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Abstract: Ruminants are considered the commonest animal reservoir for human infection of Cox-
iella burnetii, the Q fever causative agent. Considering the recently described importance of human
Q fever in Greece, we aimed at providing the first comprehensive direct evidence of C. burnetii in
dairy cows in Greece, including the genetic characterization of strains. The 462 examined dairy
farms represented all geographical areas of Greece. One bulk tank milk sample was collected from
every farm and tested for the presence of C. burnetii. Molecular genotyping of strains, performed
directly on samples, revealed the existence of two separate clades characterized by single nucleotide
polymorphism (SNP) genotypes of type 1 and type 2. The two clades were clearly distinguished in
multiple locus variable-number tandem repeat analysis (MLVA) by two discriminative loci: MS30 and
MS28. Whereas MLVA profiles of SNP-type 2 clade were closely related to strains described in other
European cattle populations, the MLVA profile observed within the SNP type 1 clade highlighted
a peculiar genetic signature for Greece, related to genotypes found in sheep and goats in Europe.
The shedding of C. burnetii bearing this genotype might have yet undefined human epidemiological
consequences. Surveillance of the genetic distribution of C. burnetii from different sources is needed
to fully understand the epidemiology of Q fever in Greece.

Keywords: Coxiella burnetii; Q fever; genotyping; epidemiology; BTM; Greece

1. Introduction

Coxiella burnetii, the causative agent of Q fever in humans, is a well-documented
intracellular gram-negative γ-proteobacterium, prevalent in the Mediterranean area [1],
but also recognized as endemic worldwide, except in New Zealand [2]. The bacterium
is pleomorphic and exists in two forms along its developmental cycle: the large (LCV)
(>0.5 µm) and the small cell variants (SCV) (0.2–0.5 µm). The SCV is the form with
enhanced stability in the environment and the form ensuring transmission through the
aerosol route [3].
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C. burnetii is a pathogen detected in various species throughout the animal kingdom [4],
but ruminants (sheep, goats, and cattle) are considered the most common animal reservoir
for human infection [5]. A variety of other mammals, birds, and arthropods can be infected,
thus contributing to the maintenance of the bacterium in the environment [6]. In ruminants,
the infection may result in abortions during which large amounts of bacteria are shed in
placenta and birth fluid. Contaminated particles in the form of aerosols are considered
the main route of transmission to humans [7]. In humans, Q fever can manifest as an
acute or chronic illness. Acute disease is typically a self-limiting, febrile illness during
which pneumonia or hepatitis can occur, whereas chronic disease, although rare, is a
severe illness that usually manifests as endocarditis and occasionally as vascular infection,
osteomyelitis, or chronic hepatitis [7]. In cattle, Q fever is associated with late abortions
and reproductive disorders such as premature birth, delivery of dead or weak offspring,
metritis, and infertility [8], although in the majority of cases, infection remains subclinical
and asymptomatic [9]. C. burnetii is therefore a cause of economic losses in cattle and is a
public health concern in general.

In recent years, interest has increased in C. burnetii mainly due to the number and
proportion of recent outbreaks in Europe concerning human infections [10,11].

Epidemics of Q fever are partly an example of the interactions between disease burden
and agricultural practices and offer information on risks and drivers of a zoonotic disease
at the livestock–human interface [12]. Investigations in the cattle population and the
knowledge of the infection status in herds are important to understand the epidemiology
of the pathogen in a specific area/country. In dairy cattle, milk, which is one shedding
route of C. burnetii, is easy to collect and animals with bacterial loads in milk can be easily
identified in dairy herds [13]. Moreover, infected dairy cattle without clinical signs can shed
C. burnetii in milk for several months [14]. Owing to the property of simplicity in sampling
combined with the relevance for Q fever diagnosis, bulk tank milk (BTM) samples are
appropriate for monitoring C. burnetii infection at the herd level [9].

Fast fingerprinting of C. burnetii isolates using molecular genotyping tools is essen-
tial for epidemiological surveys from different geographical areas or hosts. Harmonized
schemes for typing are yet to be agreed upon for C. burnetii, but multiple locus variable-
number tandem repeat analysis (MLVA) is depicted as being highly discriminatory and
single nucleotide polymorphism (SNP) typing as the best option in case of fairly loaded
samples [15,16]

