal breeding activities (cattle
and poultry) and lived in proximity to dogs and cats.

As reported previously, ST398 can be combined with SCCmec type IV [43,44], and such
a situation also occurred in our study. Due to previous studies, it was reported that the
SCCmec IV has smaller components and due to its increased mobility was found in different
genetic backgrounds [45]. Moreover, SCCmec IV is mostly related to community-acquired
MRSA (CA-MRSA) strains and is rarely found in health-care-associated MRSA strains
(HA-MRSA) [46]. In recent years, it was also observed that SCCmec IV is present in several
HA-MRSA clones, especially in Europe [47,48] but also worldwide [49,50]. Recent studies
have reported that CA-MRSA strains are spreading in hospital settings and are replacing
traditional HA-MRSA strains, especially in the United States of America [51,52].

To date, only a few reports on t4474 have been published. Data from one S. aureus
strain belonging to t4474 isolated in Switzerland were submitted to a Ridom Spa Server
database. Ho et al. published a study concerning MRSA from slaughtered pigs sampled
from local markets in Hong Kong in 2012 [53], and Rodríguez-López et al. characterized
MRSA from the Italian heavy swine production chain in 2020 [54]. Therefore, the worldwide
distribution of this particular spa type is not exactly known. In our study, the S. aureus
strain belonged to t4474, which is also consistent with the fact that the patient had contact
with animals.

The arginine catabolic mobile element (ACME) was first described in methicillin-
resistant Staphylococcus aureus and is considered to enhance transmission, persistence, and
survival. It was shown that ACME elements are especially prevalent in CoNS species [55].
Considering that not only the ACME is associated with the widespread S. aureus clones
but also its high prevalence in S. epidermidis strains was noted [56], we believe that the
detection of this element in S. aureus and CoNS strains from laryngological infections,
where the strains must survive sometimes for a long time, is crucial for monitoring the
transmission and better understanding such strains. ACME is integrated downstream of
the SCCmec cassette and is flanked by repeat sequences, together with cassette chromosome
recombinase (ccr) genes. It was proven, that ccr genes catalyze the integration and excision
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of ACME from the staphylococcal chromosome [56], which is consistent with our study, that
the ACME element coexists with SCCmec type IV [57–59]. In contrast to studies performed
on S. aureus, the ACME in CoNS has not yet been thoroughly clarified [60]. Previously,
ACME types were distinguished by characteristic presence profiles of the arc and opp3
operons but recently, two novel ACME types harboring the potassium transporter-encoding
operon kdp were described. In our study, the S. aureus strain possessed ACME type II, and
the S. haemolyticus strain had ACME type III.

In our study, all the strains harbored virulence factors related to adhesion and hemol-
ysis processes. In laryngological infections, not only are the adhesion-related factors
important but also enzymes such as hemolysins can play a role in some of the effects of
staphylococci on host organisms, with both involved in tissue destruction and as spreading
factors facilitating invasion into nearby tissues [30]. Moreover, these factors may also
be related to strains persistence in a host. In our study, the S. aureus strain also carried
the icaADBC locus, which is responsible for the production of polysaccharide intercel-
lular adhesin (PIA), playing an important role in biofilm formation by bacteria [61]. In
ICU patients with MRSA respiratory infection intubated for long periods, the systemic
treatment with linezolid has a beneficial effect in limiting the MRSA burden [62,63]. Inde-
pendent of that phenomenon, generally, the circulation of linezolid-resistant strains within
a biofilm-associated operon generates a great risk for patients.

Although cfr-positive MRSA strains have occurred in many S. aureus lineages, in our
study, the MRSA strain was cfr-negative and did not harbor mutations in the V region of
23S rRNA. In our study, the S. aureus strain had two mutations in the L3 protein (T314C;
G362A) and one in the L4 protein (C575T). The amino acid substitutions were detected
based on a comparison with reference genomes of linezolid-sensitive S. aureus strains.
The obtained sequences were compared to the reference rplC and rplD gene sequences of
S. aureus NCTC8325, N315, and MW2. We believe that the unambiguous confirmation
of these mutations should be determined by whole genome sequencing, which can be
performed in the future. Moreover, the S. aureus strain harbored both optrA and poxtA
genes, responsible for transferable linezolid resistance. To our knowledge, this is the first
detection of both optrA and poxtA genes and L3/L4 mutations in a single strain.