Greece poses an interesting challenge for C. burnetii investigation since it has a very
large population of dairy small ruminants: a total of 12,626,520 animals allocated in 154,926
farms, under very diverse farm conditions [17]; concerning dairy cow herds, there are
2637, with around 171,000 dairy cows. Regarding dairy cattle, there are farms in different
geographical areas, including continental Greece and islands with hot climate conditions.
Moreover, clinical human Q fever cases are being steadily recorded, with almost 200–250
new registered cases every year [18]. Another challenge is that Greece neighbors non-EU
countries with large ruminant populations, in which initiatives on animal disease control
are more difficult to apply and harmonize with EU legislation. Finally, the consequences
of global climate change favoring arthropods’ activity for a longer time yearlong poses a
special interest on C. burnetii. Despite the aforementioned importance of C. burnetii, there
is a lack of studies concerning infection with this pathogen in animals in Greece. There
are a couple of serological studies in sheep and goats [19,20] and one serological study in
dairy cows [21]. Molecular characterization of strains was approached in a single recent
work, which examined aborted sheep fetuses [22]. There is no information available on the
genotypic diversity of the strains circulating all over the country, data important for both
surveillance and epidemiological investigation.

The purpose of this study was to assess C. burnetii prevalence and infection in dairy
cattle herds in all geographical areas of Greece and to apply MLVA and SNP schemes to
characterize the genetic diversity of the C. burnetii strains circulating in the country as a
first step to establish a link with potential sources of human infection.
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2. Material and Methods
2.1. Sample Collection

A total of 462 bulk tank milk (BTM) samples were collected from 462 dairy cattle
herds (Holstein, unique breed of all dairy cows in Greece). Sampling was performed from
December 2017 to October 2018. Sampled herds were selected to be as representative
as possible of the dairy cattle herds in Greece. Sampling was performed with stratified
random selection based on geographical position and the size of the herds. Special effort
was made to proportionally sample all geographical areas of the country having dairy
cattle herds, including continental Greece and islands. From each area, all types of herds
were sampled, regardless of herd size and management practices. In special concern to
cattle population, more herds were sampled from the areas with a bigger population from
each farm, 50 mL of milk was collected directly from the bulk tank into a sterile plastic
tube, transferred under refrigeration (electric powered portable refrigerator) to the Farm
Animal Clinic of the Aristotle University of Thessaloniki, and stored at −20 ◦C till they
were sent, under dry ice condition, to Sciensano, Brussels, for analysis. All samples were
kept refrigerated in −20 ◦C till thawed for analysis.

2.2. DNA Extraction and Diagnostic Real Time-PCR

DNA was extracted directly from 200 µL BTM using the MagMax™ Isolation Kit
(Thermofisher, Waltham, MA, USA) according to the manufacturer’s instructions. We
tested 1/50 of the eluted DNA for the presence of C. burnetii DNA with a PCR (rt-PCR)
reaction targeting the IS1111 repetitive element [23]. The PCR protocol, primers, and cycling
conditions were as those previously described [24]. The rt-PCR assay was performed using
a 7500 Real-Time PCR System (Thermofisher). The results from positive samples, showing
a typical amplification curve, are expressed as cycle threshold (Ct) values. Ct values below
40 were considered to be positive [24].

2.3. MLVA and SNP Typing

DNAs were challenged to MLVA on 13 markers (MS03, MS12, MS21, MS22, MS30,
MS36, MS27, MS28, MS31, MS23, MS24, MS33, and MS34). Sequences of primers were
derived from previous works and their improved versions [15,25,26]. Amplified fragments
were analyzed by capillary electrophoresis on a CEQ 8000 Genetic Analysis System (Beck-
man Coulter, Indianapolis, IN, USA) and their exact length was measured at the nucleotide
level by the concomitant run of an internal base-ladder. Only MS21 was run on 1% agarose
gel electrophoresis and quantified according to a DNA ladder. Successful amplifications for
MLVA were variable but mostly obtained when rt-PCR provided a result with a Ct value
<30. Single-nucleotide genotyping was performed exactly as described previously [16]. The
data were submitted to http://microbesgenotyping.i2bc.paris-saclay.fr/ (latest accessed
on 2 March 2021) public repository.

2.4. Statistical Analyses and Cartography

Sample size estimation was based on Epitools (https://epitools.ausvet.com.au/, ac-
cessed on 2 March 2021). For the overall apparent shedding herd prevalence, the estimate
was calculated considering an estimated true proportion of 0.3, precision of 0.05, and
95% confidence interval (CI). Prefecture prevalence was defined only for a sample size
representing the last 15% of herds. Upper and lower CI limits were calculated with the
Wilson method for a confidence level of 95%.

Clustering analyses were performed using BioNumerics version 6.6 software (Ap-
plied Maths, Sint-Martens-Latem, Belgium). Minimum spanning trees were built on
the categorical data of the Greek dataset (this work) or available public data (http://
microbesgenotyping.i2bc.paris-saclay.fr/, accessed on 2 March 2021). The correlation of
SNP data with each MLVA marker value was calculated using Spearman’s rank correlation
coefficient with a significant value set at p < 0.05. Maps were created using R software

http://microbesgenotyping.i2bc.paris-saclay.fr/
https://epitools.ausvet.com.au/
http://microbesgenotyping.i2bc.paris-saclay.fr/
http://microbesgenotyping.i2bc.paris-saclay.fr/
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(version 3.6.1, the R Foundation for Statistical Computing, Vienna, Austria) and the tmap
package [27].

3. Results
3.1. Shedding Herd Prevalence and Bacterial Load in Bovine BTM Milk

In total, 156 of the 462 sampled farms were positive for C. burnetii DNA, showing an
overall apparent shedding herd prevalence of 33.8% (CI 29.6–38.2) throughout the country.
All but the Ionian Islands region had at least one positive farm, with varying degrees of
prevalence (Table 1).

Table 1. Greek cattle herds, geographical distribution, tested samples and apparent prevalence.

Province Prefecture
Total

Number of
Herds

Number of
Tested Herds

Number of
Tested

Samples

Number of
Positive
Samples

Apparent
Shedding

Herd
Prevalence

CI (Lower-
Upper
95%)

Thrace Evros 123 35 35 15 0.429 0.280–0.591

Epirus

Arta 30 5 5 0 0.000 0.000–0.435

Thesprotia 5 1 1 0 0.000 0.000–0.794

Ioannina 54 7 7 2

Preveza 53 10 10 3 0.429 0.280–0.591

Thessaly
Karditsa 50 2 2 0

Larissa 217 23 23 12

Magnisia 53 3 3 1

Central
Macedonia

Imathia 51 2 2 2

Thessaloniki 470 174 174 64 0,368 0.300–0.442

Kilkis 287 60 60 25 0.417 0.300–0.543

Serres 308 46 46 16 0.348 0.227–0.492

Western
Macedonia

Florina +
Kozani 351 68 68 10 0.147 0.082–0.250

Central
Greece

Evritania 10 1 1 0

Viotia 57 2 2 2

Peloponesse Ilia 170 2 2 1

Cyclades
islands Naxos 120 5 5 2

Dodecanese
Rhodes 55 4 4 0

Kos 125 10 10 1

Leros 26 1 1 0

Ionian
islands Cephalonia 22 1 1 0

Total 2637 462 462 156 0.338 0.296–0.382

The geographical distribution of positive samples revealed that in almost all sampled
places, we found C. burnetii shedding and positive farms (Table 1, Figure 1). Prevalence
was higher in Thrace, where the density of dairy farms is not particularly high (0.02–
0.05 herds/km2) in comparison to other areas, like Central Macedonia (Figure 1).
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Figure 1. Geographical distribution of positive and negative C. burnetii samples and depiction of
milk herd density in Greece.

3.2. SNP and MLVA Genotyping

Genotyping of C. burnetii was performed by SNP analysis in 50/59 positive samples
that had favorable Ct and were randomly selected across the country. The analysis revealed
the existence of two separate SNP genotypes: genotype type 1 and type 2 (Figure 2a).
Both genotypes were isolated in geographical areas with high dairy farm density and in
areas with many positive samples, like Central Macedonia (Figure 3). Interestingly, SNP
genotype 2 was the only type isolated in south continental Greece (Peloponessos, Viotia),
and in Cyclades and Dodecanese islands, which are areas where the number of dairy farms
is low. The SNP genotype 1 was the only isolated genotype in Western Greece, in the
region of Epirus (Figure 3). MLVA13 analysis was conducted on the highly C. burnetii
DNA-charged samples (22), obtaining partial MLVA profiles for 21 and a complete MLVA
for 1 sample (see Supplementary Materials).