S. haemolyticus is a part of natural human skin microbiota and is, after S. epidermidis, the
second most frequent species among clinical isolates of CoNS [64]. Nowadays, this species
is recognized as an important nosocomial pathogen with a drift to develop multiple drug
resistance, probably due to insertion sequences in its chromosome resulting in genomic
rearrangements [65]. Indeed, S. haemolyticus was the first one among Gram-positive
pathogens which acquired glycopeptide resistance and seems to show increased teicoplanin
resistance in comparison to other CoNS [66]. In our study, the S. haemolyticus strain had
only the mecA gene. Although, such structure of the SCCmec cassette was confirmed by
two independent SCCmec typing methods, this is either a situation that the corresponding
SCCmec element was non-typeable due to the alternative structure or modified primer
binding sites or only the mecA gene is present. However, Miragaia et al. 2018 described that
the CoNS species, including S. haemolyticus were characterized by high genetic diversity
and recombination rate. Moreover, the ability to acquire and maintain exogenous genetic
material or genetic mobile elements have been acquired earlier by these species than by
S. aureus strains [67]. What is worrisome, the infection prevention controls, which are
administered for MRSA are not used for CoNS and as a result, many multidrug resistant
isolates, even those resistant to linezolid, stay undetected in health care settings. The
detection of linezolid resistance in S. haemolyticus strains seems to be an emerging issue
and requires stricter control to preserve linezolid for its clinical utility.

In our study, S. haemolyticus was PCR-positive for the cfr and fexA genes. The fexA
gene presence was consistent with chloramphenicol resistance and the cfr gene detection
conferred the S. haemolyticus PhLOPSa phenotype [22]. The cfr gene is located either in
the chromosome or in plasmids or transposons which indicates a higher ability to transfer
between strains [68,69]. The spread to susceptible populations or other pathogenic bacteria
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is facilitated. Moreover, the cfr-mediated resistance is related to an array of other antibiotics
which limits therapeutic options. In Staphylococcus, the fexA gene is located in a small
transposon Tn558 or in combination with the cfr gene in transposition-deficient Tn558
variants [70]. Here, we link the S. haemolyticus resistance with the presence of cfr gene, as
no mutation in 23S rRNA nor L3/L4/L22 proteins was found. Such situation was observed
for other linezolid resistant CoNS species [4,15,22].

To conclude, we identified the first cases of multidrug resistant S. aureus strain carrying
linezolid resistance genes and linezolid-resistant S. haemolyticus strain from patients with
chronic sinusitis in Poland. Since S. aureus and CoNS are the most common etiological
factors of laryngological infections, monitoring linezolid resistance, together with the
genetic characterization of such strains, is an emerging issue.

4. Materials and Methods
4.1. Strain Collection

The set of bacterial isolates used in this study included S. aureus (WAW1257) and
S. haemolyticus (WAW954) clinical isolates carrying linezolid resistance genes recovered in
2016 from laryngological patients treated in MML Medical Center, Warsaw. Both isolates
were recovered from maxillary sinuses. The preliminary identification of isolates was
performed with a Vitek® 2 Compact instrument (bioMérieux, La Balme Les Grottes, France).

4.2. Susceptibility Testing

Susceptibility testing was carried out according to the European Committee on An-
timicrobial Susceptibility Testing (EUCAST; www.eucast.org/; accessed on 26 February
2021) recommendations. Minimum inhibitory concentration (MIC) values for linezolid, ce-
foxitin, vancomycin, teicoplanin, daptomycin, fosfomycin, ciprofloxacin, tetracycline, tige-
cycline, chloramphenicol, gentamicin, clindamycin, amikacin, erythromycin, trimethoprim-
sulfamethoxazole, levofloxacin, nitrofurantoin, and benzylpenicillin were determined
using the E-test method.

4.3. Total DNA Extraction

For genomic DNA extraction, isolates were grown for 20 h at 37 ◦C on blood agar
plates. A full inoculation loop of 10 µL of bacterial colonies was homogenized with a
TissueLyser II (Qiagen, Germantown, MD, USA). The Qiagen DNeasy Blood and Tissue Kit
(Qiagen, Germantown, MD, USA) was used for genomic DNA extraction. The subsequent
steps were performed according to the manufacturer’s instructions. Purified DNA was
stored at −20 ◦C.