Clustering of MLVA6 genotypic data illustrated with the minimum spanning tree again
highlighted the presence of two separate genetic groups corresponding to the two observed
SNP types (Figure 2a). A perfect correlation between SNP data and the number of repeats
in the various MLVA markers was observed for MS30, which was always associated with
five repeats for SNP type 1 and six for SNP type 2 (p = 0.002), and MS28, which was always
associated with three repeats for SNP type 1 and seven for SNP type 2 (p < 0.001). Clustering
of MLVA6 data with cattle MLVA6 data retrieved from the public repository showed that
Greek cattle samples belonging to SNP type 2 are closely related to strains characterized in
Belgium [24], France, Germany, and Japan, differing from them in none or a single locus.
Conversely, Greek cattle samples having an SNP type 1 profile cluster significantly apart
from the Belgium/France/Germany/Japan cluster and the Poland/Slovak Republic cluster
(Figure 2b).
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A deeper analysis using three Greek strains (B78, TM16, and FA59) characterized
by a larger number of markers (MLVA 12) and strains of various host origins present in
the public repository illustrated that Greek strains have a peculiar genetic profile. While
B78 and TM16 (SNP type 2) are similar to the European cattle strains (with only two-
to three-marker difference), the FA59 sample has a Greece-specific MLVA profile with
genetic characteristics in between strains in European cattle and European goat/sheep
(each four-marker difference from the nearest bovine or goat/sheep strain) (Figure 4a,b).
This completely new genotype might probably characterize also all the other SNP type
1 Greek strains found in this work and for which a full MLVA could not be established
for technical reasons. The new genotype is geographically spread in Northern Greece and
other areas with intensive farming (Figure 3).
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4. Discussion

This study is the first to use molecular techniques to examine milk samples to report
the prevalence of C. burnetii in dairy cows in Greece. It is also the first to examine samples
collected nationwide. Almost 18% of Greek dairy herds were investigated, which is a high
number and representative of the dairy cattle industry in the country. Special effort was
made to cover all geographical regions having dairy cattle and to proportionally sample
them; most samples were obtained from Central Macedonia, the area with a larger number
of dairy farms. Notably, an adequate number of farms from islands and remote places with
a very low dairy cow population was also sampled. Thus, the results depict C. burnetii
shedding in dairy cow farms of the whole country.

The overall prevalence of 33.7% revealed that C. burnetii is common in the dairy cattle
population in Greece. This finding is consistent with the reported prevalence in other
countries, confirming that C. burnetii shedding through milk is widespread in dairy cattle
herds in different countries. Reports from other countries like the USA, the Netherlands,
Spain, Hungary, Portugal, Iran, and Poland revealed a wide range of prevalence, reporting
shedding of C. burnetii through cattle milk of between 18.8% and 94.3% [9,28–33]. The
reported C. burnetii prevalence of 33.7% in Greek dairy cattle is around the mid-range of the
other countries, but still can be considered as high, since almost one out of three farms host
active C. burnetii shedders. Positive farms were recorded in all geographical areas tested,
which covered all the regions of the country, showing that active C. burnetii shedders are
spread in the whole country. There are no previous national or regional data with which to
compare, but the results are consistent with those of other European countries [29,30,33,34].
The high C. burnetii DNA prevalence in dairy cattle could be explained by the long-time
excretion of C. burnetii through milk, which, in cattle, can extend for several months
compared with the shorter excretion periods reported for sheep and goats [35].

In cattle, C. burnetii is shed in milk and other secretory routes [35], so examining milk
is adequate for herd and regional-wide monitoring. Single BTM samples were selected
from each farm, as they are easy to collect, helpful for scanning a large number of farms,
and can provide valuable epidemiological data. Concerning the performed molecular
methods, SNP genotyping of C. burnetii provides informative epidemiological insight and is
particularly suitable for direct typing of strains from veterinary materials with very limited
bacterial load [16]. Since the first proposal of a panel to be used for the genotyping of C.
burnetii [15], several studies have been conducted throughout Europe to increase knowledge
of the circulating strains. MLVA, in particular, presents the highest discriminatory power
compared to multi-sequence space typing (MST) [36,37]. Furthermore, typing by MLVA
could be standardized between laboratories, although a harmonized scheme and a genetic
strain nomenclature for C. burnetii is yet distinct between groups.