4.4. Species Identification

Both isolates were identified at the species level by sequencing the 16S rRNA, sodA,
tuf, and rpoB genes, as previously described [71–74]. The PCR products were resolved
by electrophoresis and purified using the Clean-Up Concentrator purification kit (A&A
Biotechnology, Gdynia, Poland). The concentration and purity were measured using
a NanoDrop ND-1000. The PCR products were sequenced with the Sanger method at
Genomed S.A. (Warsaw, Poland) with the same primers as those used for PCR.

4.5. Molecular Analysis
4.5.1. Spa Typing

Spa typing, based on the amplification of the variable X region of the protein A gene,
was performed as described previously [75]. After sequencing, the spa type was assigned
using the Ridom StaphType software version 2. 2. 1 (Ridom GmbH, Würzburg, Germany)
and the Ridom SpaServer (https://spaserver.ridom.de/; accessed on 25 May 2020).

www.eucast.org/
https://spaserver.ridom.de/
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4.5.2. MLST Typing

The clonality of isolates was studied using multilocus sequence typing (MLST) [76,77].
All PCR products were sequenced, and the S. aureus and S. haemolyticus MLST websites
(https://pubmlst.org/shaemolyticus/; accessed on 25 May 2021, https://pubmlst.org/
saureus/; accessed on 25 May 2020) were used to assign alleles and sequence types (STs)
for allelic profiles [78].

4.5.3. SCCmec Cassette Typing

The SCCmec cassettes were typed with two independent methods, as described previ-
ously by Milheirico et al. [79] and Kondo et al. [80], with the USA300 strain as a positive
control for the IV SCCmec cassette. The PCR products were resolved by electrophoresis,
and the band patterns were analyzed.

4.5.4. ACME Cassette Typing

The presence of ACME cassettes in the S. aureus strain was detected by multiplex
PCR targeting the arcA (AIPS27, AIPS28) and opp3A (AIPS45, AIPS46) genes using a previ-
ously described protocol [81] (arcA AIPS27 5′-CTAACACTGAACCCCAATG-3′; AIPS28
5′-GAGCCAGAAGTACGCGAG-3′), (opp3A AIPS45-5′-GCAAATCTTAAATGGTCTGTTC-
3′; AIPS46 5′-GAAGATTGGCAGCACAAAGTG-3′). Single PCR targeting the arcA and
opp3B (opp3B-F, opp3B-R) genes was performed as previously described by O’Connor
et al. [82] for S. haemolyticus (opp3B opp3B-F 5′-GGATTCGCCCAAGTGATGACC-3′; opp3B-
R 5′-GACTGCTGGGTATGACGT-3′). The PCR products were resolved by electrophoresis,
and the band patterns were analyzed.

4.5.5. Detection of Virulence and ica Operon Genes

The PCRs for the detection of virulence determinants such as adhesins, hemolysins,
and biofilm formation genes were performed as described in Table 3. The PCR products
were resolved by electrophoresis, and the band patterns were analyzed.

4.5.6. Detection and Analysis of Antimicrobial Resistance Determinants

Detection of the cfr, fexA, norA, aac(6)-Ie-aph(2”) genes was performed as previously de-
scribed [5,6,70,83–86]. Additionally, the presence of optrA and poxtA genes was checked [23,87].
All the PCR products were resolved by electrophoresis, and the band patterns were analyzed.

The genes encoding the PTC-associated ribosomal proteins L3 (rplC), L4 (rplD), L22
(rplV), and 23S rRNA were amplified with the primers and PCR conditions described in
Table 4. The PCR products were cleaned and concentrated with a Clean-Up Concentrator
purification kit (A&A Biotechnology, Gdynia, Poland) and sequenced (Genomed S.A.,
Warsaw, Poland) with primers for individual ribosomal protein genes. The obtained
sequences were compared to the reference rplC, rplD, rplV, and 23S rRNA gene sequences
for S. haemolyticus JCSC1435 (GenBank accession number: NC_007168.1) and S. aureus
NCTC8325, N315 and MW2 (GenBank accession numbers: NZ_LS483365.1, NC_002745.2,
and NC_003923.1).

https://pubmlst.org/shaemolyticus/
https://pubmlst.org/saureus/
https://pubmlst.org/saureus/
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Table 3. The nucleotide sequences of primers used for the detection of the virulence genes.

Gene Sequence (5′-3′) Product Size
(bp) References

Adhesin genes

clfB (S. aureus) ACATCAGTAATAGTAGGGGGCAAC
205

[88]

TTCGCACTGTTTGTGTTTGCAC

clfA (S. aureus) ATTGGCGTGGCTTCAGTGCT
292

CGTTTCTTCCGTAGTTGCATTTG

fnbB (S. aureus) GTAACAGCTAATGGTCGAATTGATACT
524

CAAGTTCGATAGGAGTACTATGTTC

fnbA (S. aureus) GTGAAGTTTTAGAAGGTGGAAAGATTAG
643

GCTCTTGTAAGACCATTTTTCTTCAC

fib (S. aureus) CTACAACTACAATTGCCGTCAACAG
404

GCTCTTGTAAGACCATTTTCTTCAC

fib (S. haemolyticus) TTATTTGACTTTCATACTTTGTA
1698 This study

ATGGCATATGATGGCTTATTCA

Hemolysin genes

hla (S. aureus)
CTGATTACTATCCAAGAAATTCGATTG

209

[89]

CTTTCCAGCCTACTTTTTTATCAGT

hlg (S. aureus) GTCAYAGAGTCCATAATGCATTTAA
535

CACCAAATGTATAGCCTAAAGTG

hld (S. aureus)
AAGAATTTTTATCTTAATTAAGGAAGGAGTG

111
TTAGTGAATTTGTTCACTGTGTCGA

hlb (S. aureus)
GCAATATAAACGCGCTGATTTAATCG

518 [90]
GAGTGCCTTTATTGACATTAAGGTCG

hla (S. haemolyticus) TGGGCCATAAACTTCAATCGC
72 [91]

ACGCCACCTACATGCAGATTT

hlb (S. haemolyticus) ATGTCTAACTCAACTAAGAATGC
684 This study

CTAAATAAAATAAAGTATTGCTA
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Table 3. Cont.

Gene Sequence (5′-3′) Product Size
(bp) References

ica operon
(S. aureus and S. haemolyticus)

icaA
ACACTTGCTGGCGCAGTCAA

188 [92]
TCTGGAACCAACATCCAACA

icaB
AGAATCGTGAAGTATAGAAAATT

900

[93]
TCTAATCTTTTTCATGGAATCCGT

icaC
ATGGGACGGATTCCATGAAAAAGA

1100
TAATAAGCATTAATGTTCAATT

icaD
ATGGTCAAGCCCAGACAGAG

198 [92]
AGTATTTTCAATGTTTAAAGCAA
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Table 4. Primer sequences and PCR conditions used to the amplification and sequencing of 23S rRNA, rplC, rplD, rplV genes.

Target Genes Sequence (5′-3′) PCR Conditions Cycles (Steps 2–4) Reference

rplC (L3)
822-bp

rplC-F
(S. aureus) AACCTGATTTAGTTCCGTCTA 94 ◦C for 2 min

94 ◦C for 1 min
50 ◦C for 1 min
72 ◦C for 1 min
72 ◦C for 5 min

33

[94]

rplC-R GTTGACGCTTTAATGGGCTTA

rplC-F
(S. haemolyticus) ACCCTGATTTAGTTCCGTCTA [95]

rplD (L4)
1099-bp

rplD-F TCGCTTACCTCCTTAATG 95 ◦C for 5 min
95 ◦C for 30 s
45 ◦C for 30 s

72 ◦C for 1 min
72 ◦C for 10 min

30 [94]

rplD-R GGTGGAAACACTGTAACTG

rplV (L22)
520-bp

rplV-F TTTCAGCATACCATTTTGCTTCC 94 ◦C for 2 min
94 ◦C for 10 s
50 ◦C for 30 s
72 ◦C for 30 s

72 ◦C for 5 min

30

[6]
rplV-R TAAAGGACATGCAGCAGACG

23S rRNA
846-bp

23S-F CGGCGGCCGTAACTATAACG 95 ◦C for 5 min
95 ◦C for 30 s
50 ◦C for 30 s
72 ◦C for 30 s

72 ◦C for 10 min

30

23S-R CAGCACTTATCCCGTCCATAC
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4.6. Nucleotide Sequence Accession Numbers

The eight sequences for one Staphylococcus haemolyticus and one Staphylococcus aureus
were annotated using the NCBI BankIt tool and deposited in the GenBank database (https:
//www.ncbi.nlm.nih.gov/genbank/) under the following accession numbers: For the 16S
rRNA gene, MW267294 and MW267295; for the sodA gene, MW272559 and MW272560; for
the tuf gene, MW272562 and MW272563; and for the rpoB gene, MW272556 and MW272557.
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