In Greece, data were lacking concerning isolates from cows, other ruminants, and
even humans; therefore, the genotypes of C. burnetii revealed here cannot be compared
with previous ones. Recently, information regarding C. burnetii diversity in Greece was
restricted to the description of a single strain from a human sample, a strain closely related
to MST 18 [38], and ruminants strains isolated from the abortion tissues of sheep and
goats [22]. Notably, the sampled dairy cattle in the present work were from the regions of
the isolated Coxiella strains of sheep abortions. Comparison of our data with MLVA data
from this previous work [22] is difficult due to the different methods used to calculate the
repeats and the different panel of loci used in the two studies. As described, the MLVA
profiles identified from sheep abortion material are different from the genotypes isolated
in the present work. The lack of harmonization of the MLVA panels and the amplified
loci lead to results that are difficult to compare among laboratories [25]. The current study
is the first attempt to genotype C. burnetii strains in dairy cattle in Greece; it should be
continued by adding more samples and data, especially from small ruminants all over
Greece. Moreover, it would be advisable to compare strains from animals with clinical
symptoms (like abortion, metritis, and low fertility) against strains of healthy animals.
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Besides genotypes already described in Europe (the SNP-type 2 strains), a novel profile
was identified in the SNP type 1 genotype group. In particular, the fully characterized
strain FA59 consisted of a peculiar genetic profile. This strain has a Greece-specific MLVA
profile with genetic characteristics between European cattle and European goat/sheep
strains. This finding is interesting concerning the closer relation of sheep and goats’ strains
to human infection [39], and further investigation would expand our understanding of the
epidemiology of these strains in the national population. This new strain might have more
virulent characteristics and, even though found in cattle, might be important for human
outbreaks, as are small ruminant strains. There are some unpublished data regarding a
new strain isolated from humans with chronic Q fever clinical disease in Greece that is
under investigation (personal communication, National Health Surveillance Institute).

As reported earlier [40], genetic diversity among Coxiella strains infecting the European
dairy cattle population is low, so the existence of a new genotype proved by the present
study is interesting. Novel genotypes were described earlier [34,39,41–43], but in these
studies, they were isolated from one sample each [43] or were sporadically and locally
found and represented a low percentage of isolates [39]. In contrast, in our present work,
the new genotype SNP-type 1 clade was isolated in almost half of the positive samples and
was widespread in the country, especially in the areas with high dairy cattle farm density
(Macedonia and Thrace), while it was the only genotype isolated from the western part
of the country (Epirus). More MLVA data are necessary to obtain a more comprehensive
image of the complete population structure of C. burnetii in Greece.

Clinical manifestation of Coxiella is under investigation because different strains and
genotypes cannot be easily related to reproductive problems, since very few virulence-
associated genes are annotated and virulence mechanisms of C. burnetii are still poorly
understood [44]. Available data are not consistent since there is proven evidence of repro-
ductive disorders attributed to Coxiella shedding in dairy cows [13,31,45] and, in contrast,
absence of reproductive problems in herds with established C. burnetii infection [9,29,46].
The absence of a permanent relation between reproductive problems and bacterial DNA
may indicate that a herd may carry C. burnetii for a long period without developing any
major clinical signs [14], or that there are strains and genotypes with varying pathogenicity
and special research attention is needed for them. Moreover, aerosol transmission, en-
vironmental stability, and a very low infectious dose [47] make C. burnetii a challenging
pathogen for diagnosis and elimination. Concerning the results of the present study, the
new genotype being isolated, which seems closer to sheep and goat’s genotype, is of special
interest, since the Coxiella infections cause more frequent and more serious symptoms and
diseases (abortion and reproductive disorders) in small ruminants than in cattle, and are
closely related to human infection and have been implicated in human outbreaks [10]. The
investigation of the reproductive and disease history of these positive herds would possibly
elucidate the relation of this Coxiella genotype with clinical reproductive disorders and
help evaluate the possible clinical relevance of the new peculiar isolated genotype.

When cattle are on the same farm with other species, especially sheep and goats, there
is a higher prevalence and within-herd seroprevalence of C. burnetii infection [14,48]. The
large population of small dairy ruminants, the vicinity with dairy cattle herds, the newly
identified cattle strain, and the constant number of cases in humans indicate the necessity
of investigating the prevalence of C. burnetii with advanced molecular techniques in small
ruminants. Surveillance of the genetic distribution of C. burnetii from different sources is
needed to fully understand the epidemiology of Q fever in Greece.

5. Conclusions

This paper reports the first comprehensive C. burnetii prevalence investigation in
dairy cows in Greece with advanced molecular techniques. The results revealed that C.
burnetii is widespread in dairy cattle herds in Greece, showing a similar situation to that
described in other countries. Low genotyping diversity was recorded in the dairy cows
population, but a new genotype, SNP type 1, with a peculiar MLVA profile was isolated
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that is more genetically related to isolated genotypes of sheep and goats in Europe. This
situation indicates the need for further studies on the epidemiological consequences of C.
burnetii shedding in the milk of cattle and especially further indicates the importance of
molecular investigation regarding sheep and goats in the country since, until now, there
were no relevant data available. The collection of such data and their comparison with data
deposited in international databases will help toward both continuing active surveillance
and strain genotyping of the pathogen, as well as to better understanding the epidemiology
of the disease across Europe.
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